An approximation algorithm for indefinite mixed integer quadratic programming
In this paper, we give an algorithm that finds an ϵ -approximate solution to a mixed integer quadratic programming (MIQP) problem. The algorithm runs in polynomial time if the rank of the quadratic function and the number of integer variables are fixed. The running time of the algorithm is expected...
Uložené v:
| Vydané v: | Mathematical programming Ročník 201; číslo 1-2; s. 263 - 293 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2023
Springer |
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we give an algorithm that finds an
ϵ
-approximate solution to a mixed integer quadratic programming (MIQP) problem. The algorithm runs in polynomial time if the rank of the quadratic function and the number of integer variables are fixed. The running time of the algorithm is expected unless P = NP. In order to design this algorithm we introduce the novel concepts of spherical form MIQP and of aligned vectors, and we provide a number of results of independent interest. In particular, we give a strongly polynomial algorithm to find a symmetric decomposition of a matrix, and show a related result on simultaneous diagonalization of matrices. |
|---|---|
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-022-01907-3 |