Modeling and Pareto based multi-objective optimization of wavy fin-and-elliptical tube heat exchangers using CFD and NSGA-II algorithm

[Display omitted] •Multi objective optimization of wavy fin-and-elliptical tube heat exchangers has been performed.•The results obtained from CFD simulations have been used as inputs for the GMDH type artificial neural networks.•Four parameters have been chosen as design variables to optimize two ob...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied thermal engineering Ročník 111; s. 325 - 339
Hlavní autoři: Darvish Damavandi, Mohammad, Forouzanmehr, Mostafa, Safikhani, Hamed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 25.01.2017
Témata:
ISSN:1359-4311
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •Multi objective optimization of wavy fin-and-elliptical tube heat exchangers has been performed.•The results obtained from CFD simulations have been used as inputs for the GMDH type artificial neural networks.•Four parameters have been chosen as design variables to optimize two objective functions.•From among the optimal points, several points with unique features have been introduced and explained. In this paper, a multi-objective optimization (MOO) of wavy fin-and-elliptical tube heat exchangers has been performed by using Computational Fluid Dynamics (CFD), Artificial Neural Network (ANN) of Group Method of Data Handling (GMDH) type, and Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This multi-objective optimization is aimed at achieving maximum heat transfer and minimum pressure drop. For this purpose, the considered objective functions, Colburn factor (j) and friction factor (f) are optimized with regards to the design variables (four variables). The CFD results are validated by means of experimental findings. Polynomials of the GMDH type neural network are formed based on the CFD results. These polynomials relate the objective functions to the design variables. Ultimately, the NSGA-II algorithm obtains the Pareto optimal points by using the input data from the neural network. From among the optimal points, several points with unique features are introduced and explained. The investigation of optimal points indicates that with a slight reduction in heat transfer, pressure drop can be reduced considerably. By combining and simultaneously using the CFD, neural network and NSGA-II optimization algorithm, very useful and valuable results are obtained; which otherwise couldn’t be achieved without the mutual use of these techniques.
AbstractList [Display omitted] •Multi objective optimization of wavy fin-and-elliptical tube heat exchangers has been performed.•The results obtained from CFD simulations have been used as inputs for the GMDH type artificial neural networks.•Four parameters have been chosen as design variables to optimize two objective functions.•From among the optimal points, several points with unique features have been introduced and explained. In this paper, a multi-objective optimization (MOO) of wavy fin-and-elliptical tube heat exchangers has been performed by using Computational Fluid Dynamics (CFD), Artificial Neural Network (ANN) of Group Method of Data Handling (GMDH) type, and Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This multi-objective optimization is aimed at achieving maximum heat transfer and minimum pressure drop. For this purpose, the considered objective functions, Colburn factor (j) and friction factor (f) are optimized with regards to the design variables (four variables). The CFD results are validated by means of experimental findings. Polynomials of the GMDH type neural network are formed based on the CFD results. These polynomials relate the objective functions to the design variables. Ultimately, the NSGA-II algorithm obtains the Pareto optimal points by using the input data from the neural network. From among the optimal points, several points with unique features are introduced and explained. The investigation of optimal points indicates that with a slight reduction in heat transfer, pressure drop can be reduced considerably. By combining and simultaneously using the CFD, neural network and NSGA-II optimization algorithm, very useful and valuable results are obtained; which otherwise couldn’t be achieved without the mutual use of these techniques.
Author Forouzanmehr, Mostafa
Darvish Damavandi, Mohammad
Safikhani, Hamed
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Darvish Damavandi
  fullname: Darvish Damavandi, Mohammad
  organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: Mostafa
  surname: Forouzanmehr
  fullname: Forouzanmehr, Mostafa
  organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
– sequence: 3
  givenname: Hamed
  surname: Safikhani
  fullname: Safikhani, Hamed
  email: h-safikhani@araku.ac.ir
  organization: Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran
BookMark eNqNkMtOwzAQRb0AifL4By_YJthxSBuJDRQKlXhJwNqaOOPWlWNXtlseH8B3k1I2sGI10ozuuZqzT3acd0jIMWc5Z7w6WeSwXNo0x9CBRTfLi36bszrnBdshAy5O66wUnO-R_RgXjPFiNCwH5PPOt2iNm1FwLX2EgMnTBiK2tFvZZDLfLFAls0bql8l05gOS8Y56TV9h_U61cVmfzNBa098VWJpWDdI5QqL4pubgZhgiXcVNx3hy-d1z_3R9nk2nFOzMB5Pm3SHZ1WAjHv3MA_IyuXoe32S3D9fT8fltpoRgKeNY11VZiSHXLY60qLBRJQetBdcCkZdNIbRooUQOIwDgQyhahlj2ioZVocUBudhyVfAxBtRSmfT9UQpgrORMbmzKhfxtU25sSlbL3mYPOfsDWQbTQXj_b3yyjWP_6NpgkFEZdApbE3rVsvXmf6AvqNiiyg
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2022_106611
crossref_primary_10_1016_j_applthermaleng_2021_117146
crossref_primary_10_1016_j_jobe_2024_111388
crossref_primary_10_1016_j_est_2023_106916
crossref_primary_10_1080_01457632_2020_1785696
crossref_primary_10_1007_s11630_019_1188_3
crossref_primary_10_1016_j_applthermaleng_2017_02_100
crossref_primary_10_1016_j_ijthermalsci_2017_08_016
crossref_primary_10_3390_en12234441
crossref_primary_10_1002_htj_21922
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_006
crossref_primary_10_1016_j_applthermaleng_2024_122373
crossref_primary_10_1016_j_tsep_2021_101151
crossref_primary_10_1016_j_ijthermalsci_2022_107830
crossref_primary_10_1007_s10462_023_10526_z
crossref_primary_10_1016_j_ijthermalsci_2021_107432
crossref_primary_10_3390_pr9010009
crossref_primary_10_1016_j_enganabound_2022_10_013
crossref_primary_10_1016_j_ijthermalsci_2023_108446
crossref_primary_10_1016_j_rser_2020_110470
crossref_primary_10_1155_2022_5312590
crossref_primary_10_2298_TSCI210718322C
crossref_primary_10_1016_j_applthermaleng_2017_05_046
crossref_primary_10_1002_er_8401
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_138
crossref_primary_10_1186_s44147_022_00085_5
crossref_primary_10_3390_en14196056
crossref_primary_10_1016_j_est_2021_103310
crossref_primary_10_3390_fluids4040205
crossref_primary_10_3390_en11081959
crossref_primary_10_1016_j_applthermaleng_2019_114469
crossref_primary_10_1007_s00231_018_2430_3
crossref_primary_10_1177_0954408918779232
crossref_primary_10_1016_j_ijthermalsci_2021_106867
crossref_primary_10_1016_j_applthermaleng_2019_02_050
crossref_primary_10_1016_j_energy_2018_07_002
crossref_primary_10_1080_15567036_2021_1980153
crossref_primary_10_1016_j_applthermaleng_2024_124949
crossref_primary_10_3390_math9243235
crossref_primary_10_1080_10618562_2020_1766031
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119923
crossref_primary_10_1080_15567036_2020_1826600
crossref_primary_10_1007_s40430_016_0698_0
crossref_primary_10_1016_j_scitotenv_2018_04_411
crossref_primary_10_1016_j_mtcomm_2025_111721
crossref_primary_10_1016_j_applthermaleng_2025_126061
crossref_primary_10_1016_j_applthermaleng_2017_05_112
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121415
crossref_primary_10_2514_1_T7193
crossref_primary_10_1016_j_ijthermalsci_2019_106211
crossref_primary_10_1016_j_enbuild_2022_111955
crossref_primary_10_1007_s11431_017_9222_7
crossref_primary_10_1007_s11831_019_09318_y
crossref_primary_10_1016_j_applthermaleng_2019_02_001
crossref_primary_10_1016_j_icheatmasstransfer_2024_107248
crossref_primary_10_1007_s00158_017_1857_3
crossref_primary_10_1007_s12182_019_00391_3
crossref_primary_10_1016_j_applthermaleng_2020_115068
crossref_primary_10_1177_0309524X231217726
crossref_primary_10_1016_j_applthermaleng_2020_115341
crossref_primary_10_1208_s12249_022_02379_6
crossref_primary_10_1016_j_applthermaleng_2020_116273
crossref_primary_10_1016_j_applthermaleng_2022_119220
crossref_primary_10_1016_j_csite_2025_107090
crossref_primary_10_1134_S0040601523080086
crossref_primary_10_1111_jfpp_15365
crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_093
crossref_primary_10_1080_01457632_2022_2068218
crossref_primary_10_3390_machines11020231
crossref_primary_10_1016_j_icheatmasstransfer_2024_107610
crossref_primary_10_1016_j_applthermaleng_2019_01_083
crossref_primary_10_1016_j_ijthermalsci_2023_108460
crossref_primary_10_1016_j_applthermaleng_2022_118368
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118847
crossref_primary_10_1016_j_applthermaleng_2022_118965
crossref_primary_10_1016_j_applthermaleng_2021_117414
crossref_primary_10_1177_01423312211023017
crossref_primary_10_1007_s10915_025_02947_5
crossref_primary_10_1016_j_applthermaleng_2017_12_125
crossref_primary_10_1080_01457632_2017_1363628
crossref_primary_10_1016_j_apenergy_2017_05_072
crossref_primary_10_1016_j_applthermaleng_2025_126446
crossref_primary_10_1007_s11431_019_9553_0
crossref_primary_10_1016_j_icheatmasstransfer_2025_109665
crossref_primary_10_1002_ese3_897
crossref_primary_10_1016_j_compbiolchem_2017_06_002
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122903
crossref_primary_10_1016_j_rinp_2023_106720
crossref_primary_10_3390_su151511587
crossref_primary_10_1007_s10973_019_08302_9
Cites_doi 10.2514/2.6354
10.2514/1.49976
10.1080/089161599269825
10.1016/S0017-9310(97)00047-1
10.1615/IHTC13.p18.20
10.1016/j.applthermaleng.2012.03.003
10.1016/j.ijthermalsci.2009.03.011
10.1080/10407782.2011.616850
10.1080/014576399271411
10.1115/1.3670916
10.1115/1.3450464
10.1016/S0017-9310(99)00333-6
10.1080/08916159208946440
10.1016/S0017-9310(99)00332-4
10.1109/TSMC.1971.4308320
10.1016/j.ijheatmasstransfer.2003.08.015
10.1016/S0140-7007(01)00049-4
10.1115/1.2824141
10.1109/4235.996017
10.1016/j.ijthermalsci.2013.07.021
10.1016/S0035-3159(99)80079-8
10.1134/S004060151404003X
10.1016/j.ijheatmasstransfer.2012.02.025
10.1016/j.ijthermalsci.2011.09.010
10.1016/S0017-9310(01)00006-0
10.1080/01457638008939561
10.1016/j.ijthermalsci.2006.10.004
10.1016/S0894-1777(96)00056-8
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2016.09.120
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 339
ExternalDocumentID 10_1016_j_applthermaleng_2016_09_120
S1359431116318191
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
FGOYB
HZ~
R2-
SEW
~HD
ID FETCH-LOGICAL-c330t-1e99646371fde8f36ebc41aff31f3ee14b23f3da4e1a8aaa17a2d0ee4101762f3
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391897200032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Tue Nov 18 21:26:36 EST 2025
Sat Nov 29 03:47:42 EST 2025
Mon Oct 07 06:11:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords NSGA-II
Elliptical tube
GMDH
Multi objective optimization
Wavy fin
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-1e99646371fde8f36ebc41aff31f3ee14b23f3da4e1a8aaa17a2d0ee4101762f3
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_applthermaleng_2016_09_120
crossref_primary_10_1016_j_applthermaleng_2016_09_120
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_09_120
PublicationCentury 2000
PublicationDate 2017-01-25
PublicationDateYYYYMMDD 2017-01-25
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-25
  day: 25
PublicationDecade 2010
PublicationTitle Applied thermal engineering
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bilir, Ilken, Erek (b0135) 2012; 52
Schulenberg (b0100) 1966; 88
Tao, He, Huang, Wu, Tao (b0095) 2007; 46
Wu, Liu, Zhao, Lu, Song (b0155) 2015
Wang, Chang, Chiou (b0075) 1999; 20
R.L. Webb, S.H. Jung, Air-side performance of enhanced brazed aluminum heat exchangers, in: ASHRAE Winter Meet., Anaheim, CA, USA, 1992, pp. 391–401.
Ivakhnenko (b0180) 1971; 1
Wang, Su, Hu, Lin, Wang, Wang (b0160) 2011; 60
Wang, Fu, Chang (b0060) 1997; 14
Webb (b0050) 1990; 96
Wang, Chi, Chang (b0025) 2000; 43
Chen, Lu, Huang, Liu (b0030) 2015
Jang, Chen (b0090) 1997; 40
Sciubba (b0120) 1996; 35
S.P. Panse, A Numerical Investigation of Thermal-Hydraulic Characteristics in Three Dimensional Plate and Wavy Fin-Tube Heat Exchangers for Laminar and Trasitional Flow Regimes, 2005.
Webb (b0015) 1980; 1
Matos, Vargas, Laursen, Saboya (b0125) 2001; 44
Goldstein, Sparrow (b0040) 1976; 98
Sun, Zhang (b0115) 2014; 75
Hajabdollahi, Ahmadi, Dincer (b0145) 2011; 25
Hsieh, Jang (b0140) 2012; 42
Ivakhnenko (b0170) 1968; 13
Ibrahim, Gomaa (b0110) 2009; 48
Rich (b0005) 1973; 79
Wang, Tsai, Lu (b0065) 1998; 12
Nikolaev, Iba (b0175) 2006
Wang, Chi (b0020) 2000; 43
Kim, Yun, Webb (b0035) 1997; 119
Ali, Ramadhyani (b0055) 1992; 5
Matos, Vargas, Laursen, Bejan (b0130) 2004; 47
D.T. Beecher, T.J. Fagan, Effects of fin pattern on the air side heat transfer coefficient in plate finned tube heat exchangers, in: No. CONF-870620-6. Westinghouse Res. Dev. Cent., Pittsburgh, PA (USA), 1987.
Wang, Liaw (b0085) 2012; 55
Wang, Lin, Lee, Chang (b0070) 1999; 12
Wang, Hwang, Lin (b0080) 2002; 25
Rich (b0010) 1975; 81
Juan, Qian (b0150) 2014; 61
Deb, Pratap, Agarwal, Meyarivan (b0185) 2002; 6
Sciubba (10.1016/j.applthermaleng.2016.09.120_b0120) 1996; 35
Kim (10.1016/j.applthermaleng.2016.09.120_b0035) 1997; 119
Sun (10.1016/j.applthermaleng.2016.09.120_b0115) 2014; 75
Goldstein (10.1016/j.applthermaleng.2016.09.120_b0040) 1976; 98
Matos (10.1016/j.applthermaleng.2016.09.120_b0130) 2004; 47
Rich (10.1016/j.applthermaleng.2016.09.120_b0005) 1973; 79
Juan (10.1016/j.applthermaleng.2016.09.120_b0150) 2014; 61
Chen (10.1016/j.applthermaleng.2016.09.120_b0030) 2015
Hsieh (10.1016/j.applthermaleng.2016.09.120_b0140) 2012; 42
Ivakhnenko (10.1016/j.applthermaleng.2016.09.120_b0180) 1971; 1
Hajabdollahi (10.1016/j.applthermaleng.2016.09.120_b0145) 2011; 25
Nikolaev (10.1016/j.applthermaleng.2016.09.120_b0175) 2006
Ivakhnenko (10.1016/j.applthermaleng.2016.09.120_b0170) 1968; 13
Wang (10.1016/j.applthermaleng.2016.09.120_b0025) 2000; 43
10.1016/j.applthermaleng.2016.09.120_b0045
10.1016/j.applthermaleng.2016.09.120_b0165
Tao (10.1016/j.applthermaleng.2016.09.120_b0095) 2007; 46
Bilir (10.1016/j.applthermaleng.2016.09.120_b0135) 2012; 52
Wu (10.1016/j.applthermaleng.2016.09.120_b0155) 2015
Wang (10.1016/j.applthermaleng.2016.09.120_b0080) 2002; 25
Wang (10.1016/j.applthermaleng.2016.09.120_b0070) 1999; 12
Rich (10.1016/j.applthermaleng.2016.09.120_b0010) 1975; 81
Wang (10.1016/j.applthermaleng.2016.09.120_b0020) 2000; 43
Webb (10.1016/j.applthermaleng.2016.09.120_b0050) 1990; 96
Deb (10.1016/j.applthermaleng.2016.09.120_b0185) 2002; 6
Ali (10.1016/j.applthermaleng.2016.09.120_b0055) 1992; 5
Webb (10.1016/j.applthermaleng.2016.09.120_b0015) 1980; 1
10.1016/j.applthermaleng.2016.09.120_b0105
Jang (10.1016/j.applthermaleng.2016.09.120_b0090) 1997; 40
Wang (10.1016/j.applthermaleng.2016.09.120_b0085) 2012; 55
Schulenberg (10.1016/j.applthermaleng.2016.09.120_b0100) 1966; 88
Ibrahim (10.1016/j.applthermaleng.2016.09.120_b0110) 2009; 48
Wang (10.1016/j.applthermaleng.2016.09.120_b0065) 1998; 12
Wang (10.1016/j.applthermaleng.2016.09.120_b0075) 1999; 20
Matos (10.1016/j.applthermaleng.2016.09.120_b0125) 2001; 44
Wang (10.1016/j.applthermaleng.2016.09.120_b0160) 2011; 60
Wang (10.1016/j.applthermaleng.2016.09.120_b0060) 1997; 14
References_xml – volume: 25
  start-page: 424
  year: 2011
  end-page: 431
  ident: b0145
  article-title: Multi-objective optimization of plain fin-and-tube heat exchanger using evolutionary algorithm
  publication-title: J. Thermophys. Heat Transfer
– volume: 1
  start-page: 364
  year: 1971
  end-page: 378
  ident: b0180
  article-title: Polynomial theory of complex systems
  publication-title: IEEE Trans. Syst. Man. Cybern.
– volume: 47
  start-page: 1347
  year: 2004
  end-page: 1359
  ident: b0130
  article-title: Optimally staggered finned circular and elliptic tubes in forced convection
  publication-title: Int. J. Heat Mass Transfer
– volume: 14
  start-page: 174
  year: 1997
  end-page: 186
  ident: b0060
  article-title: Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers
  publication-title: Exp. Therm. Fluid Sci.
– volume: 20
  start-page: 45
  year: 1999
  end-page: 56
  ident: b0075
  article-title: Effects of waffle height on the air-side performance of wavy fin-and-tube heat exchangers
  publication-title: Heat Transfer Eng.
– volume: 35
  start-page: 517
  year: 1996
  end-page: 525
  ident: b0120
  article-title: A minimum entropy generation procedure for the discrete pseudo-optimization of finned-tube heat exchangers
  publication-title: Rev. Générale Therm.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0185
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 43
  start-page: 2693
  year: 2000
  end-page: 2700
  ident: b0025
  article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part II: Correlation
  publication-title: Int. J. Heat Mass Transfer
– volume: 13
  start-page: 43
  year: 1968
  end-page: 55
  ident: b0170
  article-title: The group method of data handling - a rival of the method of stochastic approximation
  publication-title: Soviet Autom. Control
– volume: 48
  start-page: 2148
  year: 2009
  end-page: 2158
  ident: b0110
  article-title: Thermal performance criteria of elliptic tube bundle in crossflow
  publication-title: Int. J. Therm. Sci.
– reference: D.T. Beecher, T.J. Fagan, Effects of fin pattern on the air side heat transfer coefficient in plate finned tube heat exchangers, in: No. CONF-870620-6. Westinghouse Res. Dev. Cent., Pittsburgh, PA (USA), 1987.
– volume: 43
  start-page: 2681
  year: 2000
  end-page: 2691
  ident: b0020
  article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part I: New experimental data
  publication-title: Int. J. Heat Mass Transfer
– volume: 44
  start-page: 3953
  year: 2001
  end-page: 3961
  ident: b0125
  article-title: Optimization study and heat transfer comparison of staggered circular and elliptic tubes in forced convection
  publication-title: Int. J. Heat Mass Transfer
– volume: 98
  start-page: 26
  year: 1976
  end-page: 34
  ident: b0040
  article-title: Experiments on the transfer characteristics of a corrugated fin and tube heat exchanger configuration
  publication-title: J. Heat Transfer
– volume: 40
  start-page: 3981
  year: 1997
  end-page: 3990
  ident: b0090
  article-title: Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger
  publication-title: Inf. J. Heat Mass Transfer
– volume: 75
  start-page: 45
  year: 2014
  end-page: 53
  ident: b0115
  article-title: Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology
  publication-title: Int. J. Therm. Sci.
– volume: 25
  start-page: 673
  year: 2002
  end-page: 680
  ident: b0080
  article-title: Empirical correlations for heat transfer and flow friction characteristics of herringbone wavy fin-and-tube heat exchangers
  publication-title: Int. J. Refrig.
– volume: 88
  start-page: 179
  year: 1966
  end-page: 186
  ident: b0100
  article-title: Finned elliptical tubes and their application in air-cooled heat exchangers
  publication-title: J. Eng. Ind.
– volume: 5
  start-page: 175
  year: 1992
  end-page: 193
  ident: b0055
  article-title: Experiments on convective heat transfer in corrugated channels
  publication-title: Exp. Heat Transfer Int. J.
– volume: 79
  start-page: 137
  year: 1973
  end-page: 145
  ident: b0005
  article-title: The effects of fin spacing on the heat transfer and friction performance of multi-row, smooth plate fin-and-tube heat exchangers
  publication-title: ASHRAE Trans.
– start-page: 1
  year: 2015
  end-page: 11
  ident: b0030
  article-title: Numerical estimation of heat transfer characteristics for two-row plate-finned tube heat exchangers with experimental data
  publication-title: Heat Mass Transfer
– reference: S.P. Panse, A Numerical Investigation of Thermal-Hydraulic Characteristics in Three Dimensional Plate and Wavy Fin-Tube Heat Exchangers for Laminar and Trasitional Flow Regimes, 2005.
– volume: 60
  start-page: 848
  year: 2011
  end-page: 866
  ident: b0160
  article-title: The characteristic temperature in the definition of heat transfer coefficient on the fin side surface in tube bank fin heat exchanger
  publication-title: Numer. Heat Transfer Part A Appl.
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0155
  article-title: The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm
  publication-title: Heat Mass Transfer
– volume: 1
  start-page: 33
  year: 1980
  end-page: 49
  ident: b0015
  article-title: Air-side heat transfer in finned tube heat exchangers
  publication-title: Heat Transfer Eng.
– volume: 46
  start-page: 768
  year: 2007
  end-page: 778
  ident: b0095
  article-title: Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers
  publication-title: Int. J. Therm. Sci.
– volume: 12
  start-page: 73
  year: 1999
  end-page: 89
  ident: b0070
  article-title: Investigation of wavy fin-and-tube heat exchangers: a contribution to databank
  publication-title: Exp. Heat Transfer
– reference: R.L. Webb, S.H. Jung, Air-side performance of enhanced brazed aluminum heat exchangers, in: ASHRAE Winter Meet., Anaheim, CA, USA, 1992, pp. 391–401.
– volume: 81
  start-page: 307
  year: 1975
  end-page: 317
  ident: b0010
  article-title: The effect of the number of tube rows on heat transfer performance of smooth plate fin-and-tube heat exchangers
  publication-title: ASHRAE Trans.
– volume: 42
  start-page: 101
  year: 2012
  end-page: 110
  ident: b0140
  article-title: Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method
  publication-title: Appl. Therm. Eng.
– volume: 61
  start-page: 309
  year: 2014
  end-page: 317
  ident: b0150
  article-title: Multi-objective optimization of a plain fin-and-tube heat exchanger using genetic algorithm
  publication-title: Therm. Eng.
– start-page: 15
  year: 2006
  end-page: 16
  ident: b0175
  article-title: Adaptive Learning of Polynomial Networks: Genetic Programming, Backpropagation and Bayesian Methods
– volume: 55
  start-page: 3054
  year: 2012
  end-page: 3060
  ident: b0085
  article-title: Air-side performance of herringbone wavy fin-and-tube heat exchangers under dehumidifying condition – data with larger diameter tube
  publication-title: Int. J. Heat Mass Transfer
– volume: 12
  start-page: 423
  year: 1998
  end-page: 430
  ident: b0065
  article-title: Comprehensive study of convex-louver and wavy fin-and-tube heat exchangers
  publication-title: J. Thermophys. Heat Transfer
– volume: 96
  start-page: 445
  year: 1990
  end-page: 449
  ident: b0050
  article-title: Air-side heat transfer correlations for flat and wavy plate fin-and-tube geometries
  publication-title: ASHRAE Trans.
– volume: 52
  start-page: 59
  year: 2012
  end-page: 72
  ident: b0135
  article-title: Numerical optimization of a fin-tube gas to liquid heat exchanger
  publication-title: Int. J. Therm. Sci.
– volume: 119
  start-page: 560
  year: 1997
  end-page: 567
  ident: b0035
  article-title: Heat transfer and friction correlations for wavy plate fin-and-tube heat exchangers
  publication-title: ASME J. Heat Transfer
– volume: 96
  start-page: 445
  year: 1990
  ident: 10.1016/j.applthermaleng.2016.09.120_b0050
  article-title: Air-side heat transfer correlations for flat and wavy plate fin-and-tube geometries
  publication-title: ASHRAE Trans.
– volume: 12
  start-page: 423
  year: 1998
  ident: 10.1016/j.applthermaleng.2016.09.120_b0065
  article-title: Comprehensive study of convex-louver and wavy fin-and-tube heat exchangers
  publication-title: J. Thermophys. Heat Transfer
  doi: 10.2514/2.6354
– volume: 25
  start-page: 424
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.09.120_b0145
  article-title: Multi-objective optimization of plain fin-and-tube heat exchanger using evolutionary algorithm
  publication-title: J. Thermophys. Heat Transfer
  doi: 10.2514/1.49976
– volume: 12
  start-page: 73
  year: 1999
  ident: 10.1016/j.applthermaleng.2016.09.120_b0070
  article-title: Investigation of wavy fin-and-tube heat exchangers: a contribution to databank
  publication-title: Exp. Heat Transfer
  doi: 10.1080/089161599269825
– ident: 10.1016/j.applthermaleng.2016.09.120_b0105
– volume: 40
  start-page: 3981
  year: 1997
  ident: 10.1016/j.applthermaleng.2016.09.120_b0090
  article-title: Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger
  publication-title: Inf. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(97)00047-1
– ident: 10.1016/j.applthermaleng.2016.09.120_b0165
  doi: 10.1615/IHTC13.p18.20
– volume: 42
  start-page: 101
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.09.120_b0140
  article-title: Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.03.003
– volume: 48
  start-page: 2148
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.09.120_b0110
  article-title: Thermal performance criteria of elliptic tube bundle in crossflow
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.03.011
– volume: 60
  start-page: 848
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.09.120_b0160
  article-title: The characteristic temperature in the definition of heat transfer coefficient on the fin side surface in tube bank fin heat exchanger
  publication-title: Numer. Heat Transfer Part A Appl.
  doi: 10.1080/10407782.2011.616850
– volume: 20
  start-page: 45
  year: 1999
  ident: 10.1016/j.applthermaleng.2016.09.120_b0075
  article-title: Effects of waffle height on the air-side performance of wavy fin-and-tube heat exchangers
  publication-title: Heat Transfer Eng.
  doi: 10.1080/014576399271411
– volume: 88
  start-page: 179
  year: 1966
  ident: 10.1016/j.applthermaleng.2016.09.120_b0100
  article-title: Finned elliptical tubes and their application in air-cooled heat exchangers
  publication-title: J. Eng. Ind.
  doi: 10.1115/1.3670916
– volume: 98
  start-page: 26
  year: 1976
  ident: 10.1016/j.applthermaleng.2016.09.120_b0040
  article-title: Experiments on the transfer characteristics of a corrugated fin and tube heat exchanger configuration
  publication-title: J. Heat Transfer
  doi: 10.1115/1.3450464
– volume: 43
  start-page: 2693
  year: 2000
  ident: 10.1016/j.applthermaleng.2016.09.120_b0025
  article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part II: Correlation
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(99)00333-6
– ident: 10.1016/j.applthermaleng.2016.09.120_b0045
– volume: 5
  start-page: 175
  year: 1992
  ident: 10.1016/j.applthermaleng.2016.09.120_b0055
  article-title: Experiments on convective heat transfer in corrugated channels
  publication-title: Exp. Heat Transfer Int. J.
  doi: 10.1080/08916159208946440
– volume: 81
  start-page: 307
  year: 1975
  ident: 10.1016/j.applthermaleng.2016.09.120_b0010
  article-title: The effect of the number of tube rows on heat transfer performance of smooth plate fin-and-tube heat exchangers
  publication-title: ASHRAE Trans.
– volume: 43
  start-page: 2681
  year: 2000
  ident: 10.1016/j.applthermaleng.2016.09.120_b0020
  article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part I: New experimental data
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(99)00332-4
– start-page: 15
  year: 2006
  ident: 10.1016/j.applthermaleng.2016.09.120_b0175
– volume: 13
  start-page: 43
  year: 1968
  ident: 10.1016/j.applthermaleng.2016.09.120_b0170
  article-title: The group method of data handling - a rival of the method of stochastic approximation
  publication-title: Soviet Autom. Control
– volume: 1
  start-page: 364
  year: 1971
  ident: 10.1016/j.applthermaleng.2016.09.120_b0180
  article-title: Polynomial theory of complex systems
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.1971.4308320
– volume: 47
  start-page: 1347
  year: 2004
  ident: 10.1016/j.applthermaleng.2016.09.120_b0130
  article-title: Optimally staggered finned circular and elliptic tubes in forced convection
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2003.08.015
– volume: 25
  start-page: 673
  year: 2002
  ident: 10.1016/j.applthermaleng.2016.09.120_b0080
  article-title: Empirical correlations for heat transfer and flow friction characteristics of herringbone wavy fin-and-tube heat exchangers
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(01)00049-4
– volume: 119
  start-page: 560
  year: 1997
  ident: 10.1016/j.applthermaleng.2016.09.120_b0035
  article-title: Heat transfer and friction correlations for wavy plate fin-and-tube heat exchangers
  publication-title: ASME J. Heat Transfer
  doi: 10.1115/1.2824141
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.applthermaleng.2016.09.120_b0185
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 75
  start-page: 45
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.09.120_b0115
  article-title: Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2013.07.021
– start-page: 1
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.09.120_b0155
  article-title: The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm
  publication-title: Heat Mass Transfer
– volume: 35
  start-page: 517
  year: 1996
  ident: 10.1016/j.applthermaleng.2016.09.120_b0120
  article-title: A minimum entropy generation procedure for the discrete pseudo-optimization of finned-tube heat exchangers
  publication-title: Rev. Générale Therm.
  doi: 10.1016/S0035-3159(99)80079-8
– volume: 61
  start-page: 309
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.09.120_b0150
  article-title: Multi-objective optimization of a plain fin-and-tube heat exchanger using genetic algorithm
  publication-title: Therm. Eng.
  doi: 10.1134/S004060151404003X
– volume: 55
  start-page: 3054
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.09.120_b0085
  article-title: Air-side performance of herringbone wavy fin-and-tube heat exchangers under dehumidifying condition – data with larger diameter tube
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.02.025
– volume: 52
  start-page: 59
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.09.120_b0135
  article-title: Numerical optimization of a fin-tube gas to liquid heat exchanger
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.09.010
– start-page: 1
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.09.120_b0030
  article-title: Numerical estimation of heat transfer characteristics for two-row plate-finned tube heat exchangers with experimental data
  publication-title: Heat Mass Transfer
– volume: 44
  start-page: 3953
  year: 2001
  ident: 10.1016/j.applthermaleng.2016.09.120_b0125
  article-title: Optimization study and heat transfer comparison of staggered circular and elliptic tubes in forced convection
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(01)00006-0
– volume: 1
  start-page: 33
  year: 1980
  ident: 10.1016/j.applthermaleng.2016.09.120_b0015
  article-title: Air-side heat transfer in finned tube heat exchangers
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457638008939561
– volume: 46
  start-page: 768
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.09.120_b0095
  article-title: Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2006.10.004
– volume: 79
  start-page: 137
  year: 1973
  ident: 10.1016/j.applthermaleng.2016.09.120_b0005
  article-title: The effects of fin spacing on the heat transfer and friction performance of multi-row, smooth plate fin-and-tube heat exchangers
  publication-title: ASHRAE Trans.
– volume: 14
  start-page: 174
  year: 1997
  ident: 10.1016/j.applthermaleng.2016.09.120_b0060
  article-title: Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(96)00056-8
SSID ssj0012874
Score 2.514182
Snippet [Display omitted] •Multi objective optimization of wavy fin-and-elliptical tube heat exchangers has been performed.•The results obtained from CFD simulations...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms Elliptical tube
GMDH
Multi objective optimization
NSGA-II
Wavy fin
Title Modeling and Pareto based multi-objective optimization of wavy fin-and-elliptical tube heat exchangers using CFD and NSGA-II algorithm
URI https://dx.doi.org/10.1016/j.applthermaleng.2016.09.120
Volume 111
WOSCitedRecordID wos000391897200032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKh9B4QFzFuMkPe4uMkjhpEvGAKraxIlRN2pD6FjmxTVuapOrSrvAD-Gn8Lnxi58IGUkHiJUrT-jju-XLO8cm5IHSYhEnIuecRxgOPeFTAIyUDwnx1yiGIRycKfwzG43Ayic56vR91LsxmEeR5uN1Gy__KanVNMRtSZ_-C3Q1RdUGdK6aro2K7Ou7EeOhutqhTD8-giW1hga7iOniQFMlcCzmrUOIiM3mYYDResc1XS85yokYSKNS51I7ucp0IsChLS2xNovCltdYRAydH1Tzj8_dDMhpZbPG5WM3KadY1emtLF2zNTNETbQ3EjqN8A7WVjljGNpBpUzlqiynLMsZbTbkq1t9YnonpSn-vTFvZ6JVzJmdfprpHlXXKMpO2ZVwaDsS-Ep3-bKQw9SOFGyOFazFtPmpBS83vtc6muiDSDXWgPRPz1xAMYNaolggBfQOobuu4dqsG61f_17RjE7NYh8PN41-pxUAttqNYUbuF9tzAj8I-2huOjicfmvdZ0FWg2vqbhd1Bh22k4Z_v7vfGUscAuriP7pmdCx5qxD1APZE_RHc79Swfoe819rBiIdbYwxX28DXs4S72cCExYA_fxB4G7GHAHm6xhyvsYYW9ah6DPdxg7zH6dHJ88e6UmEYfJKXULokj1K7bG9DAkVyEkg5EknoOk5I6kgrheIlLJeXMEw4LGWNOwFxuC-GBPhm4kj5B_bzIxVOE7VCENE1t6ksJkicaBEw4gnOXJgFn_gF6U_-jcWqq4EMzlkW8C38PkN-MXupqMDuOe1szLzaWrbZYY4XUnSg8-8eZn6P99gl7gfrlai1eotvpppxdrl4ZmP4EwDvXnQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+Pareto+based+multi-objective+optimization+of+wavy+fin-and-elliptical+tube+heat+exchangers+using+CFD+and+NSGA-II+algorithm&rft.jtitle=Applied+thermal+engineering&rft.au=Darvish+Damavandi%2C+Mohammad&rft.au=Forouzanmehr%2C+Mostafa&rft.au=Safikhani%2C+Hamed&rft.date=2017-01-25&rft.issn=1359-4311&rft.volume=111&rft.spage=325&rft.epage=339&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.09.120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2016_09_120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon