Modeling and Pareto based multi-objective optimization of wavy fin-and-elliptical tube heat exchangers using CFD and NSGA-II algorithm
[Display omitted] •Multi objective optimization of wavy fin-and-elliptical tube heat exchangers has been performed.•The results obtained from CFD simulations have been used as inputs for the GMDH type artificial neural networks.•Four parameters have been chosen as design variables to optimize two ob...
Uloženo v:
| Vydáno v: | Applied thermal engineering Ročník 111; s. 325 - 339 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
25.01.2017
|
| Témata: | |
| ISSN: | 1359-4311 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•Multi objective optimization of wavy fin-and-elliptical tube heat exchangers has been performed.•The results obtained from CFD simulations have been used as inputs for the GMDH type artificial neural networks.•Four parameters have been chosen as design variables to optimize two objective functions.•From among the optimal points, several points with unique features have been introduced and explained.
In this paper, a multi-objective optimization (MOO) of wavy fin-and-elliptical tube heat exchangers has been performed by using Computational Fluid Dynamics (CFD), Artificial Neural Network (ANN) of Group Method of Data Handling (GMDH) type, and Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This multi-objective optimization is aimed at achieving maximum heat transfer and minimum pressure drop. For this purpose, the considered objective functions, Colburn factor (j) and friction factor (f) are optimized with regards to the design variables (four variables). The CFD results are validated by means of experimental findings. Polynomials of the GMDH type neural network are formed based on the CFD results. These polynomials relate the objective functions to the design variables. Ultimately, the NSGA-II algorithm obtains the Pareto optimal points by using the input data from the neural network. From among the optimal points, several points with unique features are introduced and explained. The investigation of optimal points indicates that with a slight reduction in heat transfer, pressure drop can be reduced considerably. By combining and simultaneously using the CFD, neural network and NSGA-II optimization algorithm, very useful and valuable results are obtained; which otherwise couldn’t be achieved without the mutual use of these techniques. |
|---|---|
| AbstractList | [Display omitted]
•Multi objective optimization of wavy fin-and-elliptical tube heat exchangers has been performed.•The results obtained from CFD simulations have been used as inputs for the GMDH type artificial neural networks.•Four parameters have been chosen as design variables to optimize two objective functions.•From among the optimal points, several points with unique features have been introduced and explained.
In this paper, a multi-objective optimization (MOO) of wavy fin-and-elliptical tube heat exchangers has been performed by using Computational Fluid Dynamics (CFD), Artificial Neural Network (ANN) of Group Method of Data Handling (GMDH) type, and Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This multi-objective optimization is aimed at achieving maximum heat transfer and minimum pressure drop. For this purpose, the considered objective functions, Colburn factor (j) and friction factor (f) are optimized with regards to the design variables (four variables). The CFD results are validated by means of experimental findings. Polynomials of the GMDH type neural network are formed based on the CFD results. These polynomials relate the objective functions to the design variables. Ultimately, the NSGA-II algorithm obtains the Pareto optimal points by using the input data from the neural network. From among the optimal points, several points with unique features are introduced and explained. The investigation of optimal points indicates that with a slight reduction in heat transfer, pressure drop can be reduced considerably. By combining and simultaneously using the CFD, neural network and NSGA-II optimization algorithm, very useful and valuable results are obtained; which otherwise couldn’t be achieved without the mutual use of these techniques. |
| Author | Forouzanmehr, Mostafa Darvish Damavandi, Mohammad Safikhani, Hamed |
| Author_xml | – sequence: 1 givenname: Mohammad surname: Darvish Damavandi fullname: Darvish Damavandi, Mohammad organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 2 givenname: Mostafa surname: Forouzanmehr fullname: Forouzanmehr, Mostafa organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 3 givenname: Hamed surname: Safikhani fullname: Safikhani, Hamed email: h-safikhani@araku.ac.ir organization: Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran |
| BookMark | eNqNkMtOwzAQRb0AifL4By_YJthxSBuJDRQKlXhJwNqaOOPWlWNXtlseH8B3k1I2sGI10ozuuZqzT3acd0jIMWc5Z7w6WeSwXNo0x9CBRTfLi36bszrnBdshAy5O66wUnO-R_RgXjPFiNCwH5PPOt2iNm1FwLX2EgMnTBiK2tFvZZDLfLFAls0bql8l05gOS8Y56TV9h_U61cVmfzNBa098VWJpWDdI5QqL4pubgZhgiXcVNx3hy-d1z_3R9nk2nFOzMB5Pm3SHZ1WAjHv3MA_IyuXoe32S3D9fT8fltpoRgKeNY11VZiSHXLY60qLBRJQetBdcCkZdNIbRooUQOIwDgQyhahlj2ioZVocUBudhyVfAxBtRSmfT9UQpgrORMbmzKhfxtU25sSlbL3mYPOfsDWQbTQXj_b3yyjWP_6NpgkFEZdApbE3rVsvXmf6AvqNiiyg |
| CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2022_106611 crossref_primary_10_1016_j_applthermaleng_2021_117146 crossref_primary_10_1016_j_jobe_2024_111388 crossref_primary_10_1016_j_est_2023_106916 crossref_primary_10_1080_01457632_2020_1785696 crossref_primary_10_1007_s11630_019_1188_3 crossref_primary_10_1016_j_applthermaleng_2017_02_100 crossref_primary_10_1016_j_ijthermalsci_2017_08_016 crossref_primary_10_3390_en12234441 crossref_primary_10_1002_htj_21922 crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_006 crossref_primary_10_1016_j_applthermaleng_2024_122373 crossref_primary_10_1016_j_tsep_2021_101151 crossref_primary_10_1016_j_ijthermalsci_2022_107830 crossref_primary_10_1007_s10462_023_10526_z crossref_primary_10_1016_j_ijthermalsci_2021_107432 crossref_primary_10_3390_pr9010009 crossref_primary_10_1016_j_enganabound_2022_10_013 crossref_primary_10_1016_j_ijthermalsci_2023_108446 crossref_primary_10_1016_j_rser_2020_110470 crossref_primary_10_1155_2022_5312590 crossref_primary_10_2298_TSCI210718322C crossref_primary_10_1016_j_applthermaleng_2017_05_046 crossref_primary_10_1002_er_8401 crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_138 crossref_primary_10_1186_s44147_022_00085_5 crossref_primary_10_3390_en14196056 crossref_primary_10_1016_j_est_2021_103310 crossref_primary_10_3390_fluids4040205 crossref_primary_10_3390_en11081959 crossref_primary_10_1016_j_applthermaleng_2019_114469 crossref_primary_10_1007_s00231_018_2430_3 crossref_primary_10_1177_0954408918779232 crossref_primary_10_1016_j_ijthermalsci_2021_106867 crossref_primary_10_1016_j_applthermaleng_2019_02_050 crossref_primary_10_1016_j_energy_2018_07_002 crossref_primary_10_1080_15567036_2021_1980153 crossref_primary_10_1016_j_applthermaleng_2024_124949 crossref_primary_10_3390_math9243235 crossref_primary_10_1080_10618562_2020_1766031 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119923 crossref_primary_10_1080_15567036_2020_1826600 crossref_primary_10_1007_s40430_016_0698_0 crossref_primary_10_1016_j_scitotenv_2018_04_411 crossref_primary_10_1016_j_mtcomm_2025_111721 crossref_primary_10_1016_j_applthermaleng_2025_126061 crossref_primary_10_1016_j_applthermaleng_2017_05_112 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121415 crossref_primary_10_2514_1_T7193 crossref_primary_10_1016_j_ijthermalsci_2019_106211 crossref_primary_10_1016_j_enbuild_2022_111955 crossref_primary_10_1007_s11431_017_9222_7 crossref_primary_10_1007_s11831_019_09318_y crossref_primary_10_1016_j_applthermaleng_2019_02_001 crossref_primary_10_1016_j_icheatmasstransfer_2024_107248 crossref_primary_10_1007_s00158_017_1857_3 crossref_primary_10_1007_s12182_019_00391_3 crossref_primary_10_1016_j_applthermaleng_2020_115068 crossref_primary_10_1177_0309524X231217726 crossref_primary_10_1016_j_applthermaleng_2020_115341 crossref_primary_10_1208_s12249_022_02379_6 crossref_primary_10_1016_j_applthermaleng_2020_116273 crossref_primary_10_1016_j_applthermaleng_2022_119220 crossref_primary_10_1016_j_csite_2025_107090 crossref_primary_10_1134_S0040601523080086 crossref_primary_10_1111_jfpp_15365 crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_093 crossref_primary_10_1080_01457632_2022_2068218 crossref_primary_10_3390_machines11020231 crossref_primary_10_1016_j_icheatmasstransfer_2024_107610 crossref_primary_10_1016_j_applthermaleng_2019_01_083 crossref_primary_10_1016_j_ijthermalsci_2023_108460 crossref_primary_10_1016_j_applthermaleng_2022_118368 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118847 crossref_primary_10_1016_j_applthermaleng_2022_118965 crossref_primary_10_1016_j_applthermaleng_2021_117414 crossref_primary_10_1177_01423312211023017 crossref_primary_10_1007_s10915_025_02947_5 crossref_primary_10_1016_j_applthermaleng_2017_12_125 crossref_primary_10_1080_01457632_2017_1363628 crossref_primary_10_1016_j_apenergy_2017_05_072 crossref_primary_10_1016_j_applthermaleng_2025_126446 crossref_primary_10_1007_s11431_019_9553_0 crossref_primary_10_1016_j_icheatmasstransfer_2025_109665 crossref_primary_10_1002_ese3_897 crossref_primary_10_1016_j_compbiolchem_2017_06_002 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122903 crossref_primary_10_1016_j_rinp_2023_106720 crossref_primary_10_3390_su151511587 crossref_primary_10_1007_s10973_019_08302_9 |
| Cites_doi | 10.2514/2.6354 10.2514/1.49976 10.1080/089161599269825 10.1016/S0017-9310(97)00047-1 10.1615/IHTC13.p18.20 10.1016/j.applthermaleng.2012.03.003 10.1016/j.ijthermalsci.2009.03.011 10.1080/10407782.2011.616850 10.1080/014576399271411 10.1115/1.3670916 10.1115/1.3450464 10.1016/S0017-9310(99)00333-6 10.1080/08916159208946440 10.1016/S0017-9310(99)00332-4 10.1109/TSMC.1971.4308320 10.1016/j.ijheatmasstransfer.2003.08.015 10.1016/S0140-7007(01)00049-4 10.1115/1.2824141 10.1109/4235.996017 10.1016/j.ijthermalsci.2013.07.021 10.1016/S0035-3159(99)80079-8 10.1134/S004060151404003X 10.1016/j.ijheatmasstransfer.2012.02.025 10.1016/j.ijthermalsci.2011.09.010 10.1016/S0017-9310(01)00006-0 10.1080/01457638008939561 10.1016/j.ijthermalsci.2006.10.004 10.1016/S0894-1777(96)00056-8 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.applthermaleng.2016.09.120 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 339 |
| ExternalDocumentID | 10_1016_j_applthermaleng_2016_09_120 S1359431116318191 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- 9DU AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG FGOYB HZ~ R2- SEW ~HD |
| ID | FETCH-LOGICAL-c330t-1e99646371fde8f36ebc41aff31f3ee14b23f3da4e1a8aaa17a2d0ee4101762f3 |
| ISICitedReferencesCount | 110 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391897200032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-4311 |
| IngestDate | Tue Nov 18 21:26:36 EST 2025 Sat Nov 29 03:47:42 EST 2025 Mon Oct 07 06:11:39 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | NSGA-II Elliptical tube GMDH Multi objective optimization Wavy fin |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-1e99646371fde8f36ebc41aff31f3ee14b23f3da4e1a8aaa17a2d0ee4101762f3 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_applthermaleng_2016_09_120 crossref_primary_10_1016_j_applthermaleng_2016_09_120 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_09_120 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-25 |
| PublicationDateYYYYMMDD | 2017-01-25 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bilir, Ilken, Erek (b0135) 2012; 52 Schulenberg (b0100) 1966; 88 Tao, He, Huang, Wu, Tao (b0095) 2007; 46 Wu, Liu, Zhao, Lu, Song (b0155) 2015 Wang, Chang, Chiou (b0075) 1999; 20 R.L. Webb, S.H. Jung, Air-side performance of enhanced brazed aluminum heat exchangers, in: ASHRAE Winter Meet., Anaheim, CA, USA, 1992, pp. 391–401. Ivakhnenko (b0180) 1971; 1 Wang, Su, Hu, Lin, Wang, Wang (b0160) 2011; 60 Wang, Fu, Chang (b0060) 1997; 14 Webb (b0050) 1990; 96 Wang, Chi, Chang (b0025) 2000; 43 Chen, Lu, Huang, Liu (b0030) 2015 Jang, Chen (b0090) 1997; 40 Sciubba (b0120) 1996; 35 S.P. Panse, A Numerical Investigation of Thermal-Hydraulic Characteristics in Three Dimensional Plate and Wavy Fin-Tube Heat Exchangers for Laminar and Trasitional Flow Regimes, 2005. Webb (b0015) 1980; 1 Matos, Vargas, Laursen, Saboya (b0125) 2001; 44 Goldstein, Sparrow (b0040) 1976; 98 Sun, Zhang (b0115) 2014; 75 Hajabdollahi, Ahmadi, Dincer (b0145) 2011; 25 Hsieh, Jang (b0140) 2012; 42 Ivakhnenko (b0170) 1968; 13 Ibrahim, Gomaa (b0110) 2009; 48 Rich (b0005) 1973; 79 Wang, Tsai, Lu (b0065) 1998; 12 Nikolaev, Iba (b0175) 2006 Wang, Chi (b0020) 2000; 43 Kim, Yun, Webb (b0035) 1997; 119 Ali, Ramadhyani (b0055) 1992; 5 Matos, Vargas, Laursen, Bejan (b0130) 2004; 47 D.T. Beecher, T.J. Fagan, Effects of fin pattern on the air side heat transfer coefficient in plate finned tube heat exchangers, in: No. CONF-870620-6. Westinghouse Res. Dev. Cent., Pittsburgh, PA (USA), 1987. Wang, Liaw (b0085) 2012; 55 Wang, Lin, Lee, Chang (b0070) 1999; 12 Wang, Hwang, Lin (b0080) 2002; 25 Rich (b0010) 1975; 81 Juan, Qian (b0150) 2014; 61 Deb, Pratap, Agarwal, Meyarivan (b0185) 2002; 6 Sciubba (10.1016/j.applthermaleng.2016.09.120_b0120) 1996; 35 Kim (10.1016/j.applthermaleng.2016.09.120_b0035) 1997; 119 Sun (10.1016/j.applthermaleng.2016.09.120_b0115) 2014; 75 Goldstein (10.1016/j.applthermaleng.2016.09.120_b0040) 1976; 98 Matos (10.1016/j.applthermaleng.2016.09.120_b0130) 2004; 47 Rich (10.1016/j.applthermaleng.2016.09.120_b0005) 1973; 79 Juan (10.1016/j.applthermaleng.2016.09.120_b0150) 2014; 61 Chen (10.1016/j.applthermaleng.2016.09.120_b0030) 2015 Hsieh (10.1016/j.applthermaleng.2016.09.120_b0140) 2012; 42 Ivakhnenko (10.1016/j.applthermaleng.2016.09.120_b0180) 1971; 1 Hajabdollahi (10.1016/j.applthermaleng.2016.09.120_b0145) 2011; 25 Nikolaev (10.1016/j.applthermaleng.2016.09.120_b0175) 2006 Ivakhnenko (10.1016/j.applthermaleng.2016.09.120_b0170) 1968; 13 Wang (10.1016/j.applthermaleng.2016.09.120_b0025) 2000; 43 10.1016/j.applthermaleng.2016.09.120_b0045 10.1016/j.applthermaleng.2016.09.120_b0165 Tao (10.1016/j.applthermaleng.2016.09.120_b0095) 2007; 46 Bilir (10.1016/j.applthermaleng.2016.09.120_b0135) 2012; 52 Wu (10.1016/j.applthermaleng.2016.09.120_b0155) 2015 Wang (10.1016/j.applthermaleng.2016.09.120_b0080) 2002; 25 Wang (10.1016/j.applthermaleng.2016.09.120_b0070) 1999; 12 Rich (10.1016/j.applthermaleng.2016.09.120_b0010) 1975; 81 Wang (10.1016/j.applthermaleng.2016.09.120_b0020) 2000; 43 Webb (10.1016/j.applthermaleng.2016.09.120_b0050) 1990; 96 Deb (10.1016/j.applthermaleng.2016.09.120_b0185) 2002; 6 Ali (10.1016/j.applthermaleng.2016.09.120_b0055) 1992; 5 Webb (10.1016/j.applthermaleng.2016.09.120_b0015) 1980; 1 10.1016/j.applthermaleng.2016.09.120_b0105 Jang (10.1016/j.applthermaleng.2016.09.120_b0090) 1997; 40 Wang (10.1016/j.applthermaleng.2016.09.120_b0085) 2012; 55 Schulenberg (10.1016/j.applthermaleng.2016.09.120_b0100) 1966; 88 Ibrahim (10.1016/j.applthermaleng.2016.09.120_b0110) 2009; 48 Wang (10.1016/j.applthermaleng.2016.09.120_b0065) 1998; 12 Wang (10.1016/j.applthermaleng.2016.09.120_b0075) 1999; 20 Matos (10.1016/j.applthermaleng.2016.09.120_b0125) 2001; 44 Wang (10.1016/j.applthermaleng.2016.09.120_b0160) 2011; 60 Wang (10.1016/j.applthermaleng.2016.09.120_b0060) 1997; 14 |
| References_xml | – volume: 25 start-page: 424 year: 2011 end-page: 431 ident: b0145 article-title: Multi-objective optimization of plain fin-and-tube heat exchanger using evolutionary algorithm publication-title: J. Thermophys. Heat Transfer – volume: 1 start-page: 364 year: 1971 end-page: 378 ident: b0180 article-title: Polynomial theory of complex systems publication-title: IEEE Trans. Syst. Man. Cybern. – volume: 47 start-page: 1347 year: 2004 end-page: 1359 ident: b0130 article-title: Optimally staggered finned circular and elliptic tubes in forced convection publication-title: Int. J. Heat Mass Transfer – volume: 14 start-page: 174 year: 1997 end-page: 186 ident: b0060 article-title: Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers publication-title: Exp. Therm. Fluid Sci. – volume: 20 start-page: 45 year: 1999 end-page: 56 ident: b0075 article-title: Effects of waffle height on the air-side performance of wavy fin-and-tube heat exchangers publication-title: Heat Transfer Eng. – volume: 35 start-page: 517 year: 1996 end-page: 525 ident: b0120 article-title: A minimum entropy generation procedure for the discrete pseudo-optimization of finned-tube heat exchangers publication-title: Rev. Générale Therm. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0185 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 43 start-page: 2693 year: 2000 end-page: 2700 ident: b0025 article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part II: Correlation publication-title: Int. J. Heat Mass Transfer – volume: 13 start-page: 43 year: 1968 end-page: 55 ident: b0170 article-title: The group method of data handling - a rival of the method of stochastic approximation publication-title: Soviet Autom. Control – volume: 48 start-page: 2148 year: 2009 end-page: 2158 ident: b0110 article-title: Thermal performance criteria of elliptic tube bundle in crossflow publication-title: Int. J. Therm. Sci. – reference: D.T. Beecher, T.J. Fagan, Effects of fin pattern on the air side heat transfer coefficient in plate finned tube heat exchangers, in: No. CONF-870620-6. Westinghouse Res. Dev. Cent., Pittsburgh, PA (USA), 1987. – volume: 43 start-page: 2681 year: 2000 end-page: 2691 ident: b0020 article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part I: New experimental data publication-title: Int. J. Heat Mass Transfer – volume: 44 start-page: 3953 year: 2001 end-page: 3961 ident: b0125 article-title: Optimization study and heat transfer comparison of staggered circular and elliptic tubes in forced convection publication-title: Int. J. Heat Mass Transfer – volume: 98 start-page: 26 year: 1976 end-page: 34 ident: b0040 article-title: Experiments on the transfer characteristics of a corrugated fin and tube heat exchanger configuration publication-title: J. Heat Transfer – volume: 40 start-page: 3981 year: 1997 end-page: 3990 ident: b0090 article-title: Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger publication-title: Inf. J. Heat Mass Transfer – volume: 75 start-page: 45 year: 2014 end-page: 53 ident: b0115 article-title: Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology publication-title: Int. J. Therm. Sci. – volume: 25 start-page: 673 year: 2002 end-page: 680 ident: b0080 article-title: Empirical correlations for heat transfer and flow friction characteristics of herringbone wavy fin-and-tube heat exchangers publication-title: Int. J. Refrig. – volume: 88 start-page: 179 year: 1966 end-page: 186 ident: b0100 article-title: Finned elliptical tubes and their application in air-cooled heat exchangers publication-title: J. Eng. Ind. – volume: 5 start-page: 175 year: 1992 end-page: 193 ident: b0055 article-title: Experiments on convective heat transfer in corrugated channels publication-title: Exp. Heat Transfer Int. J. – volume: 79 start-page: 137 year: 1973 end-page: 145 ident: b0005 article-title: The effects of fin spacing on the heat transfer and friction performance of multi-row, smooth plate fin-and-tube heat exchangers publication-title: ASHRAE Trans. – start-page: 1 year: 2015 end-page: 11 ident: b0030 article-title: Numerical estimation of heat transfer characteristics for two-row plate-finned tube heat exchangers with experimental data publication-title: Heat Mass Transfer – reference: S.P. Panse, A Numerical Investigation of Thermal-Hydraulic Characteristics in Three Dimensional Plate and Wavy Fin-Tube Heat Exchangers for Laminar and Trasitional Flow Regimes, 2005. – volume: 60 start-page: 848 year: 2011 end-page: 866 ident: b0160 article-title: The characteristic temperature in the definition of heat transfer coefficient on the fin side surface in tube bank fin heat exchanger publication-title: Numer. Heat Transfer Part A Appl. – start-page: 1 year: 2015 end-page: 9 ident: b0155 article-title: The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm publication-title: Heat Mass Transfer – volume: 1 start-page: 33 year: 1980 end-page: 49 ident: b0015 article-title: Air-side heat transfer in finned tube heat exchangers publication-title: Heat Transfer Eng. – volume: 46 start-page: 768 year: 2007 end-page: 778 ident: b0095 article-title: Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers publication-title: Int. J. Therm. Sci. – volume: 12 start-page: 73 year: 1999 