Many Objective Particle Swarm Optimization
Many-objective problems refer to the optimization problems containing more than three conflicting objectives. To obtain a representative set of well-distributed non-dominated solutions close to Pareto front in the objective space remains a challenging problem. Many papers have proposed different Mul...
Gespeichert in:
| Veröffentlicht in: | Information sciences Jg. 374; S. 115 - 134 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
20.12.2016
|
| Schlagworte: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Many-objective problems refer to the optimization problems containing more than three conflicting objectives. To obtain a representative set of well-distributed non-dominated solutions close to Pareto front in the objective space remains a challenging problem. Many papers have proposed different Multi-Objective Evolutionary Algorithms to solve the lack of the convergence and diversity in many-objective problems. One of the more promising approaches uses a set of reference points to discriminate the solutions and guide the search process. However, this approach was incorporated mainly in Multi-Objective Evolutionary Algorithms, and there are just some few promising adaptations of Particle Swarm Optimization approaches for effectively tackling many-objective problems regarding convergence and diversity. Thus, this paper proposes a practical and efficient Many-Objective Particle Swarm Optimization algorithm for solving many-objective problems. Our proposal uses a set of reference points dynamically determined according to the search process, allowing the algorithm to converge to the Pareto front, but maintaining the diversity of the Pareto front. Our experimental results demonstrate superior or similar performance when compared to other state-of-art algorithms. |
|---|---|
| AbstractList | Many-objective problems refer to the optimization problems containing more than three conflicting objectives. To obtain a representative set of well-distributed non-dominated solutions close to Pareto front in the objective space remains a challenging problem. Many papers have proposed different Multi-Objective Evolutionary Algorithms to solve the lack of the convergence and diversity in many-objective problems. One of the more promising approaches uses a set of reference points to discriminate the solutions and guide the search process. However, this approach was incorporated mainly in Multi-Objective Evolutionary Algorithms, and there are just some few promising adaptations of Particle Swarm Optimization approaches for effectively tackling many-objective problems regarding convergence and diversity. Thus, this paper proposes a practical and efficient Many-Objective Particle Swarm Optimization algorithm for solving many-objective problems. Our proposal uses a set of reference points dynamically determined according to the search process, allowing the algorithm to converge to the Pareto front, but maintaining the diversity of the Pareto front. Our experimental results demonstrate superior or similar performance when compared to other state-of-art algorithms. |
| Author | Figueiredo, E.M.N. Ludermir, T.B. Bastos-Filho, C.J.A. |
| Author_xml | – sequence: 1 givenname: E.M.N. surname: Figueiredo fullname: Figueiredo, E.M.N. email: emnf@cin.ufpe.br, elliackin@gmail.com organization: Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil – sequence: 2 givenname: T.B. surname: Ludermir fullname: Ludermir, T.B. email: tbl@cin.ufpe.br organization: Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil – sequence: 3 givenname: C.J.A. surname: Bastos-Filho fullname: Bastos-Filho, C.J.A. email: carmelofilho@ecomp.poli.br organization: Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, Brazil |
