A corn canopy organs detection method based on improved DBi-YOLOv8 network

Corn canopy organs detection is critical in obtaining high-throughput phenotypic data. Accurate identification of each organ can provide a reliable data source for canopy phenotype determination, which has significant theoretical and practical value for corn variety breeding, cultivation management,...

Full description

Saved in:
Bibliographic Details
Published in:European journal of agronomy Vol. 154; p. 127076
Main Authors: Guan, Haiou, Deng, Haotian, Ma, Xiaodan, Zhang, Tao, Zhang, Yifei, Zhu, Tianyu, Zhou, Haichao, Gu, Zhicheng, Lu, Yuxin
Format: Journal Article
Language:English
Published: Elsevier B.V 01.03.2024
Subjects:
ISSN:1161-0301, 1873-7331
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Corn canopy organs detection is critical in obtaining high-throughput phenotypic data. Accurate identification of each organ can provide a reliable data source for canopy phenotype determination, which has significant theoretical and practical value for corn variety breeding, cultivation management, and high-quality and high-yielding production. Due to the difficulty in quickly identifying corn canopy organs in the natural environment of the field, it is challenging to obtain high-throughput phenotypic data. Therefore, this paper proposed a method for corn canopy organs detection based on an improved network model (DBi-YOLOv8). Firstly, the Raspberry Pi 4B was used as the sensor control center to construct an embedded system for corn canopy image acquisition and collected 987 images of corn plants. Secondly, the improved deformable convolution and Bi-level routing attention were embedded into the backbone and neck structures of the YOLOv8 network. With training the improved network, a corn canopy detection model was obtained, which enabled the rapid detection of corn canopy organs. Finally, the LTNS algorithm and TBC algorithm were proposed for counting of the number of leaves, ears, and tassels. On the testing set data, the detection performance of the model was analyzed through different evaluation metrics. The results showed that the mAP and FPS of the detection model were 89.4% and 65.3, which increased by 12% and 0.6 compared to the original model. In addition, both algorithms have high reliability, with the coefficient of determination R2 for counting crown leaves, ears, and tassel branches being 0.9336, 0.8149, and 0.917, respectively. This achievement proposed an accurate, non-destructive, and fast corn canopy organs detection model, providing reliable technical support for quantifying various traits of corn plants, field crop growth monitoring, and elite variety breeding. [Display omitted] •Developed a platform for corn canopy image acquisition based on Raspberry Pi and SV02.•Built the DBi-YOLOv8 model for corn canopy detection based on DConv and BRA module.•The LTNS algorithm and TBC algorithm were proposed for counting corn canopy organs.•Successfully applied the improved model to field corn canopy fast detection.•Provided complete technical support for field crop phenotype acquisition.
AbstractList Corn canopy organs detection is critical in obtaining high-throughput phenotypic data. Accurate identification of each organ can provide a reliable data source for canopy phenotype determination, which has significant theoretical and practical value for corn variety breeding, cultivation management, and high-quality and high-yielding production. Due to the difficulty in quickly identifying corn canopy organs in the natural environment of the field, it is challenging to obtain high-throughput phenotypic data. Therefore, this paper proposed a method for corn canopy organs detection based on an improved network model (DBi-YOLOv8). Firstly, the Raspberry Pi 4B was used as the sensor control center to construct an embedded system for corn canopy image acquisition and collected 987 images of corn plants. Secondly, the improved deformable convolution and Bi-level routing attention were embedded into the backbone and neck structures of the YOLOv8 network. With training the improved network, a corn canopy detection model was obtained, which enabled the rapid detection of corn canopy organs. Finally, the LTNS algorithm and TBC algorithm were proposed for counting of the number of leaves, ears, and tassels. On the testing set data, the detection performance of the model was analyzed through different evaluation metrics. The results showed that the mAP and FPS of the detection model were 89.4% and 65.3, which increased by 12% and 0.6 compared to the original model. In addition, both algorithms have high reliability, with the coefficient of determination R² for counting crown leaves, ears, and tassel branches being 0.9336, 0.8149, and 0.917, respectively. This achievement proposed an accurate, non-destructive, and fast corn canopy organs detection model, providing reliable technical support for quantifying various traits of corn plants, field crop growth monitoring, and elite variety breeding.
Corn canopy organs detection is critical in obtaining high-throughput phenotypic data. Accurate identification of each organ can provide a reliable data source for canopy phenotype determination, which has significant theoretical and practical value for corn variety breeding, cultivation management, and high-quality and high-yielding production. Due to the difficulty in quickly identifying corn canopy organs in the natural environment of the field, it is challenging to obtain high-throughput phenotypic data. Therefore, this paper proposed a method for corn canopy organs detection based on an improved network model (DBi-YOLOv8). Firstly, the Raspberry Pi 4B was used as the sensor control center to construct an embedded system for corn canopy image acquisition and collected 987 images of corn plants. Secondly, the improved deformable convolution and Bi-level routing attention were embedded into the backbone and neck structures of the YOLOv8 network. With training the improved network, a corn canopy detection model was obtained, which enabled the rapid detection of corn canopy organs. Finally, the LTNS algorithm and TBC algorithm were proposed for counting of the number of leaves, ears, and tassels. On the testing set data, the detection performance of the model was analyzed through different evaluation metrics. The results showed that the mAP and FPS of the detection model were 89.4% and 65.3, which increased by 12% and 0.6 compared to the original model. In addition, both algorithms have high reliability, with the coefficient of determination R2 for counting crown leaves, ears, and tassel branches being 0.9336, 0.8149, and 0.917, respectively. This achievement proposed an accurate, non-destructive, and fast corn canopy organs detection model, providing reliable technical support for quantifying various traits of corn plants, field crop growth monitoring, and elite variety breeding. [Display omitted] •Developed a platform for corn canopy image acquisition based on Raspberry Pi and SV02.•Built the DBi-YOLOv8 model for corn canopy detection based on DConv and BRA module.•The LTNS algorithm and TBC algorithm were proposed for counting corn canopy organs.•Successfully applied the improved model to field corn canopy fast detection.•Provided complete technical support for field crop phenotype acquisition.
ArticleNumber 127076
Author Zhou, Haichao
Lu, Yuxin
Zhu, Tianyu
Guan, Haiou
Ma, Xiaodan
Gu, Zhicheng
Zhang, Yifei
Deng, Haotian
Zhang, Tao
Author_xml – sequence: 1
  givenname: Haiou
  surname: Guan
  fullname: Guan, Haiou
  email: gho@cau.edu.cn
  organization: College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, DaQing 163319, China
– sequence: 2
  givenname: Haotian
  surname: Deng
  fullname: Deng, Haotian
  email: bynd_dht@163.com
  organization: College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, DaQing 163319, China
– sequence: 3
  givenname: Xiaodan
  surname: Ma
  fullname: Ma, Xiaodan
  email: mxd@cau.edu.cn
  organization: College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, DaQing 163319, China
– sequence: 4
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  email: bynd_zt@163.com
  organization: College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, DaQing 163319, China
– sequence: 5
  givenname: Yifei
  surname: Zhang
  fullname: Zhang, Yifei
  email: zhangyifei@byau.edu.cn
  organization: College of Agriculture, Heilongjiang Bayi Agricultural University, DaQing 163319, China
– sequence: 6
  givenname: Tianyu
  surname: Zhu
  fullname: Zhu, Tianyu
  email: bynd_zty@163.com
  organization: College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, DaQing 163319, China
– sequence: 7
  givenname: Haichao
  surname: Zhou
  fullname: Zhou, Haichao
  email: bynd_zhc@163.com
  organization: College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, DaQing 163319, China
– sequence: 8
  givenname: Zhicheng
  surname: Gu
  fullname: Gu, Zhicheng
  email: 2284908311@qq.com
  organization: College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, DaQing 163319, China
– sequence: 9
  givenname: Yuxin
  surname: Lu
  fullname: Lu, Yuxin
  email: byndlyx@163.com
  organization: College of Agriculture, Heilongjiang Bayi Agricultural University, DaQing 163319, China
BookMark eNp9kD1PwzAQhi1UJNrCD2DLyJJix0mciqmUb1XqAgOTZTtncEjsYqdF_fe4ChNDp7uT3ud090zQyDoLCF0SPCOYlNfNDBoxy3BGZyRjmJUnaEwqRlNGKRnFnpQkxRSTMzQJocEYV1mRj9HLIlHO20QJ6zb7xPkPYUNSQw-qN84mHfSfrk6kCFAncTbdxrtd7O9uTfq-Xq13VWKh_3H-6xydatEGuPirU_T2cP-6fEpX68fn5WKVKkpxnxLNaCVYWSsqWVESwXSus3mhpZQ6V7rAIKAGSWWlqJ4XUuVQMgI5lqXOi5pO0dWwN17yvYXQ884EBW0rLLht4JQUtMTVnBUxyoao8i4ED5or04vDY70XpuUE84M93vBojx_s8cFeJMk_cuNNJ_z-KHMzMBC_3xnwPCgDVkFtfNTJa2eO0L9ZfYml
CitedBy_id crossref_primary_10_3390_agronomy14081723
crossref_primary_10_3390_plants13182613
crossref_primary_10_1016_j_compag_2025_109928
crossref_primary_10_3389_fpls_2024_1490026
crossref_primary_10_3390_app15137336
crossref_primary_10_3389_fpls_2025_1571228
crossref_primary_10_1016_j_foodcont_2025_111411
crossref_primary_10_3390_agriculture14081225
crossref_primary_10_3390_rs16163046
crossref_primary_10_3390_agronomy15081788
crossref_primary_10_3390_rs16203810
crossref_primary_10_3389_fsufs_2024_1433701
crossref_primary_10_3390_s24165279
crossref_primary_10_3390_horticulturae11050551
crossref_primary_10_1016_j_compag_2025_110179
crossref_primary_10_1016_j_indcrop_2024_118905
crossref_primary_10_1186_s40494_024_01332_z
crossref_primary_10_3390_agronomy14071589
crossref_primary_10_1016_j_atech_2025_101397
crossref_primary_10_1016_j_microc_2024_111542
crossref_primary_10_3390_drones8050198
crossref_primary_10_1016_j_compag_2024_109857
crossref_primary_10_1016_j_microc_2025_113273
crossref_primary_10_1016_j_compag_2024_109658
Cites_doi 10.1109/TGRS.2021.3090410
10.1016/j.compag.2023.108124
10.3390/agriculture10050160
10.1016/j.procs.2020.02.041
10.1109/TCSVT.2019.2935128
10.1371/journal.pone.0224365
10.1109/IJCNN52387.2021.9534264
10.1109/CVPR.2016.91
10.3389/fpls.2022.1096619
10.1111/pbi.13540
10.1109/TCI.2016.2644865
10.3390/app122412959
10.1016/j.compag.2023.108156
10.3390/agronomy12030692
10.3390/s22114193
10.1007/s11119-022-09951-x
10.1016/j.compag.2023.108106
10.3390/rs12193237
10.1007/s10722-021-01153-0
10.3390/s23167240
10.1063/5.0118880
10.3389/fpls.2019.00714
10.1016/j.compag.2023.108006
10.1016/j.compag.2023.107757
10.1109/CVPR52688.2022.00269
10.1162/tacl_a_00353
10.5244/C.34.191
10.1016/j.compag.2023.108046
10.1016/j.ins.2019.11.039
10.1016/j.compag.2023.107824
10.1109/ACCESS.2022.3228641
10.3390/agronomy13071824
10.1016/j.compag.2023.107803
10.1007/s43657-020-00007-6
10.3390/agronomy13071750
10.1109/ICCV.2019.00764
10.1109/ICMLA.2017.0-136
10.1109/ICIAP.1999.797615
10.3390/agronomy4010108
10.1016/j.crfs.2021.03.009
10.3389/fpls.2023.1177477
10.1016/j.compag.2023.107706
10.1016/j.compag.2023.108285
10.1016/j.neucom.2021.03.091
10.1109/ICCV.2017.74
10.1109/CVPR52688.2022.01058
10.1186/s40537-019-0197-0
10.1016/j.compag.2023.107625
10.1016/j.ecoinf.2021.101524
10.1016/j.infrared.2022.104533
10.1109/ICCV.2017.89
10.1155/2017/7361042
10.1109/BigData50022.2020.9378115
10.1016/j.chemolab.2023.104824
10.1016/j.cj.2022.06.004
10.1016/j.ecoinf.2023.102070
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.eja.2023.127076
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-7331
ExternalDocumentID 10_1016_j_eja_2023_127076
S1161030123003441
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
UHS
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c330t-1f738a76dc3b7561a7f4f295fbbbf4cf50eaedeb3b8c3f95bc4e671e40b6f45d3
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001169825800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1161-0301
IngestDate Sun Nov 09 09:36:57 EST 2025
Sat Nov 29 07:04:20 EST 2025
Tue Nov 18 21:51:25 EST 2025
Sat Mar 02 16:00:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Detection model
Bi-level routing attention
Improved deformable convolution
YOLOv8
Corn canopy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-1f738a76dc3b7561a7f4f295fbbbf4cf50eaedeb3b8c3f95bc4e671e40b6f45d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153608975
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153608975
crossref_citationtrail_10_1016_j_eja_2023_127076
crossref_primary_10_1016_j_eja_2023_127076
elsevier_sciencedirect_doi_10_1016_j_eja_2023_127076
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle European journal of agronomy
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable convolutional networks. In Proceedings of the IEEE international conference on computer vision (pp. 764–773).
Zhu, Ma, Guan, Wu, Wang, Yang, Jiang (bib68) 2023; 214
Xu, Shu, Xie, Song, Zhu, Cao, Ni (bib51) 2023; 212
Zhou, Tang, Zou, Wu, Tang, Meng, Kang (bib66) 2022; 12
Tritularsih, Y., Prasetyo, H., & Pandansari, F. (2023, May). Access point configuration on Internet of Things with bootstrap WiFi networking Raspberry Pi. In AIP Conference Proceedings (Vol. 2674, No. 1). AIP Publishing.
Zhao, Zhang, Du, Guo, Wen, Gu, Fan (bib63) 2019; 10
Li, Yang, Chen (bib19) 2022; 11
Min, Wu, Fan, Li, Li (bib24) 2023; 23
Zhou, Yuan (bib65) 2020; 166
Shorten, Khoshgoftaar (bib38) 2019; 6
Sun, He, Liu, Xiao, Wu, Zhou, Wang (bib40) 2023; 14
Buquet, Beauvais, Parent, Roulet, Thibault (bib3) 2022; Vol. 12274
Wang, Ma, Liu, Wei (bib45) 2022; 12
Chen, Zou, Zhou, Xiang, Wu (bib7) 2023; 206
Rongsheng, Shuai, Yongzhe, Yangyang, Kai, Yixin, Qingshan (bib34) 2021; 3
Roy, Saffar, Vaswani, Grangier (bib35) 2021; 9
.
Hosseini, H., Xiao, B., Jaiswal, M., & Poovendran, R. (2017). On the limitation of convolutional neural networks in recognizing negative images. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 352–358). IEEE.
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618–626).
Niu, Zhong, Yu (bib26) 2021; 452
Bhatti, Yu, Chanussot, Zeeshan, Yuan, Luo, Mehmood (bib2) 2021; 60
Ma, Wei, Guan, Yu (bib22) 2022; 68
Yan, Wang, Jiang (bib52) 2020; 514
Qin, Tian, Zhang, Dong, Ma, Wang, Yue (bib30) 2021; 19
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779–788).
Zhao, Gallo, Frosio, Kautz (bib64) 2016; 3
Jangra, Chaudhary, Yadav, Yadav (bib17) 2021; 1
Dong, Kim, Zheng, Oh, Ehsani, Lee (bib13) 2023; 212
Zhao (bib62) 2019; 1
Osco, Junior, Ramos, Furuya, Santana, Teodoro, Teodoro (bib27) 2020; 12
Wang, Yang, Yang (bib47) 2022; 38
Rundquist, Gitelson, Leavitt, Zygielbaum, Perk, Keydan (bib36) 2014; 4
Zhu, Spachos, Pensini, Plataniotis (bib67) 2021; 4
Qian, Huang, Xie, Ye, Guo, Pan, Nie (bib29) 2023; 212
Cai, P. (2023). Pubic Symphysis-Fetal Head Segmentation Using Full Transformer with Bi-level Routing Attention. arXiv preprint arXiv:2310.00289.
Idehen, You, Xu, Li, Zhang, Hu, Wang (bib16) 2022; 22
Yang, Zhang, Zhang, Zhang, Han, Zhang, Zhang, Liu, Wang (bib57) 2023; 211
Wong, J., Sha, H., Al Hasan, M., Mohler, G., Becker, S., & Wiltse, C. (2020, December). Automated Corn Ear Height Prediction Using Video-Based Deep Learning. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 2371–2374). IEEE.
Antolínez García, Cáceres Campana (bib1) 2023; 24
Ren, S., Zhou, D., He, S., Feng, J., & Wang, X. (2022). Shunted self-attention via multi-scale token aggregation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10853–10862).
Cardellicchio, Solimani, Dimauro, Petrozza, Summerer, Cellini, Renò (bib5) 2023; 207
He, Ma, Guan, Wang, Shen (bib14) 2023; 13
Yuan, Lv, Zhang, Fu, Gao, Zhang, Zhang (bib59) 2020; 10
Zhang, Xiao, Liu, Wu (bib61) 2022; 10
Yang, Ma, Guan, Yang, Zhang, Li, Li (bib54) 2023; 128
Di Stefano, L., & Bulgarelli, A. (1999, September). A simple and efficient connected components labeling algorithm. In Proceedings 10th international conference on image analysis and processing (pp. 322–327). IEEE.
Takahashi, Matsubara, Uehara (bib42) 2019; 30
Park, W., Jin, D., & Kim, C.S. (2022). Eigencontours: Novel contour descriptors based on low-rank approximation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2667–2675).
Misra, D. (2019). Mish: A self regularized non-monotonic activation function. arXiv preprint arXiv:1908.08681.
Yang, Duan, Yang (bib53) 2021; 40
Darrah, McMullen, Zuber (bib9) 2019
Yu, Ma, Guan, Zhang (bib58) 2023; 237
Song, Xu, Wang, Yu, Zeng, Ju (bib39) 2020; 2020
Kadish, D., Risi, S., & Løvlie, A.S. (2021, July). Improving object detection in art images using only style transfer. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE.
Marefatzadeh-Khameneh, Fabriki-Ourang, Sorkhilalehloo, Abbasi-Kohpalekani, Ahmadi (bib23) 2021; 68
Zeng, Li, Song, Zhong, Wei (bib60) 2023; 205
Dinesh, Ramalingam, Ramani, Deepak (bib11) 2023; 15
Sun, Liu, Wang, Zhang (bib41) 2017; 2017
Yang, Wang, Nie, Yang, Yu (bib55) 2023; 13
Wang, Yang, He, Yue, Zhang, Geng (bib46) 2023; 13
Rebuffi, Gowal, Calian (bib31) 2021; 34
Liu, J., Ni, B., Li, C., Yang, J., & Tian, Q. (2019). Dynamic points agglomeration for hierarchical point sets learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 7546–7555).
Vabalas, Gowen, Poliakoff, Casson (bib44) 2019; 14
Xia, Chai, Li, Zhang, Sun (bib50) 2023; 209
Liu, Liu, Liu, Zhe, Ding, Liang (bib21) 2023; 209
Ceyhan, Kartal, Özkan, Seke (bib6) 2023
Wei, Ma, Guan, Yu, Yang, He, Shen (bib48) 2023; 75
Divyanth, Ahmad, Saraswat (bib12) 2023; 3
Yang, Wu, Zhang, Gao, Du, Wu, Li (bib56) 2023; 211
Ma (10.1016/j.eja.2023.127076_bib22) 2022; 68
Yuan (10.1016/j.eja.2023.127076_bib59) 2020; 10
Yang (10.1016/j.eja.2023.127076_bib56) 2023; 211
Rebuffi (10.1016/j.eja.2023.127076_bib31) 2021; 34
Zeng (10.1016/j.eja.2023.127076_bib60) 2023; 205
Zhao (10.1016/j.eja.2023.127076_bib62) 2019; 1
Roy (10.1016/j.eja.2023.127076_bib35) 2021; 9
Yang (10.1016/j.eja.2023.127076_bib54) 2023; 128
10.1016/j.eja.2023.127076_bib8
Marefatzadeh-Khameneh (10.1016/j.eja.2023.127076_bib23) 2021; 68
10.1016/j.eja.2023.127076_bib33
Zhou (10.1016/j.eja.2023.127076_bib65) 2020; 166
Jangra (10.1016/j.eja.2023.127076_bib17) 2021; 1
10.1016/j.eja.2023.127076_bib32
Song (10.1016/j.eja.2023.127076_bib39) 2020; 2020
Wang (10.1016/j.eja.2023.127076_bib45) 2022; 12
10.1016/j.eja.2023.127076_bib4
10.1016/j.eja.2023.127076_bib37
Ceyhan (10.1016/j.eja.2023.127076_bib6) 2023
Rongsheng (10.1016/j.eja.2023.127076_bib34) 2021; 3
Antolínez García (10.1016/j.eja.2023.127076_bib1) 2023; 24
Darrah (10.1016/j.eja.2023.127076_bib9) 2019
Zhao (10.1016/j.eja.2023.127076_bib63) 2019; 10
Min (10.1016/j.eja.2023.127076_bib24) 2023; 23
Sun (10.1016/j.eja.2023.127076_bib40) 2023; 14
Li (10.1016/j.eja.2023.127076_bib19) 2022; 11
Liu (10.1016/j.eja.2023.127076_bib21) 2023; 209
Takahashi (10.1016/j.eja.2023.127076_bib42) 2019; 30
Zhou (10.1016/j.eja.2023.127076_bib66) 2022; 12
Zhao (10.1016/j.eja.2023.127076_bib64) 2016; 3
Bhatti (10.1016/j.eja.2023.127076_bib2) 2021; 60
Xu (10.1016/j.eja.2023.127076_bib51) 2023; 212
Buquet (10.1016/j.eja.2023.127076_bib3) 2022; Vol. 12274
Rundquist (10.1016/j.eja.2023.127076_bib36) 2014; 4
10.1016/j.eja.2023.127076_bib43
Vabalas (10.1016/j.eja.2023.127076_bib44) 2019; 14
10.1016/j.eja.2023.127076_bib49
Cardellicchio (10.1016/j.eja.2023.127076_bib5) 2023; 207
Yu (10.1016/j.eja.2023.127076_bib58) 2023; 237
Dong (10.1016/j.eja.2023.127076_bib13) 2023; 212
Sun (10.1016/j.eja.2023.127076_bib41) 2017; 2017
He (10.1016/j.eja.2023.127076_bib14) 2023; 13
Qin (10.1016/j.eja.2023.127076_bib30) 2021; 19
Wang (10.1016/j.eja.2023.127076_bib46) 2023; 13
Qian (10.1016/j.eja.2023.127076_bib29) 2023; 212
Xia (10.1016/j.eja.2023.127076_bib50) 2023; 209
10.1016/j.eja.2023.127076_bib18
Yang (10.1016/j.eja.2023.127076_bib57) 2023; 211
Dinesh (10.1016/j.eja.2023.127076_bib11) 2023; 15
10.1016/j.eja.2023.127076_bib10
Divyanth (10.1016/j.eja.2023.127076_bib12) 2023; 3
Yang (10.1016/j.eja.2023.127076_bib53) 2021; 40
10.1016/j.eja.2023.127076_bib15
Niu (10.1016/j.eja.2023.127076_bib26) 2021; 452
Shorten (10.1016/j.eja.2023.127076_bib38) 2019; 6
Zhu (10.1016/j.eja.2023.127076_bib67) 2021; 4
Wang (10.1016/j.eja.2023.127076_bib47) 2022; 38
Chen (10.1016/j.eja.2023.127076_bib7) 2023; 206
Yang (10.1016/j.eja.2023.127076_bib55) 2023; 13
Osco (10.1016/j.eja.2023.127076_bib27) 2020; 12
Idehen (10.1016/j.eja.2023.127076_bib16) 2022; 22
Yan (10.1016/j.eja.2023.127076_bib52) 2020; 514
10.1016/j.eja.2023.127076_bib28
Zhang (10.1016/j.eja.2023.127076_bib61) 2022; 10
Zhu (10.1016/j.eja.2023.127076_bib68) 2023; 214
10.1016/j.eja.2023.127076_bib20
Wei (10.1016/j.eja.2023.127076_bib48) 2023; 75
10.1016/j.eja.2023.127076_bib25
References_xml – volume: 3
  start-page: 94
  year: 2021
  ident: bib34
  article-title: Research advances and prospects of crop 3D reconstruction technology
  publication-title: Smart Agric.
– volume: 11
  start-page: 2820
  year: 2022
  end-page: 2830
  ident: bib19
  article-title: Performance evaluation system based on multi-indicators for signal recognition
  publication-title: IEEE Access
– volume: 14
  year: 2019
  ident: bib44
  article-title: Machine learning algorithm validation with a limited sample size
  publication-title: PloS One
– volume: 128
  year: 2023
  ident: bib54
  article-title: A recognition method of corn varieties based on spectral technology and deep learning model
  publication-title: Infrared Phys. Technol.
– reference: Ren, S., Zhou, D., He, S., Feng, J., & Wang, X. (2022). Shunted self-attention via multi-scale token aggregation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10853–10862).
– volume: 30
  start-page: 2917
  year: 2019
  end-page: 2931
  ident: bib42
  article-title: Data augmentation using random image cropping and patching for deep CNNs
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: Cai, P. (2023). Pubic Symphysis-Fetal Head Segmentation Using Full Transformer with Bi-level Routing Attention. arXiv preprint arXiv:2310.00289.
– volume: 4
  start-page: 233
  year: 2021
  end-page: 249
  ident: bib67
  article-title: Deep learning and machine vision for food processing: a survey
  publication-title: Curr. Res. Food Sci.
– volume: 166
  start-page: 165
  year: 2020
  end-page: 169
  ident: bib65
  article-title: A smart ammunition library management system based on raspberry pie
  publication-title: Procedia Comput. Sci.
– reference: Hosseini, H., Xiao, B., Jaiswal, M., & Poovendran, R. (2017). On the limitation of convolutional neural networks in recognizing negative images. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 352–358). IEEE.
– volume: 10
  start-page: 1323
  year: 2022
  end-page: 1333
  ident: bib61
  article-title: An algorithm for automatic identification of multiple developmental stages of rice spikes based on improved Faster R-CNN
  publication-title: Crop J.
– volume: 3
  year: 2023
  ident: bib12
  article-title: A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery
  publication-title: Smart Agric. Technol.
– reference: Di Stefano, L., & Bulgarelli, A. (1999, September). A simple and efficient connected components labeling algorithm. In Proceedings 10th international conference on image analysis and processing (pp. 322–327). IEEE.
– volume: 212
  year: 2023
  ident: bib13
  article-title: Three-dimensional quantification of apple phenotypic traits based on deep learning instance segmentation
  publication-title: Comput. Electron. Agric.
– volume: 24
  start-page: 783
  year: 2023
  end-page: 806
  ident: bib1
  article-title: Identification of pathogens in corn using near-infrared UAV imagery and deep learning
  publication-title: Precis. Agric.
– volume: 2017
  year: 2017
  ident: bib41
  article-title: Deep learning for plant identification in natural environment
  publication-title: Comput. Intell. Neurosci.
– start-page: 19
  year: 2019
  end-page: 41
  ident: bib9
  article-title: Breeding, genetics and seed corn production
  publication-title: Corn
– volume: 205
  year: 2023
  ident: bib60
  article-title: Lightweight tomato real-time detection method based on improved YOLO and mobile deployment
  publication-title: Comput. Electron. Agric.
– volume: 23
  start-page: 7240
  year: 2023
  ident: bib24
  article-title: Dim and small target detection with a combined new norm and self-attention of low-rank sparse inversion
  publication-title: Sensors
– volume: 13
  start-page: 1750
  year: 2023
  ident: bib46
  article-title: Real-time detection system of broken corn kernels based on BCK-YOLOv7
  publication-title: Agronomy
– volume: 68
  start-page: 2611
  year: 2021
  end-page: 2625
  ident: bib23
  article-title: Genetic diversity in tomato (Solanum lycopersicum L.) germplasm using fruit variation implemented by tomato analyzer software based on high throughput phenotyping
  publication-title: Genet. Resour. Crop Evol.
– reference: Misra, D. (2019). Mish: A self regularized non-monotonic activation function. arXiv preprint arXiv:1908.08681.
– reference: Tritularsih, Y., Prasetyo, H., & Pandansari, F. (2023, May). Access point configuration on Internet of Things with bootstrap WiFi networking Raspberry Pi. In AIP Conference Proceedings (Vol. 2674, No. 1). AIP Publishing.
– reference: Wong, J., Sha, H., Al Hasan, M., Mohler, G., Becker, S., & Wiltse, C. (2020, December). Automated Corn Ear Height Prediction Using Video-Based Deep Learning. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 2371–2374). IEEE.
– volume: 212
  year: 2023
  ident: bib51
  article-title: Precision weed detection in wheat fields for agriculture 4.0: a survey of enabling technologies, methods, and research challenges
  publication-title: Comput. Electron. Agric.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib2
  article-title: Local similarity-based spatial–spectral fusion hyperspectral image classification with deep CNN and Gabor filtering
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib39
  article-title: Analysis on the impact of data augmentation on target recognition for UAV-based transmission line inspection
  publication-title: Complexity
– volume: 206
  year: 2023
  ident: bib7
  article-title: Study on fusion clustering and improved yolov5 algorithm based on multiple occlusion of camellia oleifera fruit
  publication-title: Comput. Electron. Agric.
– volume: 3
  start-page: 47
  year: 2016
  end-page: 57
  ident: bib64
  article-title: Loss functions for image restoration with neural networks
  publication-title: IEEE Trans. Comput. Imaging
– volume: 212
  year: 2023
  ident: bib29
  article-title: Coupled corn model: a 4D corn growth model based on growing degree days
  publication-title: Comput. Electron. Agric.
– volume: 68
  year: 2022
  ident: bib22
  article-title: A method of calculating phenotypic traits for soybean canopies based on three-dimensional point cloud
  publication-title: Ecol. Inform.
– volume: 211
  year: 2023
  ident: bib57
  article-title: Prediction of corn variety yield with attribute-missing data via graph neural network
  publication-title: Comput. Electron. Agric.
– reference: Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618–626).
– volume: 12
  start-page: 692
  year: 2022
  ident: bib45
  article-title: Three-dimensional reconstruction of soybean canopy based on multivision technology for calculation of phenotypic traits
  publication-title: Agronomy
– volume: 40
  start-page: 227
  year: 2021
  end-page: 235
  ident: bib53
  article-title: Deep learning-based extraction of rice phenotypic characteristics and prediction of rice panicle weight
  publication-title: Jorunal Huazhong Agric. Univ.
– volume: 22
  start-page: 4193
  year: 2022
  ident: bib16
  article-title: Development and testing of a 5G multichannel intelligent seismograph based on raspberry Pi
  publication-title: Sensors
– volume: 34
  start-page: 29935
  year: 2021
  end-page: 29948
  ident: bib31
  article-title: Data augmentation can improve robustness
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Liu, J., Ni, B., Li, C., Yang, J., & Tian, Q. (2019). Dynamic points agglomeration for hierarchical point sets learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 7546–7555).
– reference: Kadish, D., Risi, S., & Løvlie, A.S. (2021, July). Improving object detection in art images using only style transfer. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE.
– volume: 9
  start-page: 53
  year: 2021
  end-page: 68
  ident: bib35
  article-title: Efficient content-based sparse attention with routing transformers
  publication-title: Trans. Assoc. Comput. Linguist.
– volume: 209
  year: 2023
  ident: bib21
  article-title: Rice grains and grain impurity segmentation method based on a deep learning algorithm-NAM-EfficientNetv2
  publication-title: Comput. Electron. Agric.
– volume: 13
  start-page: 1824
  year: 2023
  ident: bib55
  article-title: A lightweight YOLOv8 tomato detection algorithm combining feature enhancement and attention
  publication-title: Agronomy
– volume: 12
  start-page: 3237
  year: 2020
  ident: bib27
  article-title: Leaf nitrogen concentration and plant height prediction for corn using UAV-based multispectral imagery and machine learning techniques
  publication-title: Remote Sens.
– volume: 15
  year: 2023
  ident: bib11
  article-title: Machine learning in the detection of oral lesions with clinical intraoral images
  publication-title: Cureus
– reference: Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable convolutional networks. In Proceedings of the IEEE international conference on computer vision (pp. 764–773).
– volume: 10
  start-page: 160
  year: 2020
  ident: bib59
  article-title: Robust cherry tomatoes detection algorithm in greenhouse scene based on SSD
  publication-title: Agriculture
– start-page: 1
  year: 2023
  end-page: 23
  ident: bib6
  article-title: Classification of wheat varieties with image-based deep learning
  publication-title: Multimed. Tools Appl.
– volume: 514
  start-page: 263
  year: 2020
  end-page: 274
  ident: bib52
  article-title: Deep relevant representation learning for soft sensing
  publication-title: Inf. Sci.
– volume: 209
  year: 2023
  ident: bib50
  article-title: MTYOLOX: multi-transformers-enabled YOLO for tree-level apple inflorescences detection and density mapping
  publication-title: Comput. Electron. Agric.
– volume: 10
  year: 2019
  ident: bib63
  article-title: Crop phenomics: current status and perspectives
  publication-title: Front. Plant Sci.
– volume: 14
  start-page: 1177477
  year: 2023
  ident: bib40
  article-title: Dynamic monitoring of corn grain quality based on remote sensing data
  publication-title: Front. Plant Sci.
– volume: 12
  start-page: 12959
  year: 2022
  ident: bib66
  article-title: Adaptive active positioning of Camellia oleifera fruit picking points: Classical image processing and YOLOv7 fusion algorithm
  publication-title: Appl. Sci.
– reference: Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779–788).
– volume: 237
  year: 2023
  ident: bib58
  article-title: A diagnosis model of soybean leaf diseases based on improved residual neural network
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 452
  start-page: 48
  year: 2021
  end-page: 62
  ident: bib26
  article-title: A review on the attention of deep learning
  publication-title: Neurocomputing
– volume: 6
  start-page: 1
  year: 2019
  end-page: 48
  ident: bib38
  article-title: A survey on image data augmentation for deep learning[J]
  publication-title: J. big data
– volume: 38
  start-page: 53
  year: 2022
  end-page: 62
  ident: bib47
  article-title: UAV images for detecting corn tassel based on YOLO_X and transfer learning
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 211
  year: 2023
  ident: bib56
  article-title: Deformable convolution and coordinate attention for fast cattle detection
  publication-title: Comput. Electron. Agric.
– reference: .
– volume: 214
  year: 2023
  ident: bib68
  article-title: A method for detecting tomato canopies’ phenotypic traits based on improved skeleton extraction algorithm
  publication-title: Comput. Electron. Agric.
– volume: 4
  start-page: 108
  year: 2014
  end-page: 123
  ident: bib36
  article-title: Elements of an integrated phenotyping system for monitoring crop status at canopy level
  publication-title: Agronomy
– volume: 1
  start-page: 5
  year: 2019
  end-page: 18
  ident: bib62
  article-title: Big data of plant phenomics and its research progress
  publication-title: J. Agric. Big Data
– volume: Vol. 12274
  start-page: 120
  year: 2022
  end-page: 131
  ident: bib3
  article-title: Next-generation of sUAS 360 surround vision cameras designed for automated navigation in low-light conditions
  publication-title: Emerging Imaging and Sensing Technologies for Security and Defence VII
– reference: Park, W., Jin, D., & Kim, C.S. (2022). Eigencontours: Novel contour descriptors based on low-rank approximation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2667–2675).
– volume: 19
  start-page: 1183
  year: 2021
  end-page: 1194
  ident: bib30
  article-title: Q Dtbn1, an F‐box gene affecting corn tassel branch number by a dominant model
  publication-title: Plant Biotechnol. J.
– volume: 13
  year: 2023
  ident: bib14
  article-title: Recognition of soybean pods and yield prediction based on improved deep learning model
  publication-title: Front. Plant Sci.
– volume: 75
  year: 2023
  ident: bib48
  article-title: Dynamic simulation of leaf area index for the soybean canopy based on 3D reconstruction
  publication-title: Ecol. Inform.
– volume: 207
  year: 2023
  ident: bib5
  article-title: Detection of tomato plant phenotyping traits using YOLOv5-based single stage detectors
  publication-title: Comput. Electron. Agric.
– volume: 1
  start-page: 31
  year: 2021
  end-page: 53
  ident: bib17
  article-title: High-throughput phenotyping: a platform to accelerate crop improvement
  publication-title: Phenomics
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.eja.2023.127076_bib2
  article-title: Local similarity-based spatial–spectral fusion hyperspectral image classification with deep CNN and Gabor filtering
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3090410
– volume: 212
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib29
  article-title: Coupled corn model: a 4D corn growth model based on growing degree days
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108124
– volume: 10
  start-page: 160
  issue: 5
  year: 2020
  ident: 10.1016/j.eja.2023.127076_bib59
  article-title: Robust cherry tomatoes detection algorithm in greenhouse scene based on SSD
  publication-title: Agriculture
  doi: 10.3390/agriculture10050160
– volume: 166
  start-page: 165
  year: 2020
  ident: 10.1016/j.eja.2023.127076_bib65
  article-title: A smart ammunition library management system based on raspberry pie
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.02.041
– start-page: 19
  year: 2019
  ident: 10.1016/j.eja.2023.127076_bib9
  article-title: Breeding, genetics and seed corn production
– volume: 30
  start-page: 2917
  issue: 9
  year: 2019
  ident: 10.1016/j.eja.2023.127076_bib42
  article-title: Data augmentation using random image cropping and patching for deep CNNs
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2935128
– volume: 14
  issue: 11
  year: 2019
  ident: 10.1016/j.eja.2023.127076_bib44
  article-title: Machine learning algorithm validation with a limited sample size
  publication-title: PloS One
  doi: 10.1371/journal.pone.0224365
– ident: 10.1016/j.eja.2023.127076_bib18
  doi: 10.1109/IJCNN52387.2021.9534264
– ident: 10.1016/j.eja.2023.127076_bib32
  doi: 10.1109/CVPR.2016.91
– volume: 13
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib14
  article-title: Recognition of soybean pods and yield prediction based on improved deep learning model
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.1096619
– volume: 19
  start-page: 1183
  issue: 6
  year: 2021
  ident: 10.1016/j.eja.2023.127076_bib30
  article-title: Q Dtbn1, an F‐box gene affecting corn tassel branch number by a dominant model
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13540
– volume: 3
  start-page: 47
  issue: 1
  year: 2016
  ident: 10.1016/j.eja.2023.127076_bib64
  article-title: Loss functions for image restoration with neural networks
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2016.2644865
– volume: 12
  start-page: 12959
  issue: 24
  year: 2022
  ident: 10.1016/j.eja.2023.127076_bib66
  article-title: Adaptive active positioning of Camellia oleifera fruit picking points: Classical image processing and YOLOv7 fusion algorithm
  publication-title: Appl. Sci.
  doi: 10.3390/app122412959
– volume: 212
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib13
  article-title: Three-dimensional quantification of apple phenotypic traits based on deep learning instance segmentation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108156
– volume: 12
  start-page: 692
  issue: 3
  year: 2022
  ident: 10.1016/j.eja.2023.127076_bib45
  article-title: Three-dimensional reconstruction of soybean canopy based on multivision technology for calculation of phenotypic traits
  publication-title: Agronomy
  doi: 10.3390/agronomy12030692
– volume: 22
  start-page: 4193
  issue: 11
  year: 2022
  ident: 10.1016/j.eja.2023.127076_bib16
  article-title: Development and testing of a 5G multichannel intelligent seismograph based on raspberry Pi
  publication-title: Sensors
  doi: 10.3390/s22114193
– volume: 24
  start-page: 783
  issue: 2
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib1
  article-title: Identification of pathogens in corn using near-infrared UAV imagery and deep learning
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-022-09951-x
– volume: 212
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib51
  article-title: Precision weed detection in wheat fields for agriculture 4.0: a survey of enabling technologies, methods, and research challenges
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108106
– volume: 12
  start-page: 3237
  issue: 19
  year: 2020
  ident: 10.1016/j.eja.2023.127076_bib27
  article-title: Leaf nitrogen concentration and plant height prediction for corn using UAV-based multispectral imagery and machine learning techniques
  publication-title: Remote Sens.
  doi: 10.3390/rs12193237
– volume: 68
  start-page: 2611
  year: 2021
  ident: 10.1016/j.eja.2023.127076_bib23
  article-title: Genetic diversity in tomato (Solanum lycopersicum L.) germplasm using fruit variation implemented by tomato analyzer software based on high throughput phenotyping
  publication-title: Genet. Resour. Crop Evol.
  doi: 10.1007/s10722-021-01153-0
– volume: 23
  start-page: 7240
  issue: 16
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib24
  article-title: Dim and small target detection with a combined new norm and self-attention of low-rank sparse inversion
  publication-title: Sensors
  doi: 10.3390/s23167240
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.eja.2023.127076_bib39
  article-title: Analysis on the impact of data augmentation on target recognition for UAV-based transmission line inspection
  publication-title: Complexity
– ident: 10.1016/j.eja.2023.127076_bib43
  doi: 10.1063/5.0118880
– volume: 10
  year: 2019
  ident: 10.1016/j.eja.2023.127076_bib63
  article-title: Crop phenomics: current status and perspectives
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00714
– volume: 211
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib56
  article-title: Deformable convolution and coordinate attention for fast cattle detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108006
– volume: 207
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib5
  article-title: Detection of tomato plant phenotyping traits using YOLOv5-based single stage detectors
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107757
– ident: 10.1016/j.eja.2023.127076_bib28
  doi: 10.1109/CVPR52688.2022.00269
– volume: 9
  start-page: 53
  year: 2021
  ident: 10.1016/j.eja.2023.127076_bib35
  article-title: Efficient content-based sparse attention with routing transformers
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00353
– ident: 10.1016/j.eja.2023.127076_bib25
  doi: 10.5244/C.34.191
– volume: 211
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib57
  article-title: Prediction of corn variety yield with attribute-missing data via graph neural network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108046
– volume: 514
  start-page: 263
  year: 2020
  ident: 10.1016/j.eja.2023.127076_bib52
  article-title: Deep relevant representation learning for soft sensing
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.11.039
– volume: 209
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib21
  article-title: Rice grains and grain impurity segmentation method based on a deep learning algorithm-NAM-EfficientNetv2
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107824
– volume: 11
  start-page: 2820
  year: 2022
  ident: 10.1016/j.eja.2023.127076_bib19
  article-title: Performance evaluation system based on multi-indicators for signal recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3228641
– volume: 13
  start-page: 1824
  issue: 7
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib55
  article-title: A lightweight YOLOv8 tomato detection algorithm combining feature enhancement and attention
  publication-title: Agronomy
  doi: 10.3390/agronomy13071824
– volume: 209
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib50
  article-title: MTYOLOX: multi-transformers-enabled YOLO for tree-level apple inflorescences detection and density mapping
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107803
– volume: 1
  start-page: 31
  issue: 2
  year: 2021
  ident: 10.1016/j.eja.2023.127076_bib17
  article-title: High-throughput phenotyping: a platform to accelerate crop improvement
  publication-title: Phenomics
  doi: 10.1007/s43657-020-00007-6
– volume: 13
  start-page: 1750
  issue: 7
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib46
  article-title: Real-time detection system of broken corn kernels based on BCK-YOLOv7
  publication-title: Agronomy
  doi: 10.3390/agronomy13071750
– ident: 10.1016/j.eja.2023.127076_bib4
– ident: 10.1016/j.eja.2023.127076_bib20
  doi: 10.1109/ICCV.2019.00764
– ident: 10.1016/j.eja.2023.127076_bib15
  doi: 10.1109/ICMLA.2017.0-136
– ident: 10.1016/j.eja.2023.127076_bib10
  doi: 10.1109/ICIAP.1999.797615
– volume: 4
  start-page: 108
  issue: 1
  year: 2014
  ident: 10.1016/j.eja.2023.127076_bib36
  article-title: Elements of an integrated phenotyping system for monitoring crop status at canopy level
  publication-title: Agronomy
  doi: 10.3390/agronomy4010108
– volume: 4
  start-page: 233
  year: 2021
  ident: 10.1016/j.eja.2023.127076_bib67
  article-title: Deep learning and machine vision for food processing: a survey
  publication-title: Curr. Res. Food Sci.
  doi: 10.1016/j.crfs.2021.03.009
– volume: 14
  start-page: 1177477
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib40
  article-title: Dynamic monitoring of corn grain quality based on remote sensing data
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1177477
– volume: 206
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib7
  article-title: Study on fusion clustering and improved yolov5 algorithm based on multiple occlusion of camellia oleifera fruit
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107706
– volume: 214
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib68
  article-title: A method for detecting tomato canopies’ phenotypic traits based on improved skeleton extraction algorithm
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108285
– volume: 452
  start-page: 48
  year: 2021
  ident: 10.1016/j.eja.2023.127076_bib26
  article-title: A review on the attention of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– ident: 10.1016/j.eja.2023.127076_bib37
  doi: 10.1109/ICCV.2017.74
– volume: 15
  issue: 8
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib11
  article-title: Machine learning in the detection of oral lesions with clinical intraoral images
  publication-title: Cureus
– volume: 34
  start-page: 29935
  year: 2021
  ident: 10.1016/j.eja.2023.127076_bib31
  article-title: Data augmentation can improve robustness
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.eja.2023.127076_bib33
  doi: 10.1109/CVPR52688.2022.01058
– volume: 38
  start-page: 53
  issue: 15
  year: 2022
  ident: 10.1016/j.eja.2023.127076_bib47
  article-title: UAV images for detecting corn tassel based on YOLO_X and transfer learning
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.eja.2023.127076_bib38
  article-title: A survey on image data augmentation for deep learning[J]
  publication-title: J. big data
  doi: 10.1186/s40537-019-0197-0
– volume: 205
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib60
  article-title: Lightweight tomato real-time detection method based on improved YOLO and mobile deployment
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107625
– volume: 68
  year: 2022
  ident: 10.1016/j.eja.2023.127076_bib22
  article-title: A method of calculating phenotypic traits for soybean canopies based on three-dimensional point cloud
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101524
– volume: 3
  start-page: 94
  issue: 3
  year: 2021
  ident: 10.1016/j.eja.2023.127076_bib34
  article-title: Research advances and prospects of crop 3D reconstruction technology
  publication-title: Smart Agric.
– volume: 40
  start-page: 227
  issue: 1
  year: 2021
  ident: 10.1016/j.eja.2023.127076_bib53
  article-title: Deep learning-based extraction of rice phenotypic characteristics and prediction of rice panicle weight
  publication-title: Jorunal Huazhong Agric. Univ.
– volume: 128
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib54
  article-title: A recognition method of corn varieties based on spectral technology and deep learning model
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104533
– volume: 1
  start-page: 5
  issue: 2
  year: 2019
  ident: 10.1016/j.eja.2023.127076_bib62
  article-title: Big data of plant phenomics and its research progress
  publication-title: J. Agric. Big Data
– start-page: 1
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib6
  article-title: Classification of wheat varieties with image-based deep learning
  publication-title: Multimed. Tools Appl.
– ident: 10.1016/j.eja.2023.127076_bib8
  doi: 10.1109/ICCV.2017.89
– volume: 2017
  year: 2017
  ident: 10.1016/j.eja.2023.127076_bib41
  article-title: Deep learning for plant identification in natural environment
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2017/7361042
– ident: 10.1016/j.eja.2023.127076_bib49
  doi: 10.1109/BigData50022.2020.9378115
– volume: 237
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib58
  article-title: A diagnosis model of soybean leaf diseases based on improved residual neural network
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2023.104824
– volume: 10
  start-page: 1323
  issue: 5
  year: 2022
  ident: 10.1016/j.eja.2023.127076_bib61
  article-title: An algorithm for automatic identification of multiple developmental stages of rice spikes based on improved Faster R-CNN
  publication-title: Crop J.
  doi: 10.1016/j.cj.2022.06.004
– volume: Vol. 12274
  start-page: 120
  year: 2022
  ident: 10.1016/j.eja.2023.127076_bib3
  article-title: Next-generation of sUAS 360 surround vision cameras designed for automated navigation in low-light conditions
– volume: 3
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib12
  article-title: A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery
  publication-title: Smart Agric. Technol.
– volume: 75
  year: 2023
  ident: 10.1016/j.eja.2023.127076_bib48
  article-title: Dynamic simulation of leaf area index for the soybean canopy based on 3D reconstruction
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2023.102070
SSID ssj0008254
Score 2.5193963
Snippet Corn canopy organs detection is critical in obtaining high-throughput phenotypic data. Accurate identification of each organ can provide a reliable data source...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127076
SubjectTerms agronomy
algorithms
Bi-level routing attention
canopy
corn
Corn canopy
Detection model
field crops
Improved deformable convolution
model validation
neck
phenotype
rapid methods
raspberries
YOLOv8
Title A corn canopy organs detection method based on improved DBi-YOLOv8 network
URI https://dx.doi.org/10.1016/j.eja.2023.127076
https://www.proquest.com/docview/3153608975
Volume 154
WOSCitedRecordID wos001169825800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7331
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008254
  issn: 1161-0301
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wAHxKc2vmQkxIHIU1s7cXIs0KlMpeWQoXCynNieWqGktOk0_nueYyfdJjaNA5cosey08u_pvd_7iB9C71SUFMVAU5IwJQkDA0wkGFoSSg5sn8ahaY4v_j7ls1mcZck3321007QT4GUZn58nq_8KNYwB2PbT2X-Au3spDMA9gA5XgB2utwJ-FIBDWdpqrmr123Vt2gRK19o1BXctowNrvZTNFCyaqALcf_64ID_m0_lZHJSuNvzaqL1nsPJ0femTCBC3RodN5KLadgxZO20ykVV9QRS_NqQ1W8hK7Qa76HUqq4vhiCHb1WN5DQoUklg_65KKDVmwOrRJbh6RvypuF0NYHuqlPQxqSP3knZVqM_OzuTg6mU5FOs7S96tfxPYPs3l230zlLtobcvChemhv9GWcHXdW2XrCTaMd__faDHdT63flV6_jKFesdUNB0kfoofcd8Mhh_hjd0eUT9GB0uvbnp-in6HiELfrYoY8d-rhDHzv0cYM-hucWfbxDH3v0n6GTo3H6aUJ8uwxSUNqvycBwGkseqYLmHGix5IaZYRKaPM8NK0zY11IrndM8LqhJwrxgOuIDzfp5ZFio6HPUK6tS7yMcRypUsFQpJZm0ga4kTCIjudQcCDU9QP12g0Thz5K3LU1-irZocClgT4XdU-H29AB96Jas3EEqN01m7a4LzwQdwxMgLzcte9siJEBL2tSXLHW13QgKhj3qxwkPX9xizkt0fyfar1CvXm_1a3SvOKsXm_UbL1l_AJ_jh1M
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+corn+canopy+organs+detection+method+based+on+improved+DBi-YOLOv8+network&rft.jtitle=European+journal+of+agronomy&rft.au=Guan%2C+Haiou&rft.au=Deng%2C+Haotian&rft.au=Ma%2C+Xiaodan&rft.au=Zhang%2C+Tao&rft.date=2024-03-01&rft.issn=1161-0301&rft.volume=154+p.127076-&rft_id=info:doi/10.1016%2Fj.eja.2023.127076&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1161-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1161-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1161-0301&client=summon