end-page: 89 ident: b0070 article-title: Investigation of wavy fin-and-tube heat exchangers: a contribution to databank publication-title: Exp. Heat Transfer – reference: R.L. Webb, S.H. Jung, Air-side performance of enhanced brazed aluminum heat exchangers, in: ASHRAE Winter Meet., Anaheim, CA, USA, 1992, pp. 391–401. – volume: 81 start-page: 307 year: 1975 end-page: 317 ident: b0010 article-title: The effect of the number of tube rows on heat transfer performance of smooth plate fin-and-tube heat exchangers publication-title: ASHRAE Trans. – volume: 42 start-page: 101 year: 2012 end-page: 110 ident: b0140 article-title: Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method publication-title: Appl. Therm. Eng. – volume: 61 start-page: 309 year: 2014 end-page: 317 ident: b0150 article-title: Multi-objective optimization of a plain fin-and-tube heat exchanger using genetic algorithm publication-title: Therm. Eng. – start-page: 15 year: 2006 end-page: 16 ident: b0175 article-title: Adaptive Learning of Polynomial Networks: Genetic Programming, Backpropagation and Bayesian Methods – volume: 55 start-page: 3054 year: 2012 end-page: 3060 ident: b0085 article-title: Air-side performance of herringbone wavy fin-and-tube heat exchangers under dehumidifying condition – data with larger diameter tube publication-title: Int. J. Heat Mass Transfer – volume: 12 start-page: 423 year: 1998 end-page: 430 ident: b0065 article-title: Comprehensive study of convex-louver and wavy fin-and-tube heat exchangers publication-title: J. Thermophys. Heat Transfer – volume: 96 start-page: 445 year: 1990 end-page: 449 ident: b0050 article-title: Air-side heat transfer correlations for flat and wavy plate fin-and-tube geometries publication-title: ASHRAE Trans. – volume: 52 start-page: 59 year: 2012 end-page: 72 ident: b0135 article-title: Numerical optimization of a fin-tube gas to liquid heat exchanger publication-title: Int. J. Therm. Sci. – volume: 119 start-page: 560 year: 1997 end-page: 567 ident: b0035 article-title: Heat transfer and friction correlations for wavy plate fin-and-tube heat exchangers publication-title: ASME J. Heat Transfer – volume: 96 start-page: 445 year: 1990 ident: 10.1016/j.applthermaleng.2016.09.120_b0050 article-title: Air-side heat transfer correlations for flat and wavy plate fin-and-tube geometries publication-title: ASHRAE Trans. – volume: 12 start-page: 423 year: 1998 ident: 10.1016/j.applthermaleng.2016.09.120_b0065 article-title: Comprehensive study of convex-louver and wavy fin-and-tube heat exchangers publication-title: J. Thermophys. Heat Transfer doi: 10.2514/2.6354 – volume: 25 start-page: 424 year: 2011 ident: 10.1016/j.applthermaleng.2016.09.120_b0145 article-title: Multi-objective optimization of plain fin-and-tube heat exchanger using evolutionary algorithm publication-title: J. Thermophys. Heat Transfer doi: 10.2514/1.49976 – volume: 12 start-page: 73 year: 1999 ident: 10.1016/j.applthermaleng.2016.09.120_b0070 article-title: Investigation of wavy fin-and-tube heat exchangers: a contribution to databank publication-title: Exp. Heat Transfer doi: 10.1080/089161599269825 – ident: 10.1016/j.applthermaleng.2016.09.120_b0105 – volume: 40 start-page: 3981 year: 1997 ident: 10.1016/j.applthermaleng.2016.09.120_b0090 article-title: Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger publication-title: Inf. J. Heat Mass Transfer doi: 10.1016/S0017-9310(97)00047-1 – ident: 10.1016/j.applthermaleng.2016.09.120_b0165 doi: 10.1615/IHTC13.p18.20 – volume: 42 start-page: 101 year: 2012 ident: 10.1016/j.applthermaleng.2016.09.120_b0140 article-title: Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.03.003 – volume: 48 start-page: 2148 year: 2009 ident: 10.1016/j.applthermaleng.2016.09.120_b0110 article-title: Thermal performance criteria of elliptic tube bundle in crossflow publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.03.011 – volume: 60 start-page: 848 year: 2011 ident: 10.1016/j.applthermaleng.2016.09.120_b0160 article-title: The characteristic temperature in the definition of heat transfer coefficient on the fin side surface in tube bank fin heat exchanger publication-title: Numer. Heat Transfer Part A Appl. doi: 10.1080/10407782.2011.616850 – volume: 20 start-page: 45 year: 1999 ident: 10.1016/j.applthermaleng.2016.09.120_b0075 article-title: Effects of waffle height on the air-side performance of wavy fin-and-tube heat exchangers publication-title: Heat Transfer Eng. doi: 10.1080/014576399271411 – volume: 88 start-page: 179 year: 1966 ident: 10.1016/j.applthermaleng.2016.09.120_b0100 article-title: Finned elliptical tubes and their application in air-cooled heat exchangers publication-title: J. Eng. Ind. doi: 10.1115/1.3670916 – volume: 98 start-page: 26 year: 1976 ident: 10.1016/j.applthermaleng.2016.09.120_b0040 article-title: Experiments on the transfer characteristics of a corrugated fin and tube heat exchanger configuration publication-title: J. Heat Transfer doi: 10.1115/1.3450464 – volume: 43 start-page: 2693 year: 2000 ident: 10.1016/j.applthermaleng.2016.09.120_b0025 article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part II: Correlation publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(99)00333-6 – ident: 10.1016/j.applthermaleng.2016.09.120_b0045 – volume: 5 start-page: 175 year: 1992 ident: 10.1016/j.applthermaleng.2016.09.120_b0055 article-title: Experiments on convective heat transfer in corrugated channels publication-title: Exp. Heat Transfer Int. J. doi: 10.1080/08916159208946440 – volume: 81 start-page: 307 year: 1975 ident: 10.1016/j.applthermaleng.2016.09.120_b0010 article-title: The effect of the number of tube rows on heat transfer performance of smooth plate fin-and-tube heat exchangers publication-title: ASHRAE Trans. – volume: 43 start-page: 2681 year: 2000 ident: 10.1016/j.applthermaleng.2016.09.120_b0020 article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part I: New experimental data publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(99)00332-4 – start-page: 15 year: 2006 ident: 10.1016/j.applthermaleng.2016.09.120_b0175 – volume: 13 start-page: 43 year: 1968 ident: 10.1016/j.applthermaleng.2016.09.120_b0170 article-title: The group method of data handling - a rival of the method of stochastic approximation publication-title: Soviet Autom. Control – volume: 1 start-page: 364 year: 1971 ident: 10.1016/j.applthermaleng.2016.09.120_b0180 article-title: Polynomial theory of complex systems publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/TSMC.1971.4308320 – volume: 47 start-page: 1347 year: 2004 ident: 10.1016/j.applthermaleng.2016.09.120_b0130 article-title: Optimally staggered finned circular and elliptic tubes in forced convection publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2003.08.015 – volume: 25 start-page: 673 year: 2002 ident: 10.1016/j.applthermaleng.2016.09.120_b0080 article-title: Empirical correlations for heat transfer and flow friction characteristics of herringbone wavy fin-and-tube heat exchangers publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(01)00049-4 – volume: 119 start-page: 560 year: 1997 ident: 10.1016/j.applthermaleng.2016.09.120_b0035 article-title: Heat transfer and friction correlations for wavy plate fin-and-tube heat exchangers publication-title: ASME J. Heat Transfer doi: 10.1115/1.2824141 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.applthermaleng.2016.09.120_b0185 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 75 start-page: 45 year: 2014 ident: 10.1016/j.applthermaleng.2016.09.120_b0115 article-title: Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2013.07.021 – start-page: 1 year: 2015 ident: 10.1016/j.applthermaleng.2016.09.120_b0155 article-title: The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm publication-title: Heat Mass Transfer – volume: 35 start-page: 517 year: 1996 ident: 10.1016/j.applthermaleng.2016.09.120_b0120 article-title: A minimum entropy generation procedure for the discrete pseudo-optimization of finned-tube heat exchangers publication-title: Rev. Générale Therm. doi: 10.1016/S0035-3159(99)80079-8 – volume: 61 start-page: 309 year: 2014 ident: 10.1016/j.applthermaleng.2016.09.120_b0150 article-title: Multi-objective optimization of a plain fin-and-tube heat exchanger using genetic algorithm publication-title: Therm. Eng. doi: 10.1134/S004060151404003X – volume: 55 start-page: 3054 year: 2012 ident: 10.1016/j.applthermaleng.2016.09.120_b0085 article-title: Air-side performance of herringbone wavy fin-and-tube heat exchangers under dehumidifying condition – data with larger diameter tube publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.02.025 – volume: 52 start-page: 59 year: 2012 ident: 10.1016/j.applthermaleng.2016.09.120_b0135 article-title: Numerical optimization of a fin-tube gas to liquid heat exchanger publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.09.010 – start-page: 1 year: 2015 ident: 10.1016/j.applthermaleng.2016.09.120_b0030 article-title: Numerical estimation of heat transfer characteristics for two-row plate-finned tube heat exchangers with experimental data publication-title: Heat Mass Transfer – volume: 44 start-page: 3953 year: 2001 ident: 10.1016/j.applthermaleng.2016.09.120_b0125 article-title: Optimization study and heat transfer comparison of staggered circular and elliptic tubes in forced convection publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(01)00006-0 – volume: 1 start-page: 33 year: 1980 ident: 10.1016/j.applthermaleng.2016.09.120_b0015 article-title: Air-side heat transfer in finned tube heat exchangers publication-title: Heat Transfer Eng. doi: 10.1080/01457638008939561 – volume: 46 start-page: 768 year: 2007 ident: 10.1016/j.applthermaleng.2016.09.120_b0095 article-title: Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.10.004 – volume: 79 start-page: 137 year: 1973 ident: 10.1016/j.applthermaleng.2016.09.120_b0005 article-title: The effects of fin spacing on the heat transfer and friction performance of multi-row, smooth plate fin-and-tube heat exchangers publication-title: ASHRAE Trans. – volume: 14 start-page: 174 year: 1997 ident: 10.1016/j.applthermaleng.2016.09.120_b0060 article-title: Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/S0894-1777(96)00056-8 |
| SSID | ssj0012874 |
| Score | 2.514182 |
| Snippet | [Display omitted]
•Multi objective optimization of wavy fin-and-elliptical tube heat exchangers has been performed.•The results obtained from CFD simulations... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 325 |
| SubjectTerms | Elliptical tube GMDH Multi objective optimization NSGA-II Wavy fin |
| Title | Modeling and Pareto based multi-objective optimization of wavy fin-and-elliptical tube heat exchangers using CFD and NSGA-II algorithm |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2016.09.120 |
| Volume | 111 |
| WOSCitedRecordID | wos000391897200032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012874 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKh9B4QFzFuMkPe4uMkjhpEvGAKraxIlRN2pD6FjmxTVuapOrSrvAD-Gn8Lnxi58IGUkHiJUrT-jju-XLO8cm5IHSYhEnIuecRxgOPeFTAIyUDwnx1yiGIRycKfwzG43Ayic56vR91LsxmEeR5uN1Gy__KanVNMRtSZ_-C3Q1RdUGdK6aro2K7Ou7EeOhutqhTD8-giW1hga7iOniQFMlcCzmrUOIiM3mYYDResc1XS85yokYSKNS51I7ucp0IsChLS2xNovCltdYRAydH1Tzj8_dDMhpZbPG5WM3KadY1emtLF2zNTNETbQ3EjqN8A7WVjljGNpBpUzlqiynLMsZbTbkq1t9YnonpSn-vTFvZ6JVzJmdfprpHlXXKMpO2ZVwaDsS-Ep3-bKQw9SOFGyOFazFtPmpBS83vtc6muiDSDXWgPRPz1xAMYNaolggBfQOobuu4dqsG61f_17RjE7NYh8PN41-pxUAttqNYUbuF9tzAj8I-2huOjicfmvdZ0FWg2vqbhd1Bh22k4Z_v7vfGUscAuriP7pmdCx5qxD1APZE_RHc79Swfoe819rBiIdbYwxX28DXs4S72cCExYA_fxB4G7GHAHm6xhyvsYYW9ah6DPdxg7zH6dHJ88e6UmEYfJKXULokj1K7bG9DAkVyEkg5EknoOk5I6kgrheIlLJeXMEw4LGWNOwFxuC-GBPhm4kj5B_bzIxVOE7VCENE1t6ksJkicaBEw4gnOXJgFn_gF6U_-jcWqq4EMzlkW8C38PkN-MXupqMDuOe1szLzaWrbZYY4XUnSg8-8eZn6P99gl7gfrlai1eotvpppxdrl4ZmP4EwDvXnQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+Pareto+based+multi-objective+optimization+of+wavy+fin-and-elliptical+tube+heat+exchangers+using+CFD+and+NSGA-II+algorithm&rft.jtitle=Applied+thermal+engineering&rft.au=Darvish+Damavandi%2C+Mohammad&rft.au=Forouzanmehr%2C+Mostafa&rft.au=Safikhani%2C+Hamed&rft.date=2017-01-25&rft.issn=1359-4311&rft.volume=111&rft.spage=325&rft.epage=339&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.09.120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2016_09_120 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |