Many Objective Particle Swarm Optimization

Many-objective problems refer to the optimization problems containing more than three conflicting objectives. To obtain a representative set of well-distributed non-dominated solutions close to Pareto front in the objective space remains a challenging problem. Many papers have proposed different Mul...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 374; s. 115 - 134
Hlavní autoři: Figueiredo, E.M.N., Ludermir, T.B., Bastos-Filho, C.J.A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 20.12.2016
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Many-objective problems refer to the optimization problems containing more than three conflicting objectives. To obtain a representative set of well-distributed non-dominated solutions close to Pareto front in the objective space remains a challenging problem. Many papers have proposed different Multi-Objective Evolutionary Algorithms to solve the lack of the convergence and diversity in many-objective problems. One of the more promising approaches uses a set of reference points to discriminate the solutions and guide the search process. However, this approach was incorporated mainly in Multi-Objective Evolutionary Algorithms, and there are just some few promising adaptations of Particle Swarm Optimization approaches for effectively tackling many-objective problems regarding convergence and diversity. Thus, this paper proposes a practical and efficient Many-Objective Particle Swarm Optimization algorithm for solving many-objective problems. Our proposal uses a set of reference points dynamically determined according to the search process, allowing the algorithm to converge to the Pareto front, but maintaining the diversity of the Pareto front. Our experimental results demonstrate superior or similar performance when compared to other state-of-art algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2016.09.026