| BookMark | eNp9kEtLAzEUhYNUsK3-AHezFGHGm0wyk8GVFF9QqaCuQyZzBzLMoyZppf56p9aVi67uXZzvwPlmZNIPPRJySSGhQLObJrG9T9j4JlAkwLITMqUyZ3HGCjohUwAGMTAhzsjM-wYAeJ5lU3L9ovtdtCobNMFuMXrVLljTYvT2pV0XrdbBdvZbBzv05-S01q3Hi787Jx8P9--Lp3i5enxe3C1jk6YQYlZRWaQFRa7LzDCGtZEsrzgXHCQvmS5lmQtR5CIFjlVVy6pgNTWac1lxYdI5uTr0rt3wuUEfVGe9wbbVPQ4br6jkQoIAxsYoPUSNG7x3WKu1s512O0VB7b2oRo1e1N6LgkKNXkYm_8cYG34HBqdte5S8PZA4rt9adMobi73ByrpRn6oGe4T-Aeiiffs |
| CitedBy_id | crossref_primary_10_1007_s12065_021_00644_4 crossref_primary_10_1016_j_jss_2018_12_015 crossref_primary_10_1007_s40747_021_00270_8 crossref_primary_10_1016_j_engappai_2021_104385 crossref_primary_10_1007_s10489_019_01569_3 crossref_primary_10_1007_s11227_023_05330_z crossref_primary_10_1016_j_ins_2020_05_097 crossref_primary_10_1109_TCYB_2018_2884083 crossref_primary_10_1016_j_cie_2020_106649 crossref_primary_10_1016_j_swevo_2019_100606 crossref_primary_10_1016_j_swevo_2019_100603 crossref_primary_10_1093_jcde_qwae055 crossref_primary_10_1177_03611981231182714 crossref_primary_10_1016_j_eswa_2025_128913 crossref_primary_10_1080_01605682_2023_2195426 crossref_primary_10_1016_j_jenvman_2023_117785 crossref_primary_10_1007_s12647_020_00379_0 crossref_primary_10_1016_j_autcon_2021_104084 crossref_primary_10_1111_exsy_12812 crossref_primary_10_3390_a12030061 crossref_primary_10_1007_s40032_024_01104_5 crossref_primary_10_1016_j_jocs_2017_10_001 crossref_primary_10_1007_s12065_024_00942_7 crossref_primary_10_1016_j_advengsoft_2020_102889 crossref_primary_10_1371_journal_pone_0234625 crossref_primary_10_1016_j_swevo_2021_100910 crossref_primary_10_1016_j_swevo_2021_101008 crossref_primary_10_1007_s00170_022_09728_6 crossref_primary_10_3390_math11102301 crossref_primary_10_1007_s00500_022_07182_w crossref_primary_10_1007_s00521_017_2988_6 crossref_primary_10_1016_j_ins_2018_10_007 crossref_primary_10_3390_computers11050063 crossref_primary_10_7717_peerj_cs_2073 crossref_primary_10_1007_s10489_017_0998_9 crossref_primary_10_1007_s11356_021_16108_2 crossref_primary_10_1016_j_knosys_2017_10_025 crossref_primary_10_1016_j_apm_2024_115676 crossref_primary_10_1007_s00521_018_3848_8 crossref_primary_10_1109_TCYB_2019_2922287 crossref_primary_10_1109_TCYB_2019_2949204 crossref_primary_10_3390_app13053355 crossref_primary_10_3390_signals5030029 crossref_primary_10_1007_s11227_021_03620_y crossref_primary_10_1002_spe_3292 crossref_primary_10_1016_j_engappai_2019_02_003 crossref_primary_10_1007_s40430_017_0816_7 crossref_primary_10_1016_j_ins_2018_01_038 crossref_primary_10_1016_j_eswa_2023_120401 crossref_primary_10_3390_polym14142815 crossref_primary_10_1016_j_asoc_2021_107650 crossref_primary_10_1016_j_eswa_2019_01_075 crossref_primary_10_1109_ACCESS_2023_3294095 crossref_primary_10_1007_s00500_023_09314_2 crossref_primary_10_1520_JTE20220041 crossref_primary_10_1016_j_asoc_2021_107299 crossref_primary_10_1002_eng2_70077 crossref_primary_10_1016_j_cja_2021_04_010 crossref_primary_10_1016_j_isatra_2019_01_026 crossref_primary_10_3390_a15110397 crossref_primary_10_1007_s00158_019_02272_0 crossref_primary_10_1016_j_eswa_2024_124559 crossref_primary_10_1016_j_asoc_2020_106947 crossref_primary_10_1371_journal_pone_0284110 crossref_primary_10_1109_ACCESS_2023_3308054 crossref_primary_10_3390_e24040478 crossref_primary_10_1016_j_ins_2018_07_012 crossref_primary_10_3389_fenrg_2022_953873 crossref_primary_10_1016_j_asoc_2019_02_026 crossref_primary_10_1155_2020_5132803 crossref_primary_10_1016_j_rineng_2025_106941 crossref_primary_10_1016_j_swevo_2024_101724 crossref_primary_10_1016_j_ins_2017_04_016 crossref_primary_10_1016_j_asoc_2019_01_033 crossref_primary_10_1109_ACCESS_2020_3031599 crossref_primary_10_1016_j_asoc_2020_106199 crossref_primary_10_1016_j_simpat_2023_102870 crossref_primary_10_1016_j_jpdc_2018_11_008 crossref_primary_10_1088_1742_6596_2890_1_012013 |
| Cites_doi | 10.1016/j.ins.2015.09.015 10.1162/EVCO_a_00009 10.1016/j.asoc.2015.06.020 10.1109/4235.996017 10.1109/TSMCA.2004.824873 10.1109/TEVC.2004.826067 10.1109/TEVC.2012.2204403 10.1109/TEVC.2014.2339823 10.1109/4235.985692 10.1016/j.neucom.2013.05.049 10.1109/TEVC.2007.910138 10.1109/TEVC.2012.2227145 10.1109/TEVC.2012.2204264 10.1109/TEVC.2010.2077298 10.1016/j.neucom.2011.03.053 10.1137/S1052623496307510 10.1109/TEVC.2015.2424921 10.1145/2792984 10.1109/TEVC.2010.2093579 10.1016/j.swevo.2011.03.001 10.1109/TEVC.2013.2281535 10.1109/TEVC.2010.2058117 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Inc. |
| Copyright_xml | – notice: 2016 Elsevier Inc. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ins.2016.09.026 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 134 |
| ExternalDocumentID | 10_1016_j_ins_2016_09_026 S0020025516308404 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I 77I 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c330t-2d189391e4ab6c22efc827d4454084b2ab8b755975304eddf8d92f1ca448d45c3 |
| ISICitedReferencesCount | 98 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386645800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Thu Oct 02 10:26:42 EDT 2025 Sat Nov 29 06:25:02 EST 2025 Tue Nov 18 22:11:15 EST 2025 Fri Feb 23 02:33:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Swarm intelligence Multi-Objective Evolutionary Algorithms Particle Swarm Optimization Many-objective problems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-2d189391e4ab6c22efc827d4454084b2ab8b755975304eddf8d92f1ca448d45c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1845805022 |
| PQPubID | 23500 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_1845805022 crossref_primary_10_1016_j_ins_2016_09_026 crossref_citationtrail_10_1016_j_ins_2016_09_026 elsevier_sciencedirect_doi_10_1016_j_ins_2016_09_026 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12-20 |
| PublicationDateYYYYMMDD | 2016-12-20 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Clerc, Kennedy (bib0007) 2002; 6 Deb, Jain (bib0013) 2012 Hughes (bib0020) 2003 Mostaghim, Schmeck (bib0027) 2008; 5199 Singh, Isaacs, Ray (bib0035) 2011; 15 Li, Li, Tang, Yao (bib0026) 2015; 48 Ishibuchi, Tsukamoto, Hitotsuyanagi, Nojima (bib0023) 2008 Deb, Jain (bib0012) 2014; 18 Garza-Fabre, Pulido, Coello Coello (bib0018) 2010 De Carvalho, Pozo (bib0011) 2012; 75 Zitzler, Laumanns, Thiele (bib0042) 2002 Ishibuchi, Tsukamoto, Nojima (bib0024) 2008 Yang, Li, Liu, Zheng (bib0040) 2013; 17 Farina, Amato (bib0016) 2004; 34 Zhou, Qu, Li, Zhao, Suganthan, Zhang (bib0041) 2011; 1 Adra, Fleming (bib0001) 2011; 15 Ishibuchi, Sakane, Tsukamoto, Nojima (bib0022) 2010 Deb, Thiele, Laumanns, Zitzler (bib0015) 2005 While, Bradstreet, Barone (bib0038) 2012; 16 Wagner, Beume, Naujoks (bib0036) 2007 Kennedy, Eberhart (bib0025) 1995 Wang, Purshouse, Fleming (bib0037) 2013; 17 Goulart, Campelo (bib0019) 2016; 329 Reyes-Sierra, Coello Coello (bib0031) 2005 Nebro, Durillo, García-Nieto, Coello Coello, Luna, Alba (bib0028) 2009 Garza-Fabre, Pulido, Coello (bib0017) 2009 Britto, Pozo (bib0004) 2014; 127 Wickramasinghe, Li (bib0039) 2009 Reyes-Sierra, Coello Coello (bib0032) 2006; 2 Sindhya, Miettinen, Deb (bib0034) 2013; 17 Ishibuchi, Sakane, Tsukamoto, Nojima (bib0021) 2009 Sato, Aguirre, Tanaka (bib0033) 2007; 4403 Cai, Qu, Yuan, Yao (bib0005) 2015; 35 Bader, Zitzler (bib0003) 2011; 19 Asafuddoula, Ray, Sarker (bib0002) 2015; 19 Deb, Pratap, Agarwal, Meyarivan (bib0014) 2002; 6 Das, Dennis (bib0010) 1998; 8 Coello Coello, Lamont, Van Veldhuizen (bib0009) 2007 Purshouse, Fleming (bib0030) 2007; 11 Cheng, Yen, Zhang (bib0006) 2015; 19 Coello, Pulido, Lechuga (bib0008) 2004; 8 Purshouse, Fleming (bib0029) 2003; 3 Garza-Fabre (10.1016/j.ins.2016.09.026_bib0017) 2009 Wickramasinghe (10.1016/j.ins.2016.09.026_bib0039) 2009 Zhou (10.1016/j.ins.2016.09.026_bib0041) 2011; 1 Goulart (10.1016/j.ins.2016.09.026_bib0019) 2016; 329 Deb (10.1016/j.ins.2016.09.026_bib0014) 2002; 6 Zitzler (10.1016/j.ins.2016.09.026_bib0042) 2002 Hughes (10.1016/j.ins.2016.09.026_bib0020) 2003 Ishibuchi (10.1016/j.ins.2016.09.026_bib0021) 2009 Sindhya (10.1016/j.ins.2016.09.026_bib0034) 2013; 17 Ishibuchi (10.1016/j.ins.2016.09.026_bib0023) 2008 Britto (10.1016/j.ins.2016.09.026_bib0004) 2014; 127 Coello (10.1016/j.ins.2016.09.026_bib0008) 2004; 8 Deb (10.1016/j.ins.2016.09.026_bib0015) 2005 Cai (10.1016/j.ins.2016.09.026_bib0005) 2015; 35 Wang (10.1016/j.ins.2016.09.026_bib0037) 2013; 17 Coello Coello (10.1016/j.ins.2016.09.026_bib0009) 2007 Adra (10.1016/j.ins.2016.09.026_bib0001) 2011; 15 Das (10.1016/j.ins.2016.09.026_bib0010) 1998; 8 Clerc (10.1016/j.ins.2016.09.026_bib0007) 2002; 6 Yang (10.1016/j.ins.2016.09.026_bib0040) 2013; 17 Mostaghim (10.1016/j.ins.2016.09.026_bib0027) 2008; 5199 Reyes-Sierra (10.1016/j.ins.2016.09.026_bib0032) 2006; 2 Ishibuchi (10.1016/j.ins.2016.09.026_bib0022) 2010 Wagner (10.1016/j.ins.2016.09.026_bib0036) 2007 Li (10.1016/j.ins.2016.09.026_bib0026) 2015; 48 Singh (10.1016/j.ins.2016.09.026_bib0035) 2011; 15 Deb (10.1016/j.ins.2016.09.026_bib0012) 2014; 18 Ishibuchi (10.1016/j.ins.2016.09.026_sbref0024) 2008 Purshouse (10.1016/j.ins.2016.09.026_bib0030) 2007; 11 Nebro (10.1016/j.ins.2016.09.026_bib0028) 2009 Purshouse (10.1016/j.ins.2016.09.026_bib0029) 2003; 3 De Carvalho (10.1016/j.ins.2016.09.026_bib0011) 2012; 75 Deb (10.1016/j.ins.2016.09.026_bib0013) 2012 Garza-Fabre (10.1016/j.ins.2016.09.026_bib0018) 2010 Sato (10.1016/j.ins.2016.09.026_bib0033) 2007; 4403 While (10.1016/j.ins.2016.09.026_bib0038) 2012; 16 Bader (10.1016/j.ins.2016.09.026_bib0003) 2011; 19 Asafuddoula (10.1016/j.ins.2016.09.026_bib0002) 2015; 19 Reyes-Sierra (10.1016/j.ins.2016.09.026_bib0031) 2005 Farina (10.1016/j.ins.2016.09.026_bib0016) 2004; 34 Kennedy (10.1016/j.ins.2016.09.026_bib0025) 1995 Cheng (10.1016/j.ins.2016.09.026_bib0006) 2015; 19 |
| References_xml | – start-page: 519 year: 2010 end-page: 526 ident: bib0022 article-title: Simultaneous use of different scalarizing functions in MOEA/d publication-title: Proceedings of the Twelfth Annual Conference on Genetic and Evolutionary Computation – volume: 75 start-page: 43 year: 2012 end-page: 51 ident: bib0011 article-title: Measuring the convergence and diversity of CDAS multi-objective particle swarm optimization algorithms: a study of many-objective problems publication-title: Neurocomputing – volume: 48 start-page: 13:1 year: 2015 end-page: 13:35 ident: bib0026 article-title: Many-objective evolutionary algorithms: a survey publication-title: ACM Comput. Surv. – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib0007 article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – start-page: 66 year: 2009 end-page: 73 ident: bib0028 article-title: SMPSO: a new PSO-based metaheuristic for multi-objective optimization publication-title: Proceedings of the IEEE Symposium on Computer Intelligence in Multicriteria Decision-Making (MCDM 2009) – volume: 19 start-page: 45 year: 2011 end-page: 76 ident: bib0003 article-title: Hype: An algorithm for fast hypervolume based many-objective optimization publication-title: Evol. Comput. – volume: 11 start-page: 770 year: 2007 end-page: 784 ident: bib0030 article-title: On the evolutionary optimization of many conflicting objectives publication-title: IEEE Trans. Evol. Comput. – start-page: 633 year: 2009 end-page: 645 ident: bib0017 article-title: Ranking methods for many-objective optimization publication-title: Proceedings of the Eighth Mexican International Conference on Artificial Intelligence – volume: 15 start-page: 539 year: 2011 end-page: 556 ident: bib0035 article-title: A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 127 start-page: 78 year: 2014 end-page: 87 ident: bib0004 article-title: Using reference points to update the archive of MOPSO algorithms in many-objective optimization publication-title: Neurocomputing – volume: 3 start-page: 2066 year: 2003 end-page: 2073 ident: bib0029 article-title: Evolutionary many-objective optimisation: an exploratory analysis publication-title: Proceedings of the 2003 Congress on Evolutionary Computation – volume: 16 start-page: 86 year: 2012 end-page: 95 ident: bib0038 article-title: A fast way of calculating exact hypervolumes publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 256 year: 2004 end-page: 279 ident: bib0008 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 105 year: 2005 end-page: 145 ident: bib0015 article-title: Scalable test problems for evolutionary multiobjective optimization publication-title: Evolutionary Multiobjective Optimization – volume: 8 start-page: 631 year: 1998 end-page: 657 ident: bib0010 article-title: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems publication-title: SIAM J. Optim. – volume: 329 start-page: 236 year: 2016 end-page: 255 ident: bib0019 article-title: Preference-guided evolutionary algorithms for many-objective optimization publication-title: Inf. Sci. – volume: 19 start-page: 592 year: 2015 end-page: 605 ident: bib0006 article-title: A many-objective evolutionary algorithm with enhanced mating and environmental selections publication-title: IEEE Trans. Evol. Comput. – volume: 35 start-page: 681 year: 2015 end-page: 694 ident: bib0005 article-title: A clustering-ranking method for many-objective optimization publication-title: Appl. Soft Comput. – volume: 4403 start-page: 5 year: 2007 end-page: 20 ident: bib0033 article-title: Controlling dominance area of solutions and its impact on the performance of MOEAs publication-title: Proceedings of the Fourth International Conference on Evolutionary Multi-Criterion Optimization – start-page: 742 year: 2007 end-page: 756 ident: bib0036 article-title: Pareto-, aggregation-, and indicator-based methods in many-objective optimization publication-title: Proceedings of the Fourth International Conference on Evolutionary Multi-Criterion Optimization – volume: 34 start-page: 315 year: 2004 end-page: 326 ident: bib0016 article-title: A fuzzy definition of “optimality” for many-criteria optimization problems publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. – year: 2007 ident: bib0009 publication-title: Evolutionary Algorithms for Solving Multi-Objective Problems – volume: 15 start-page: 183 year: 2011 end-page: 195 ident: bib0001 article-title: Diversity management in evolutionary many-objective optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 8 year: 2012 ident: bib0013 article-title: Handling many-objective problems using an improved NSGA-ii procedure publication-title: Proceedings of the IEEE World Congress on Computational Intelligence – start-page: 1942 year: 1995 end-page: 1948 ident: bib0025 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE International Congress on Neural Networks – volume: 17 start-page: 474 year: 2013 end-page: 494 ident: bib0037 article-title: Preference-inspired coevolutionary algorithms for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 17 start-page: 721 year: 2013 end-page: 736 ident: bib0040 article-title: A grid-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 649 year: 2008 end-page: 656 ident: bib0023 article-title: Effectiveness of scalability improvement attempts on the performance of NSGA-ii for many-objective problems publication-title: Proceedings of the Tenth Annual Conference on Genetic and Evolutionary Computation – volume: 2 start-page: 287 year: 2006 end-page: 308 ident: bib0032 article-title: Multi-objective particle swarm optimizers: a survey of the state-of-the-art publication-title: Int. J. Comput. Intell. Res. – start-page: 2678 year: 2003 end-page: 2684 ident: bib0020 article-title: Multiple single objective Pareto sampling publication-title: Proceedings of the 2003 Congress on Evolutionary Computation – start-page: 505 year: 2005 end-page: 519 ident: bib0031 article-title: Improving PSO-based multi-objective optimization using crowding, mutation and ϵ-dominance publication-title: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization – volume: 17 start-page: 495 year: 2013 end-page: 511 ident: bib0034 article-title: A hybrid framework for evolutionary multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 667 year: 2009 end-page: 674 ident: bib0039 article-title: Using a distance metric to guide PSO algorithms for many-objective optimization publication-title: Proceedings of the Eleventh Annual Conference on Genetic and Evolutionary Computation – volume: 1 start-page: 32 year: 2011 end-page: 49 ident: bib0041 article-title: Multiobjective evolutionary algorithms: a survey of the state of the art publication-title: Swarm Evol. Comput. – volume: 5199 start-page: 753 year: 2008 end-page: 762 ident: bib0027 article-title: Distance based ranking in many-objective particle swarm optimization publication-title: Parallel Problem Solving from Nature PPSN X – volume: 19 start-page: 445 year: 2015 end-page: 460 ident: bib0002 article-title: A decomposition-based evolutionary algorithm for many objective optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 2419 year: 2008 end-page: 2426 ident: bib0024 article-title: Evolutionary many-objective optimization: a short review publication-title: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008 – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0014 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-ii publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib0012 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: Evol. Comput. – start-page: 1 year: 2010 end-page: 8 ident: bib0018 article-title: Two novel approaches for many-objective optimization publication-title: Proceedings of the 2010 Congress on Evolutionary Computation – start-page: 95 year: 2002 end-page: 100 ident: bib0042 article-title: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization publication-title: Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001) – start-page: 1758 year: 2009 end-page: 1763 ident: bib0021 article-title: Evolutionary many-objective optimization by NSGA-ii and MOEA/d with large populations publication-title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics – volume: 329 start-page: 236 year: 2016 ident: 10.1016/j.ins.2016.09.026_bib0019 article-title: Preference-guided evolutionary algorithms for many-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.09.015 – volume: 3 start-page: 2066 year: 2003 ident: 10.1016/j.ins.2016.09.026_bib0029 article-title: Evolutionary many-objective optimisation: an exploratory analysis – volume: 19 start-page: 45 issue: 1 year: 2011 ident: 10.1016/j.ins.2016.09.026_bib0003 article-title: Hype: An algorithm for fast hypervolume based many-objective optimization publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00009 – start-page: 633 year: 2009 ident: 10.1016/j.ins.2016.09.026_bib0017 article-title: Ranking methods for many-objective optimization – volume: 2 start-page: 287 issue: 3 year: 2006 ident: 10.1016/j.ins.2016.09.026_bib0032 article-title: Multi-objective particle swarm optimizers: a survey of the state-of-the-art publication-title: Int. J. Comput. Intell. Res. – start-page: 8 year: 2012 ident: 10.1016/j.ins.2016.09.026_bib0013 article-title: Handling many-objective problems using an improved NSGA-ii procedure – volume: 35 start-page: 681 year: 2015 ident: 10.1016/j.ins.2016.09.026_bib0005 article-title: A clustering-ranking method for many-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.020 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.ins.2016.09.026_bib0014 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-ii publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – start-page: 1758 year: 2009 ident: 10.1016/j.ins.2016.09.026_bib0021 article-title: Evolutionary many-objective optimization by NSGA-ii and MOEA/d with large populations – volume: 34 start-page: 315 issue: 3 year: 2004 ident: 10.1016/j.ins.2016.09.026_bib0016 article-title: A fuzzy definition of “optimality” for many-criteria optimization problems publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. doi: 10.1109/TSMCA.2004.824873 – volume: 8 start-page: 256 issue: 3 year: 2004 ident: 10.1016/j.ins.2016.09.026_bib0008 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826067 – start-page: 505 year: 2005 ident: 10.1016/j.ins.2016.09.026_bib0031 article-title: Improving PSO-based multi-objective optimization using crowding, mutation and ϵ-dominance – start-page: 2419 year: 2008 ident: 10.1016/j.ins.2016.09.026_sbref0024 article-title: Evolutionary many-objective optimization: a short review – volume: 17 start-page: 495 issue: 4 year: 2013 ident: 10.1016/j.ins.2016.09.026_bib0034 article-title: A hybrid framework for evolutionary multi-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2204403 – start-page: 66 year: 2009 ident: 10.1016/j.ins.2016.09.026_bib0028 article-title: SMPSO: a new PSO-based metaheuristic for multi-objective optimization – volume: 19 start-page: 445 issue: 3 year: 2015 ident: 10.1016/j.ins.2016.09.026_bib0002 article-title: A decomposition-based evolutionary algorithm for many objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2339823 – start-page: 519 year: 2010 ident: 10.1016/j.ins.2016.09.026_bib0022 article-title: Simultaneous use of different scalarizing functions in MOEA/d – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.ins.2016.09.026_bib0007 article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – year: 2007 ident: 10.1016/j.ins.2016.09.026_bib0009 – start-page: 1 year: 2010 ident: 10.1016/j.ins.2016.09.026_bib0018 article-title: Two novel approaches for many-objective optimization – volume: 127 start-page: 78 year: 2014 ident: 10.1016/j.ins.2016.09.026_bib0004 article-title: Using reference points to update the archive of MOPSO algorithms in many-objective optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.049 – volume: 11 start-page: 770 issue: 6 year: 2007 ident: 10.1016/j.ins.2016.09.026_bib0030 article-title: On the evolutionary optimization of many conflicting objectives publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.910138 – start-page: 667 year: 2009 ident: 10.1016/j.ins.2016.09.026_bib0039 article-title: Using a distance metric to guide PSO algorithms for many-objective optimization – start-page: 1942 year: 1995 ident: 10.1016/j.ins.2016.09.026_bib0025 article-title: Particle swarm optimization – volume: 17 start-page: 721 issue: 5 year: 2013 ident: 10.1016/j.ins.2016.09.026_bib0040 article-title: A grid-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2227145 – volume: 5199 start-page: 753 year: 2008 ident: 10.1016/j.ins.2016.09.026_bib0027 article-title: Distance based ranking in many-objective particle swarm optimization – volume: 17 start-page: 474 issue: 4 year: 2013 ident: 10.1016/j.ins.2016.09.026_bib0037 article-title: Preference-inspired coevolutionary algorithms for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2204264 – volume: 16 start-page: 86 issue: 1 year: 2012 ident: 10.1016/j.ins.2016.09.026_bib0038 article-title: A fast way of calculating exact hypervolumes publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2077298 – volume: 75 start-page: 43 issue: 1 year: 2012 ident: 10.1016/j.ins.2016.09.026_bib0011 article-title: Measuring the convergence and diversity of CDAS multi-objective particle swarm optimization algorithms: a study of many-objective problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.03.053 – volume: 8 start-page: 631 issue: 3 year: 1998 ident: 10.1016/j.ins.2016.09.026_bib0010 article-title: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems publication-title: SIAM J. Optim. doi: 10.1137/S1052623496307510 – start-page: 105 year: 2005 ident: 10.1016/j.ins.2016.09.026_bib0015 article-title: Scalable test problems for evolutionary multiobjective optimization – start-page: 95 year: 2002 ident: 10.1016/j.ins.2016.09.026_bib0042 article-title: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization – start-page: 2678 year: 2003 ident: 10.1016/j.ins.2016.09.026_bib0020 article-title: Multiple single objective Pareto sampling – start-page: 649 year: 2008 ident: 10.1016/j.ins.2016.09.026_bib0023 article-title: Effectiveness of scalability improvement attempts on the performance of NSGA-ii for many-objective problems – start-page: 742 year: 2007 ident: 10.1016/j.ins.2016.09.026_bib0036 article-title: Pareto-, aggregation-, and indicator-based methods in many-objective optimization – volume: 19 start-page: 592 issue: 4 year: 2015 ident: 10.1016/j.ins.2016.09.026_bib0006 article-title: A many-objective evolutionary algorithm with enhanced mating and environmental selections publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2424921 – volume: 4403 start-page: 5 year: 2007 ident: 10.1016/j.ins.2016.09.026_bib0033 article-title: Controlling dominance area of solutions and its impact on the performance of MOEAs – volume: 48 start-page: 13:1 issue: 1 year: 2015 ident: 10.1016/j.ins.2016.09.026_bib0026 article-title: Many-objective evolutionary algorithms: a survey publication-title: ACM Comput. Surv. doi: 10.1145/2792984 – volume: 15 start-page: 539 issue: 4 year: 2011 ident: 10.1016/j.ins.2016.09.026_bib0035 article-title: A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2093579 – volume: 1 start-page: 32 issue: 1 year: 2011 ident: 10.1016/j.ins.2016.09.026_bib0041 article-title: Multiobjective evolutionary algorithms: a survey of the state of the art publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.03.001 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.ins.2016.09.026_bib0012 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 15 start-page: 183 issue: 2 year: 2011 ident: 10.1016/j.ins.2016.09.026_bib0001 article-title: Diversity management in evolutionary many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2058117 |
| SSID | ssj0004766 |
| Score | 2.5048041 |
| Snippet | Many-objective problems refer to the optimization problems containing more than three conflicting objectives. To obtain a representative set of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115 |
| SubjectTerms | Algorithms Convergence Evolutionary algorithms Many-objective problems Multi-Objective Evolutionary Algorithms Multiple objective analysis Optimization Pareto optimality Particle Swarm Optimization Search process Swarm intelligence |
| Title | Many Objective Particle Swarm Optimization |
| URI | https://dx.doi.org/10.1016/j.ins.2016.09.026 https://www.proquest.com/docview/1845805022 |
| Volume | 374 |
| WOSCitedRecordID | wos000386645800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wAHBAPEBkNGQjtssmQ7TuMcB2oFqLRIdFJvVvyR0WrLSj_G_nyeY6eNBkzjwCWqIqeN3u_15_fh9x5C73hqGJU2J5Y6QYSkgmjKNYHNVSZd44CX66klg2w4lJNJ_jWOd1_W4wSyqpLX1_n8v0IN9wBsXzr7D3BvvhRuwGcAHa4AO1zvBPwXn8Ef6VlgMjARw5Ljbz-LxcXxCCjiItZetg3TWJZUa0PcFbeVIdOztZv6zqIhVrPJ3gzW1p-lCaBv5ze_L8CiXJL-9Px7CMRGNYnBBVaP5OG0TZjgXXq3o02YSSZalMdCOWbcPVkITf5GzCFGMANvwvdIZ926uSz_QxPs4Uj1TwcDNe5NxofzH8TPB_N59Dgs5T7a4Vmayw7aOfnUm3ze1sBmIS_dvHCTwa7P8t341b_ZIDd249rEGD9Bj6NvgE8CYE_RPVftoketjpG76CDWmeBD3EIMR4Z-ho48-niDPm7QxzX6uI3-c3Ta740_fCRxHAYxSUJXhFsGxmXOnCh013DuSiN5ZoXvoSiF5oWWOvMOYppQ4awt4S_IS2YK8MCtSE3yAnWqy8q9RFhYo4ssc7QsuSg4lWUC3F6wJNXMaZnuIdoISJnYK96PLDlXzaHAmQKZKi9TRXMFMt1DR5tH5qFRym2LRSN1FXU6WHAK9OW2x942CClgQZ_aKip3uV4qJkUqaQoG6f4d1rxCD7fK_hp1Vou1O0APzNVquly8iZr1C8BOe-w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Many+Objective+Particle+Swarm+Optimization&rft.jtitle=Information+sciences&rft.au=Figueiredo%2C+EMN&rft.au=Ludermir%2C+T+B&rft.au=Bastos-Filho%2C+CJA&rft.date=2016-12-20&rft.issn=0020-0255&rft.volume=374&rft.spage=115&rft.epage=134&rft_id=info:doi/10.1016%2Fj.ins.2016.09.026&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |