An approximation algorithm for indefinite mixed integer quadratic programming

In this paper, we give an algorithm that finds an ϵ -approximate solution to a mixed integer quadratic programming (MIQP) problem. The algorithm runs in polynomial time if the rank of the quadratic function and the number of integer variables are fixed. The running time of the algorithm is expected...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 201; číslo 1-2; s. 263 - 293
Hlavní autor: Pia, Alberto Del
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2023
Springer
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we give an algorithm that finds an ϵ -approximate solution to a mixed integer quadratic programming (MIQP) problem. The algorithm runs in polynomial time if the rank of the quadratic function and the number of integer variables are fixed. The running time of the algorithm is expected unless P = NP. In order to design this algorithm we introduce the novel concepts of spherical form MIQP and of aligned vectors, and we provide a number of results of independent interest. In particular, we give a strongly polynomial algorithm to find a symmetric decomposition of a matrix, and show a related result on simultaneous diagonalization of matrices.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-022-01907-3