An Entropy-Regularized ADMM For Binary Quadratic Programming
We propose an entropy regularized splitting model using low-rank factorization for solving binary quadratic programming with linear inequality constraints. Different from the semidefinite programming relaxation model, our model preserves the rank-one constraint and aims to find high quality rank-one...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 87; číslo 2-4; s. 447 - 479 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.11.2023
Springer |
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose an entropy regularized splitting model using low-rank factorization for solving binary quadratic programming with linear inequality constraints. Different from the semidefinite programming relaxation model, our model preserves the rank-one constraint and aims to find high quality rank-one solutions directly. The factorization transforms the variables into low-rank matrices, while the entropy term enforces the low-rank property of the splitting variable . A customized alternating direction method of multipliers is utilized to solve the proposed model. Specifically, our method uses the augmented Lagrangian function to deal with inequality constraints, and solves one subproblem on the oblique manifold by a regularized Newton method. Numerical results on the multiple-input multiple-output detection problem, the maxcut problem and the quadratic
0
-
1
problem indicate that our proposed algorithm has advantage over the SDP methods. |
|---|---|
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-022-01144-0 |