Diversity techniques improve the performance of the best imbalance learning ensembles

Many real-life problems can be described as unbalanced, where the number of instances belonging to one of the classes is much larger than the numbers in other classes. Examples are spam detection, credit card fraud detection or medical diagnosis. Ensembles of classifiers have acquired popularity in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 325; s. 98 - 117
Hlavní autoři: Díez-Pastor, José F., Rodríguez, Juan J., García-Osorio, César I., Kuncheva, Ludmila I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 20.12.2015
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many real-life problems can be described as unbalanced, where the number of instances belonging to one of the classes is much larger than the numbers in other classes. Examples are spam detection, credit card fraud detection or medical diagnosis. Ensembles of classifiers have acquired popularity in this kind of problems for their ability to obtain better results than individual classifiers. The most commonly used techniques by those ensembles especially designed to deal with imbalanced problems are for example Re-weighting, Oversampling and Undersampling. Other techniques, originally intended to increase the ensemble diversity, have not been systematically studied for their effect on imbalanced problems. Among these are Random Oracles, Disturbing Neighbors, Random Feature Weights or Rotation Forest. This paper presents an overview and an experimental study of various ensemble-based methods for imbalanced problems, the methods have been tested in its original form and in conjunction with several diversity-increasing techniques, using 84 imbalanced data sets from two well known repositories. This paper shows that these diversity-increasing techniques significantly improve the performance of ensemble methods for imbalanced problems and provides some ideas about when it is more convenient to use these diversifying techniques.
AbstractList Many real-life problems can be described as unbalanced, where the number of instances belonging to one of the classes is much larger than the numbers in other classes. Examples are spam detection, credit card fraud detection or medical diagnosis. Ensembles of classifiers have acquired popularity in this kind of problems for their ability to obtain better results than individual classifiers. The most commonly used techniques by those ensembles especially designed to deal with imbalanced problems are for example Re-weighting, Oversampling and Undersampling. Other techniques, originally intended to increase the ensemble diversity, have not been systematically studied for their effect on imbalanced problems. Among these are Random Oracles, Disturbing Neighbors, Random Feature Weights or Rotation Forest. This paper presents an overview and an experimental study of various ensemble-based methods for imbalanced problems, the methods have been tested in its original form and in conjunction with several diversity-increasing techniques, using 84 imbalanced data sets from two well known repositories. This paper shows that these diversity-increasing techniques significantly improve the performance of ensemble methods for imbalanced problems and provides some ideas about when it is more convenient to use these diversifying techniques.
Author García-Osorio, César I.
Kuncheva, Ludmila I.
Díez-Pastor, José F.
Rodríguez, Juan J.
Author_xml – sequence: 1
  givenname: José F.
  surname: Díez-Pastor
  fullname: Díez-Pastor, José F.
  email: jfdpastor@ubu.es
  organization: University of Burgos, Spain
– sequence: 2
  givenname: Juan J.
  surname: Rodríguez
  fullname: Rodríguez, Juan J.
  organization: University of Burgos, Spain
– sequence: 3
  givenname: César I.
  surname: García-Osorio
  fullname: García-Osorio, César I.
  organization: University of Burgos, Spain
– sequence: 4
  givenname: Ludmila I.
  surname: Kuncheva
  fullname: Kuncheva, Ludmila I.
  organization: University of Bangor, UK
BookMark eNp9kD1PwzAURS0EEi3wA9gysiT4OY2diAnxLVViobPlOM_UVeIU263Uf4_bMjF0snR1z9P1mZJzNzok5BZoART4_aqwLhSMQlVQUVBWnZEJ1ILlnDVwTiaUMpqnuLok0xBWlNKZ4HxCFs92iz7YuMsi6qWzPxsMmR3WftxiFpeYrdGb0Q_KacxGc4haDDF1WtUf0h6Vd9Z9Z-gCDm2P4ZpcGNUHvPl7r8ji9eXr6T2ff759PD3Oc12WNOaATJVdUzI-UxXTvNRo6pKCaRqooG1rZjowpgTDwbRGqKYTqjOs0gK40l15Re6Od9Pc_fAoBxs09mkXjpsgQYiazqqm5qkKx6r2YwgejVx7Oyi_k0DlXqFcyaRQ7hVKKmRylRjxj9E2qmhHF72y_Uny4Uhi-v3WopdBW0yyOutRR9mN9gT9CyxHj5M
CitedBy_id crossref_primary_10_1007_s12517_022_10243_x
crossref_primary_10_3390_app8050815
crossref_primary_10_1016_j_eswa_2020_113920
crossref_primary_10_1016_j_ins_2020_08_069
crossref_primary_10_1007_s13748_019_00172_4
crossref_primary_10_1016_j_neucom_2021_08_086
crossref_primary_10_1016_j_asoc_2024_112186
crossref_primary_10_1016_j_jbi_2019_103124
crossref_primary_10_1016_j_jhydrol_2024_131658
crossref_primary_10_1007_s13042_020_01271_8
crossref_primary_10_1155_2016_5873769
crossref_primary_10_1007_s11063_024_11695_w
crossref_primary_10_1016_j_ins_2016_12_026
crossref_primary_10_1007_s10044_022_01103_1
crossref_primary_10_1109_ACCESS_2024_3396155
crossref_primary_10_1109_TGRS_2022_3187751
crossref_primary_10_1016_j_engappai_2021_104355
crossref_primary_10_1016_j_inffus_2017_12_003
crossref_primary_10_1016_j_knosys_2017_08_022
crossref_primary_10_1016_j_aap_2019_05_005
crossref_primary_10_1016_j_patcog_2022_109158
crossref_primary_10_1007_s11634_019_00354_x
crossref_primary_10_1016_j_petsci_2024_11_001
crossref_primary_10_1016_j_eswa_2019_113005
crossref_primary_10_1016_j_ijar_2025_109542
crossref_primary_10_1016_j_eswa_2021_116015
crossref_primary_10_1016_j_ins_2018_12_033
crossref_primary_10_1109_TITS_2022_3166838
crossref_primary_10_1155_2015_592549
crossref_primary_10_1016_j_knosys_2020_105845
crossref_primary_10_1109_TCPMT_2020_3047089
crossref_primary_10_1016_j_ins_2024_121103
crossref_primary_10_1007_s00521_021_06462_0
crossref_primary_10_1016_j_compbiolchem_2017_08_015
crossref_primary_10_1109_TNNLS_2022_3177695
crossref_primary_10_1007_s10489_017_1088_8
crossref_primary_10_7717_peerj_cs_76
crossref_primary_10_1007_s13042_015_0478_7
crossref_primary_10_1016_j_inffus_2021_03_007
crossref_primary_10_1016_j_inffus_2017_09_010
crossref_primary_10_3390_s20226699
crossref_primary_10_1109_ACCESS_2019_2917920
crossref_primary_10_1038_srep38660
crossref_primary_10_1109_TCYB_2021_3133106
crossref_primary_10_1016_j_neucom_2019_04_072
crossref_primary_10_3233_JIFS_210624
crossref_primary_10_1016_j_neucom_2024_128959
crossref_primary_10_1016_j_ins_2016_09_038
crossref_primary_10_1016_j_ins_2018_06_056
crossref_primary_10_1007_s10489_022_03590_5
crossref_primary_10_1109_TMI_2016_2527736
crossref_primary_10_1109_ACCESS_2025_3574677
crossref_primary_10_1016_j_ins_2020_03_027
crossref_primary_10_1016_j_ins_2021_12_066
crossref_primary_10_1016_j_ins_2017_04_044
crossref_primary_10_1016_j_ins_2020_12_023
crossref_primary_10_1109_TKDE_2024_3384274
crossref_primary_10_1016_j_isprsjprs_2017_04_017
crossref_primary_10_1016_j_knosys_2023_110745
crossref_primary_10_1016_j_patcog_2023_110107
crossref_primary_10_1109_TCE_2023_3319439
crossref_primary_10_1016_j_jbi_2017_03_002
crossref_primary_10_1007_s00521_024_10960_2
crossref_primary_10_1016_j_neucom_2016_08_071
crossref_primary_10_1016_j_procs_2019_09_167
crossref_primary_10_1007_s10115_025_02361_1
crossref_primary_10_1109_TNNLS_2021_3136503
crossref_primary_10_1007_s12065_024_00969_w
crossref_primary_10_1007_s10462_024_10724_3
crossref_primary_10_1016_j_eswa_2023_121269
crossref_primary_10_1016_j_ins_2020_12_006
crossref_primary_10_3390_electronics11050745
crossref_primary_10_1016_j_ins_2020_01_032
crossref_primary_10_1109_ACCESS_2020_2979054
crossref_primary_10_1016_j_elerap_2018_10_004
crossref_primary_10_1371_journal_pone_0194852
crossref_primary_10_1111_exsy_12363
crossref_primary_10_1016_j_engappai_2019_103319
crossref_primary_10_1016_j_knosys_2020_106598
crossref_primary_10_1155_2016_8752181
crossref_primary_10_1016_j_knosys_2022_108410
crossref_primary_10_1109_TKDE_2020_2974949
crossref_primary_10_1007_s00521_016_2458_6
crossref_primary_10_1016_j_eswa_2018_05_017
crossref_primary_10_3390_app11188546
crossref_primary_10_3233_HIS_190261
crossref_primary_10_1007_s13042_019_01047_9
crossref_primary_10_1016_j_patcog_2018_07_037
crossref_primary_10_1016_j_neucom_2017_04_081
crossref_primary_10_1142_S0218126625502044
crossref_primary_10_1109_TKDE_2020_2985965
crossref_primary_10_1016_j_engappai_2024_108857
crossref_primary_10_1109_LGRS_2019_2913387
crossref_primary_10_1007_s42452_020_2039_2
crossref_primary_10_1109_TNNLS_2021_3071122
crossref_primary_10_1016_j_ins_2016_08_077
crossref_primary_10_1016_j_ins_2024_120699
crossref_primary_10_1016_j_knosys_2022_108919
crossref_primary_10_1016_j_eswa_2016_12_035
crossref_primary_10_1016_j_asoc_2019_03_056
crossref_primary_10_1016_j_asoc_2021_107447
crossref_primary_10_1016_j_knosys_2021_107588
crossref_primary_10_1016_j_eswa_2020_114317
crossref_primary_10_1016_j_eswa_2020_113504
crossref_primary_10_1190_geo2022_0782_1
crossref_primary_10_1007_s42979_020_0119_4
crossref_primary_10_1080_08839514_2021_1877481
crossref_primary_10_1007_s10044_022_01129_5
crossref_primary_10_1016_j_eswa_2015_10_031
crossref_primary_10_5194_hess_25_2543_2021
crossref_primary_10_1109_TITS_2022_3207798
crossref_primary_10_1016_j_aap_2021_106511
crossref_primary_10_1007_s10115_024_02129_z
crossref_primary_10_1109_ACCESS_2017_2756102
crossref_primary_10_1111_ddi_13246
crossref_primary_10_1093_comjnl_bxab038
crossref_primary_10_1016_j_engappai_2020_103500
crossref_primary_10_1007_s00521_021_06066_8
crossref_primary_10_1016_j_neucom_2020_05_029
crossref_primary_10_1109_ACCESS_2024_3480848
crossref_primary_10_1007_s10994_024_06604_0
crossref_primary_10_1016_j_eswa_2023_119703
crossref_primary_10_3390_su11010196
crossref_primary_10_1016_j_compbiomed_2022_105351
crossref_primary_10_1186_s42400_024_00290_0
crossref_primary_10_3390_info12080291
crossref_primary_10_1016_j_neucom_2024_128372
crossref_primary_10_1016_j_neucom_2018_01_060
Cites_doi 10.1007/s10044-003-0192-z
10.1109/TSMCA.2009.2029559
10.1145/1007730.1007735
10.1016/j.patcog.2013.05.006
10.1016/j.patrec.2005.10.010
10.1109/TKDE.2007.1016
10.1109/TST.2012.6374368
10.1109/TSMCC.2011.2161285
10.1145/1007730.1007737
10.1007/BF00058655
10.1109/TSMC.1976.4309452
10.1080/03610928008827904
10.1023/A:1007515423169
10.1016/j.inffus.2010.11.004
10.1016/j.ins.2011.06.023
10.1109/34.709601
10.1016/j.ins.2013.07.007
10.1023/A:1007659514849
10.1093/biomet/75.4.800
10.1023/A:1024099825458
10.1145/1007730.1007733
10.1016/j.knosys.2011.05.002
10.1613/jair.606
10.1007/s10618-011-0222-1
10.1613/jair.953
10.1109/34.990132
10.1023/A:1010933404324
10.1162/089976698300017197
10.1016/j.eswa.2010.06.072
10.1023/A:1009876119989
10.1109/TR.2013.2259203
10.1109/TSMC.1972.4309137
10.1109/TPAMI.2006.211
10.1145/1656274.1656278
10.1016/j.knosys.2015.04.022
10.1109/TKDE.2009.187
10.1109/TNN.2010.2066988
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ins.2015.07.025
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 117
ExternalDocumentID 10_1016_j_ins_2015_07_025
S0020025515005186
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-1e2a3d93264a52c63cef8301f99151bb82fd1ff31f61fbf7a9d7adf25c716acd3
ISICitedReferencesCount 155
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362380600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Thu Oct 02 10:29:47 EDT 2025
Tue Nov 18 19:49:11 EST 2025
Sat Nov 29 06:24:58 EST 2025
Fri Feb 23 02:33:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Undersampling
Rotation forest
SMOTE
Imbalanced data sets
Diversity
Classifier ensembles
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-1e2a3d93264a52c63cef8301f99151bb82fd1ff31f61fbf7a9d7adf25c716acd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1778045986
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_1778045986
crossref_primary_10_1016_j_ins_2015_07_025
crossref_citationtrail_10_1016_j_ins_2015_07_025
elsevier_sciencedirect_doi_10_1016_j_ins_2015_07_025
PublicationCentury 2000
PublicationDate 2015-12-20
PublicationDateYYYYMMDD 2015-12-20
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-20
  day: 20
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References García-Pedrajas, Pérez-Rodríguez, García-Pedrajas, Ortiz-Boyer, Fyfe (bib0028) 2012; 25
Sun, Kamel, Wong, Wang (bib0060) 2007; volume 40
C. Van Rijsbergen, Information Retrieval, 1979, Butterworths.
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0030) Nov. 2009; 11
Chawla, Bowyer, Hall, Kegelmeyer (bib0010) 2002; 16
Hochberg (bib0036) 1988; 75
Fan, Stolfo, Zhang, Chan (bib0020) 1999
Galar, Fernandez, Barrenechea, Bustince, Herrera (bib0023) july 2012; 42
Cieslak, Chawla (bib0014) 2008
Cieslak, Hoens, Chawla, Kegelmeyer (bib0015) Jan. 2012; 24
K. Bache, M. Lichman, UCI machine learning repository. 2013
Dietterich (bib0018) 1998; 10
Quionero-Candela, Sugiyama, Schwaighofer, Lawrence (bib0054) 2009
He, Bai, Garcia, Li (bib0032) 2008
Batista, Prati, Monard (bib0004) 2004; 6
Rodriguez, Kuncheva, Alonso (bib0055) 2006; 28
Yu, Ni, Dan, Xu (bib0070) 2012; 17
Brodley, Friedl (bib0008) 1999; 11
Chen, He, Garcia (bib0013) 2010; 21
Kubat, Matwin (bib0039) 1997
Wang, Yao (bib0064) 2009
García, Marqués, Sánchez (bib0025) 2012
López, Fernández, García, Palade, Herrera (bib0044) 2013; 250
Alcala-Fdez, Fernández, Luengo, Derrac, García, Sánchez, Herrera (bib0001) 2011; 17
.
Iman, Davenport (bib0037) 1980; 9
Liu, Wu, Zhou (bib0043) 2009; 39
Napierała, Stefanowski, Wilk (bib0047) 2010
Fawcett (bib0021) 2006; 27
Schclar, Rokach (bib0056) 2009
Wilson (bib0069) 1972; 2
Han, Wang, Mao (bib0031) 2005
Maudes, Rodríguez, García-Osorio, García-Pedrajas (bib0046) 2012; 13
Ho, Basu (bib0034) 2002; 24
Barandela, Valdovinos, Sánchez (bib0003) 2003; 6
Kuncheva (bib0040) 2004
Seiffert, Khoshgoftaar, Van Hulse, Napolitano (bib0057) 2010; 40
Provost, Domingos (bib0051) 2003; 52
Demšar (bib0016) 2006; 7
Polikar (bib0049) 2012
Ho, Basu, Law (bib0035) 2006
Breiman (bib0006) 1996; 24
Chawla, Lazarevic, Hall, Bowyer (bib0012) 2003
Kuncheva, Rodriguez (bib0041) 2007; 19
Sofia (bib0058) 2005
Stefanowski (bib0059) 2013
García-Pedrajas, García-Osorio (bib0026) 2011; 38
Chawla, Japkowicz, Kotcz (bib0011) 2004; 6
Bauer, Kohavi (bib0005) 1999; 36
Prati, Batista, Silva (bib0050) 2014
Díez-Pastor, Rodríguez, García-Osorio, Kuncheva (bib0019) 2015; 85
Galar, Fernández, Barrenechea, Herrera (bib0024) 2013; 46
I. Tomek, Two modifications of cnn. systems, man and cybernetics, transactions on 6, 1976, 769–772.
Freund, Schapire (bib0022) July 3--6, 1996
Liu, Chawla, Cieslak, Chawla (bib0042) 2010
Quinlan (bib0053) 1993
Zadrozny, Elkan (bib0071) 2001
Jo, Japkowicz (bib0038) 2004; 6
Geng, Wang, Li, Xu, Jin (bib0029) 2007; Vol. 4
Webb (bib0067) 2000; 40
Bunkhumpornpat, Sinapiromsaran, Lursinsap (bib0009) 2009
Breiman (bib0007) 2001; 45
Ho (bib0033) Aug 1998; 20
Provost, Kolluri (bib0052) 1999; 3
Maudes, Rodríguez, García-Osorio (bib0045) 2009
García-Pedrajas, Maudes-Raedo, García-Osorio, Rodríguez-Díez (bib0027) 2012; 193
Wang, Yao (bib0065) June 2013; 62
Orriols-Puig, Macià, Ho (bib0048) 2010
Wasikowski, wen Chen (bib0066) Oct 2010; 22
Verhein, Chawla (bib0063) Oct 2007
Di Martino, Decia, Molinelli, Fernández (bib0017) 2012; volume 2
Weiss (bib0068) 2010
Barandela (10.1016/j.ins.2015.07.025_bib0003) 2003; 6
Sun (10.1016/j.ins.2015.07.025_bib0060) 2007; volume 40
García (10.1016/j.ins.2015.07.025_bib0025) 2012
Provost (10.1016/j.ins.2015.07.025_bib0052) 1999; 3
Prati (10.1016/j.ins.2015.07.025_bib0050) 2014
García-Pedrajas (10.1016/j.ins.2015.07.025_bib0028) 2012; 25
Wasikowski (10.1016/j.ins.2015.07.025_bib0066) 2010; 22
Napierała (10.1016/j.ins.2015.07.025_bib0047) 2010
Kubat (10.1016/j.ins.2015.07.025_bib0039) 1997
Brodley (10.1016/j.ins.2015.07.025_bib0008) 1999; 11
Liu (10.1016/j.ins.2015.07.025_bib0043) 2009; 39
Stefanowski (10.1016/j.ins.2015.07.025_bib0059) 2013
Zadrozny (10.1016/j.ins.2015.07.025_bib0071) 2001
Chen (10.1016/j.ins.2015.07.025_bib0013) 2010; 21
Chawla (10.1016/j.ins.2015.07.025_bib0012) 2003
Dietterich (10.1016/j.ins.2015.07.025_bib0018) 1998; 10
García-Pedrajas (10.1016/j.ins.2015.07.025_bib0026) 2011; 38
Geng (10.1016/j.ins.2015.07.025_bib0029) 2007; Vol. 4
Wang (10.1016/j.ins.2015.07.025_bib0064) 2009
Hochberg (10.1016/j.ins.2015.07.025_bib0036) 1988; 75
Ho (10.1016/j.ins.2015.07.025_bib0033) 1998; 20
Jo (10.1016/j.ins.2015.07.025_bib0038) 2004; 6
10.1016/j.ins.2015.07.025_bib0061
Orriols-Puig (10.1016/j.ins.2015.07.025_bib0048) 2010
Wilson (10.1016/j.ins.2015.07.025_bib0069) 1972; 2
10.1016/j.ins.2015.07.025_bib0062
Chawla (10.1016/j.ins.2015.07.025_bib0011) 2004; 6
Ho (10.1016/j.ins.2015.07.025_bib0035) 2006
Yu (10.1016/j.ins.2015.07.025_bib0070) 2012; 17
Sofia (10.1016/j.ins.2015.07.025_bib0058) 2005
Galar (10.1016/j.ins.2015.07.025_bib0024) 2013; 46
Seiffert (10.1016/j.ins.2015.07.025_bib0057) 2010; 40
Di Martino (10.1016/j.ins.2015.07.025_bib0017) 2012; volume 2
Hall (10.1016/j.ins.2015.07.025_bib0030) 2009; 11
García-Pedrajas (10.1016/j.ins.2015.07.025_bib0027) 2012; 193
Polikar (10.1016/j.ins.2015.07.025_bib0049) 2012
Rodriguez (10.1016/j.ins.2015.07.025_bib0055) 2006; 28
Freund (10.1016/j.ins.2015.07.025_bib0022) 1996
Chawla (10.1016/j.ins.2015.07.025_bib0010) 2002; 16
Bauer (10.1016/j.ins.2015.07.025_bib0005) 1999; 36
Cieslak (10.1016/j.ins.2015.07.025_bib0014) 2008
Quinlan (10.1016/j.ins.2015.07.025_bib0053) 1993
Wang (10.1016/j.ins.2015.07.025_bib0065) 2013; 62
Fawcett (10.1016/j.ins.2015.07.025_bib0021) 2006; 27
Verhein (10.1016/j.ins.2015.07.025_bib0063) 2007
Kuncheva (10.1016/j.ins.2015.07.025_bib0040) 2004
Díez-Pastor (10.1016/j.ins.2015.07.025_bib0019) 2015; 85
He (10.1016/j.ins.2015.07.025_bib0032) 2008
López (10.1016/j.ins.2015.07.025_bib0044) 2013; 250
Liu (10.1016/j.ins.2015.07.025_bib0042) 2010
Weiss (10.1016/j.ins.2015.07.025_bib0068) 2010
Provost (10.1016/j.ins.2015.07.025_bib0051) 2003; 52
Ho (10.1016/j.ins.2015.07.025_bib0034) 2002; 24
Webb (10.1016/j.ins.2015.07.025_bib0067) 2000; 40
Alcala-Fdez (10.1016/j.ins.2015.07.025_bib0001) 2011; 17
Bunkhumpornpat (10.1016/j.ins.2015.07.025_bib0009) 2009
Schclar (10.1016/j.ins.2015.07.025_bib0056) 2009
Batista (10.1016/j.ins.2015.07.025_bib0004) 2004; 6
Breiman (10.1016/j.ins.2015.07.025_bib0006) 1996; 24
Cieslak (10.1016/j.ins.2015.07.025_bib0015) 2012; 24
Fan (10.1016/j.ins.2015.07.025_bib0020) 1999
Maudes (10.1016/j.ins.2015.07.025_bib0045) 2009
Han (10.1016/j.ins.2015.07.025_bib0031) 2005
Demšar (10.1016/j.ins.2015.07.025_bib0016) 2006; 7
Kuncheva (10.1016/j.ins.2015.07.025_bib0041) 2007; 19
Maudes (10.1016/j.ins.2015.07.025_bib0046) 2012; 13
10.1016/j.ins.2015.07.025_bib0002
Iman (10.1016/j.ins.2015.07.025_bib0037) 1980; 9
Breiman (10.1016/j.ins.2015.07.025_bib0007) 2001; 45
Galar (10.1016/j.ins.2015.07.025_bib0023) 2012; 42
Quionero-Candela (10.1016/j.ins.2015.07.025_bib0054) 2009
References_xml – volume: 85
  start-page: 96
  year: 2015
  end-page: 111
  ident: bib0019
  article-title: Random balance: Ensembles of variable priors classiffiers for imbalanced data
  publication-title: Knowledge-Based Systems
– start-page: 1322
  year: 2008
  end-page: 1328
  ident: bib0032
  article-title: Adasyn: adaptive synthetic sampling approach for imbalanced learning
  publication-title: IEEE International Joint Conference on. Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence)
– start-page: 309
  year: 2009
  end-page: 316
  ident: bib0056
  article-title: Random projection ensemble classifiers
  publication-title: Enterprise Information Systems
– volume: 2
  start-page: 408
  year: 1972
  end-page: 421
  ident: bib0069
  article-title: Asymptotic properties of nearest neighbor rules using edited data
  publication-title: IEEE Transactions on Syst. Man Cybernetics
– start-page: 97
  year: 1999
  end-page: 105
  ident: bib0020
  article-title: AdaCost: misclassification cost-sensitive boosting
  publication-title: Proceedings of the Sixteenth International Conference on Machine Learning. ICML ’99
– start-page: 148
  year: July 3--6, 1996
  end-page: 156
  ident: bib0022
  article-title: Experiments with a new boosting algorithm
  publication-title: Machine Learning, Proceedings of the Thirteenth International Conference (ICML ’96), Bari, Italy
– volume: volume 40
  start-page: 3358
  year: 2007
  end-page: 3378
  ident: bib0060
  article-title: Cost-sensitive boosting for classification of imbalanced data
  publication-title: Pattern Recognition
– start-page: 766
  year: 2010
  end-page: 777
  ident: bib0042
  article-title: A robust decision tree algorithm for imbalanced data sets
  publication-title: Proceedings of the SIAM International Conference on Data Mining, SDM 2010
– year: 2010
  ident: bib0048
  article-title: Documentation for the data complexity library in C++
  publication-title: Tech. rep.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0006
  article-title: Bagging predictors
  publication-title: Machine Learn.
– volume: 6
  start-page: 245
  year: 2003
  end-page: 256
  ident: bib0003
  article-title: New applications of ensembles of classifiers
  publication-title: Pattern Anal. Appl.
– volume: 9
  start-page: 571
  year: 1980
  end-page: 595
  ident: bib0037
  article-title: Approximations of the critical region of the fbietkan statistic
  publication-title: Commun. Stat. Theory Method.
– start-page: 277
  year: 2013
  end-page: 306
  ident: bib0059
  article-title: Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data
  publication-title: Emerging Paradigms in Machine Learning
– volume: 193
  start-page: 1
  year: 2012
  end-page: 21
  ident: bib0027
  article-title: Supervised subspace projections for constructing ensembles of classifiers
  publication-title: Inf. Sci.
– year: 1993
  ident: bib0053
  publication-title: C4.5: Programs for Machine Learning
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0016
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 42
  start-page: 463
  year: july 2012
  end-page: 484
  ident: bib0023
  article-title: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches
  publication-title: Syst. Man Cybernetics Part C: appl. Rev. IEEE Transactions on
– volume: 6
  start-page: 20
  year: 2004
  end-page: 29
  ident: bib0004
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD Explor. Newslett.
– volume: Vol. 4
  start-page: 583
  year: 2007
  end-page: 587
  ident: bib0029
  article-title: Boosting the performance of web spam detection with ensemble under-sampling classification
  publication-title: 2007. FSKD 2007. Fourth International Conference on, Fuzzy Systems and Knowledge Discovery
– volume: 11
  start-page: 10
  year: Nov. 2009
  end-page: 18
  ident: bib0030
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newslett.
– volume: 250
  start-page: 113
  year: 2013
  end-page: 141
  ident: bib0044
  article-title: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics
  publication-title: Inf. Sci.
– start-page: 324
  year: 2009
  end-page: 331
  ident: bib0064
  article-title: Diversity analysis on imbalanced data sets by using ensemble models
  publication-title: IEEE Symposium Series on Computational Intelligence and Data Mining (IEEE CIDM 2009)
– volume: 21
  start-page: 1624
  year: 2010
  end-page: 1642
  ident: bib0013
  article-title: Ramoboost: ranked minority oversampling in boosting
  publication-title: Neural Net. IEEE Transactions on
– year: 2009
  ident: bib0054
  publication-title: Dataset Shift in Machine Learning
– volume: 52
  start-page: 199
  year: 2003
  end-page: 215
  ident: bib0051
  article-title: Tree induction for probability-based ranking
  publication-title: Machine Learn.
– start-page: 193
  year: 2010
  end-page: 226
  ident: bib0068
  article-title: The impact of small disjuncts on classifier learning
  publication-title: Data Mining
– reference: I. Tomek, Two modifications of cnn. systems, man and cybernetics, transactions on 6, 1976, 769–772.
– start-page: 67
  year: 2005
  end-page: 73
  ident: bib0058
  article-title: Issues in mining imbalanced data sets — a review paper
  publication-title: Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive Science Conference
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib0021
  article-title: An introduction to ROC analysis
  publication-title: Pattern recognit. lett.
– volume: 10
  start-page: 1895
  year: 1998
  end-page: 1923
  ident: bib0018
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural comput.
– start-page: 1
  year: 2012
  end-page: 34
  ident: bib0049
  article-title: Ensemble learning
  publication-title: Ensemble Machine Learning
– volume: 17
  start-page: 255
  year: 2011
  end-page: 287
  ident: bib0001
  article-title: KEEL data-mining software tool: data set repository and integration of algorithms and experimental analysis framework
  publication-title: J. Multiple-Valued Logic Soft Comput.
– start-page: 179
  year: 1997
  end-page: 186
  ident: bib0039
  article-title: Addressing the Curse of imbalanced training sets: one-Sided selection
  publication-title: Proceedings of the 14th International Conference on Machine Learning
– year: 2004
  ident: bib0040
  publication-title: Combining Pattern Classifiers: Methods and Algorithms
– start-page: 679
  year: Oct 2007
  end-page: 684
  ident: bib0063
  article-title: Using significant, positively associated and relatively class correlated rules for associative classification of imbalanced datasets
  publication-title: Seventh IEEE International Conference on Data Mining, 2007. ICDM 2007
– volume: 17
  start-page: 666
  year: 2012
  end-page: 673
  ident: bib0070
  article-title: Mining and integrating reliable decision rules for imbalanced cancer gene expression data sets
  publication-title: Tsinghua Sci. Tech.
– volume: 22
  start-page: 1388
  year: Oct 2010
  end-page: 1400
  ident: bib0066
  article-title: Combating the small sample class imbalance problem using feature selection
  publication-title: Knowledge Data Eng. IEEE Transactions on
– volume: 3
  start-page: 131
  year: 1999
  end-page: 169
  ident: bib0052
  article-title: A survey of methods for scaling up inductive algorithms
  publication-title: Data min. knowledge discovery
– volume: 36
  start-page: 105
  year: 1999
  end-page: 139
  ident: bib0005
  article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
  publication-title: Machine learn.
– start-page: 107
  year: 2003
  end-page: 119
  ident: bib0012
  article-title: SMOTEBoost: improving prediction of the minority class in boosting
  publication-title: 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2003)
– start-page: 68
  year: 2012
  end-page: 75
  ident: bib0025
  article-title: Improving risk predictions by preprocessing imbalanced credit data
  publication-title: Neural Information Processing
– volume: 39
  start-page: 539
  year: 2009
  end-page: 550
  ident: bib0043
  article-title: Exploratory undersampling for class-imbalance learning. systems, man, and cybernetics
  publication-title: IEEE Transactions on Part B: Cybernetics
– volume: 19
  start-page: 500
  year: 2007
  end-page: 508
  ident: bib0041
  article-title: Classifier ensembles with a random linear oracle
  publication-title: IEEE Transactions on Knowledge Data Eng.
– start-page: 1
  year: 2006
  end-page: 23
  ident: bib0035
  article-title: Measures of geometrical complexity in classification problems
  publication-title: Data complexity in pattern recognition
– volume: 28
  start-page: 1619
  year: 2006
  end-page: 1630
  ident: bib0055
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 878
  year: 2005
  end-page: 887
  ident: bib0031
  article-title: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning
  publication-title: 2005 International Conference on Intelligent Computing (ICIC05)
– volume: 6
  start-page: 1
  year: 2004
  end-page: 6
  ident: bib0011
  article-title: Editorial: special issue on learning from imbalanced data sets
  publication-title: ACM SIGKDD Explor. Newslett.
– volume: 6
  start-page: 40
  year: 2004
  end-page: 49
  ident: bib0038
  article-title: Class imbalances versus small disjuncts
  publication-title: ACM SIGKDD Explor. Newslett.
– volume: 13
  start-page: 20
  year: 2012
  end-page: 30
  ident: bib0046
  article-title: Random feature weights for decision tree ensemble construction
  publication-title: Inf. Fusion
– start-page: 241
  year: 2008
  end-page: 256
  ident: bib0014
  article-title: Learning decision trees for unbalanced data
  publication-title: Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases - Part I. ECML PKDD ’08
– start-page: 204
  year: 2001
  end-page: 213
  ident: bib0071
  article-title: Learning and making decisions when costs and probabilities are both unknown
  publication-title: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining
– start-page: 1
  year: 2014
  end-page: 24
  ident: bib0050
  article-title: Class imbalance revisited: a new experimental setup to assess the performance of treatment methods
  publication-title: Knowledge and Information Systems
– start-page: 158
  year: 2010
  end-page: 167
  ident: bib0047
  article-title: Learning from imbalanced data in presence of noisy and borderline examples
  publication-title: Rough Sets and Current Trends in Computing
– volume: 46
  start-page: 3460
  year: 2013
  end-page: 3471
  ident: bib0024
  article-title: Eusboost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
  publication-title: Pattern Recognit.
– volume: 11
  start-page: 131
  year: 1999
  end-page: 167
  ident: bib0008
  article-title: Identifying mislabeled training data
  publication-title: J. Artif. Intell. Res.
– volume: volume 2
  start-page: 135
  year: 2012
  end-page: 141
  ident: bib0017
  article-title: Improving electric fraud detection using class imbalance strategies
  publication-title: ICPRAM
– volume: 24
  start-page: 289
  year: 2002
  end-page: 300
  ident: bib0034
  article-title: Complexity measures of supervised classification problems
  publication-title: IEEE Transactions on Pattern Anal. Mach. Intell.
– start-page: 475
  year: 2009
  end-page: 482
  ident: bib0009
  article-title: Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
  publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD09)
– volume: 20
  start-page: 832
  year: Aug 1998
  end-page: 844
  ident: bib0033
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Transactions on Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 136
  year: Jan. 2012
  end-page: 158
  ident: bib0015
  article-title: Hellinger distance decision trees are robust and skew-insensitive
  publication-title: Data Min. Know. Discovery
– reference: .
– start-page: 113
  year: 2009
  end-page: 133
  ident: bib0045
  article-title: Disturbing neighbors diversity for decision forests
  publication-title: Applications of Supervised and Unsupervised Ensemble Methods
– reference: K. Bache, M. Lichman, UCI machine learning repository. 2013,
– reference: C. Van Rijsbergen, Information Retrieval, 1979, Butterworths.
– volume: 38
  start-page: 343
  year: 2011
  end-page: 359
  ident: bib0026
  article-title: Constructing ensembles of classifiers using supervised projection methods based on misclassified instances
  publication-title: Expert Syst. Appl.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0007
  article-title: Random forests
  publication-title: Machine learn.
– volume: 75
  start-page: 800
  year: 1988
  end-page: 803
  ident: bib0036
  article-title: A sharper Bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
– volume: 40
  start-page: 159
  year: 2000
  end-page: 196
  ident: bib0067
  article-title: Multiboosting: A technique for combining boosting and wagging
  publication-title: Machine Learn.
– volume: 62
  start-page: 434
  year: June 2013
  end-page: 443
  ident: bib0065
  article-title: Using class imbalance learning for software defect prediction
  publication-title: IEEE Transactions on Reliability
– volume: 25
  start-page: 22
  year: 2012
  end-page: 34
  ident: bib0028
  article-title: Class imbalance methods for translation initiation site recognition in DNA sequences
  publication-title: Knowledge-Based Sys.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib0010
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 40
  start-page: 185
  year: 2010
  end-page: 197
  ident: bib0057
  article-title: RUSBoost: A hybrid approach to alleviating class imbalance
  publication-title: IEEE Transactions on Syst. Man Cybernetics Part A: Syst. Humans
– volume: 6
  start-page: 245
  issue: 3
  year: 2003
  ident: 10.1016/j.ins.2015.07.025_bib0003
  article-title: New applications of ensembles of classifiers
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-003-0192-z
– volume: 40
  start-page: 185
  issue: 1
  year: 2010
  ident: 10.1016/j.ins.2015.07.025_bib0057
  article-title: RUSBoost: A hybrid approach to alleviating class imbalance
  publication-title: IEEE Transactions on Syst. Man Cybernetics Part A: Syst. Humans
  doi: 10.1109/TSMCA.2009.2029559
– volume: 6
  start-page: 20
  issue: 1
  year: 2004
  ident: 10.1016/j.ins.2015.07.025_bib0004
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/1007730.1007735
– volume: 46
  start-page: 3460
  issue: 12
  year: 2013
  ident: 10.1016/j.ins.2015.07.025_bib0024
  article-title: Eusboost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.05.006
– start-page: 67
  year: 2005
  ident: 10.1016/j.ins.2015.07.025_bib0058
  article-title: Issues in mining imbalanced data sets — a review paper
– start-page: 766
  year: 2010
  ident: 10.1016/j.ins.2015.07.025_bib0042
  article-title: A robust decision tree algorithm for imbalanced data sets
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.ins.2015.07.025_bib0021
  article-title: An introduction to ROC analysis
  publication-title: Pattern recognit. lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: volume 40
  start-page: 3358
  year: 2007
  ident: 10.1016/j.ins.2015.07.025_bib0060
  article-title: Cost-sensitive boosting for classification of imbalanced data
– volume: 19
  start-page: 500
  issue: 4
  year: 2007
  ident: 10.1016/j.ins.2015.07.025_bib0041
  article-title: Classifier ensembles with a random linear oracle
  publication-title: IEEE Transactions on Knowledge Data Eng.
  doi: 10.1109/TKDE.2007.1016
– start-page: 113
  year: 2009
  ident: 10.1016/j.ins.2015.07.025_bib0045
  article-title: Disturbing neighbors diversity for decision forests
– volume: 39
  start-page: 539
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2015.07.025_bib0043
  article-title: Exploratory undersampling for class-imbalance learning. systems, man, and cybernetics
  publication-title: IEEE Transactions on Part B: Cybernetics
– volume: 17
  start-page: 666
  issue: 6
  year: 2012
  ident: 10.1016/j.ins.2015.07.025_bib0070
  article-title: Mining and integrating reliable decision rules for imbalanced cancer gene expression data sets
  publication-title: Tsinghua Sci. Tech.
  doi: 10.1109/TST.2012.6374368
– volume: 42
  start-page: 463
  issue: 4
  year: 2012
  ident: 10.1016/j.ins.2015.07.025_bib0023
  article-title: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches
  publication-title: Syst. Man Cybernetics Part C: appl. Rev. IEEE Transactions on
  doi: 10.1109/TSMCC.2011.2161285
– volume: 6
  start-page: 40
  issue: 1
  year: 2004
  ident: 10.1016/j.ins.2015.07.025_bib0038
  article-title: Class imbalances versus small disjuncts
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/1007730.1007737
– start-page: 179
  year: 1997
  ident: 10.1016/j.ins.2015.07.025_bib0039
  article-title: Addressing the Curse of imbalanced training sets: one-Sided selection
– start-page: 158
  year: 2010
  ident: 10.1016/j.ins.2015.07.025_bib0047
  article-title: Learning from imbalanced data in presence of noisy and borderline examples
– start-page: 241
  year: 2008
  ident: 10.1016/j.ins.2015.07.025_bib0014
  article-title: Learning decision trees for unbalanced data
– start-page: 679
  year: 2007
  ident: 10.1016/j.ins.2015.07.025_bib0063
  article-title: Using significant, positively associated and relatively class correlated rules for associative classification of imbalanced datasets
– volume: 17
  start-page: 255
  issue: 2-3
  year: 2011
  ident: 10.1016/j.ins.2015.07.025_bib0001
  article-title: KEEL data-mining software tool: data set repository and integration of algorithms and experimental analysis framework
  publication-title: J. Multiple-Valued Logic Soft Comput.
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.ins.2015.07.025_bib0006
  article-title: Bagging predictors
  publication-title: Machine Learn.
  doi: 10.1007/BF00058655
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.ins.2015.07.025_bib0016
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.ins.2015.07.025_bib0061
  doi: 10.1109/TSMC.1976.4309452
– start-page: 475
  year: 2009
  ident: 10.1016/j.ins.2015.07.025_bib0009
  article-title: Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
– volume: volume 2
  start-page: 135
  year: 2012
  ident: 10.1016/j.ins.2015.07.025_bib0017
  article-title: Improving electric fraud detection using class imbalance strategies
– volume: 9
  start-page: 571
  issue: 6
  year: 1980
  ident: 10.1016/j.ins.2015.07.025_bib0037
  article-title: Approximations of the critical region of the fbietkan statistic
  publication-title: Commun. Stat. Theory Method.
  doi: 10.1080/03610928008827904
– volume: 36
  start-page: 105
  issue: 1--2
  year: 1999
  ident: 10.1016/j.ins.2015.07.025_bib0005
  article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
  publication-title: Machine learn.
  doi: 10.1023/A:1007515423169
– start-page: 1322
  year: 2008
  ident: 10.1016/j.ins.2015.07.025_bib0032
  article-title: Adasyn: adaptive synthetic sampling approach for imbalanced learning
– start-page: 1
  year: 2012
  ident: 10.1016/j.ins.2015.07.025_bib0049
  article-title: Ensemble learning
– start-page: 193
  year: 2010
  ident: 10.1016/j.ins.2015.07.025_bib0068
  article-title: The impact of small disjuncts on classifier learning
– volume: 13
  start-page: 20
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2015.07.025_bib0046
  article-title: Random feature weights for decision tree ensemble construction
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2010.11.004
– start-page: 107
  year: 2003
  ident: 10.1016/j.ins.2015.07.025_bib0012
  article-title: SMOTEBoost: improving prediction of the minority class in boosting
– volume: 193
  start-page: 1
  issue: 0
  year: 2012
  ident: 10.1016/j.ins.2015.07.025_bib0027
  article-title: Supervised subspace projections for constructing ensembles of classifiers
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.06.023
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 10.1016/j.ins.2015.07.025_bib0033
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Transactions on Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: Vol. 4
  start-page: 583
  year: 2007
  ident: 10.1016/j.ins.2015.07.025_bib0029
  article-title: Boosting the performance of web spam detection with ensemble under-sampling classification
– volume: 250
  start-page: 113
  year: 2013
  ident: 10.1016/j.ins.2015.07.025_bib0044
  article-title: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.07.007
– volume: 40
  start-page: 159
  issue: 2
  year: 2000
  ident: 10.1016/j.ins.2015.07.025_bib0067
  article-title: Multiboosting: A technique for combining boosting and wagging
  publication-title: Machine Learn.
  doi: 10.1023/A:1007659514849
– volume: 75
  start-page: 800
  year: 1988
  ident: 10.1016/j.ins.2015.07.025_bib0036
  article-title: A sharper Bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
  doi: 10.1093/biomet/75.4.800
– volume: 52
  start-page: 199
  issue: 3
  year: 2003
  ident: 10.1016/j.ins.2015.07.025_bib0051
  article-title: Tree induction for probability-based ranking
  publication-title: Machine Learn.
  doi: 10.1023/A:1024099825458
– volume: 6
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.ins.2015.07.025_bib0011
  article-title: Editorial: special issue on learning from imbalanced data sets
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/1007730.1007733
– volume: 25
  start-page: 22
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2015.07.025_bib0028
  article-title: Class imbalance methods for translation initiation site recognition in DNA sequences
  publication-title: Knowledge-Based Sys.
  doi: 10.1016/j.knosys.2011.05.002
– start-page: 309
  year: 2009
  ident: 10.1016/j.ins.2015.07.025_bib0056
  article-title: Random projection ensemble classifiers
– start-page: 68
  year: 2012
  ident: 10.1016/j.ins.2015.07.025_bib0025
  article-title: Improving risk predictions by preprocessing imbalanced credit data
– start-page: 1
  year: 2006
  ident: 10.1016/j.ins.2015.07.025_bib0035
  article-title: Measures of geometrical complexity in classification problems
– year: 1993
  ident: 10.1016/j.ins.2015.07.025_bib0053
– volume: 11
  start-page: 131
  year: 1999
  ident: 10.1016/j.ins.2015.07.025_bib0008
  article-title: Identifying mislabeled training data
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.606
– start-page: 1
  year: 2014
  ident: 10.1016/j.ins.2015.07.025_bib0050
  article-title: Class imbalance revisited: a new experimental setup to assess the performance of treatment methods
– volume: 24
  start-page: 136
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2015.07.025_bib0015
  article-title: Hellinger distance decision trees are robust and skew-insensitive
  publication-title: Data Min. Know. Discovery
  doi: 10.1007/s10618-011-0222-1
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.ins.2015.07.025_bib0010
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– start-page: 97
  year: 1999
  ident: 10.1016/j.ins.2015.07.025_bib0020
  article-title: AdaCost: misclassification cost-sensitive boosting
– ident: 10.1016/j.ins.2015.07.025_bib0002
– volume: 24
  start-page: 289
  issue: 3
  year: 2002
  ident: 10.1016/j.ins.2015.07.025_bib0034
  article-title: Complexity measures of supervised classification problems
  publication-title: IEEE Transactions on Pattern Anal. Mach. Intell.
  doi: 10.1109/34.990132
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.ins.2015.07.025_bib0007
  article-title: Random forests
  publication-title: Machine learn.
  doi: 10.1023/A:1010933404324
– start-page: 148
  year: 1996
  ident: 10.1016/j.ins.2015.07.025_bib0022
  article-title: Experiments with a new boosting algorithm
– volume: 10
  start-page: 1895
  issue: 7
  year: 1998
  ident: 10.1016/j.ins.2015.07.025_bib0018
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural comput.
  doi: 10.1162/089976698300017197
– volume: 38
  start-page: 343
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2015.07.025_bib0026
  article-title: Constructing ensembles of classifiers using supervised projection methods based on misclassified instances
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.072
– ident: 10.1016/j.ins.2015.07.025_bib0062
– volume: 3
  start-page: 131
  issue: 2
  year: 1999
  ident: 10.1016/j.ins.2015.07.025_bib0052
  article-title: A survey of methods for scaling up inductive algorithms
  publication-title: Data min. knowledge discovery
  doi: 10.1023/A:1009876119989
– volume: 62
  start-page: 434
  issue: 2
  year: 2013
  ident: 10.1016/j.ins.2015.07.025_bib0065
  article-title: Using class imbalance learning for software defect prediction
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2013.2259203
– volume: 2
  start-page: 408
  issue: 3
  year: 1972
  ident: 10.1016/j.ins.2015.07.025_bib0069
  article-title: Asymptotic properties of nearest neighbor rules using edited data
  publication-title: IEEE Transactions on Syst. Man Cybernetics
  doi: 10.1109/TSMC.1972.4309137
– volume: 28
  start-page: 1619
  issue: 10
  year: 2006
  ident: 10.1016/j.ins.2015.07.025_bib0055
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2006.211
– start-page: 277
  year: 2013
  ident: 10.1016/j.ins.2015.07.025_bib0059
  article-title: Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.ins.2015.07.025_bib0030
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/1656274.1656278
– start-page: 324
  year: 2009
  ident: 10.1016/j.ins.2015.07.025_bib0064
  article-title: Diversity analysis on imbalanced data sets by using ensemble models
– volume: 85
  start-page: 96
  year: 2015
  ident: 10.1016/j.ins.2015.07.025_bib0019
  article-title: Random balance: Ensembles of variable priors classiffiers for imbalanced data
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.04.022
– start-page: 204
  year: 2001
  ident: 10.1016/j.ins.2015.07.025_bib0071
  article-title: Learning and making decisions when costs and probabilities are both unknown
– volume: 22
  start-page: 1388
  issue: 10
  year: 2010
  ident: 10.1016/j.ins.2015.07.025_bib0066
  article-title: Combating the small sample class imbalance problem using feature selection
  publication-title: Knowledge Data Eng. IEEE Transactions on
  doi: 10.1109/TKDE.2009.187
– start-page: 878
  year: 2005
  ident: 10.1016/j.ins.2015.07.025_bib0031
  article-title: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning
– year: 2004
  ident: 10.1016/j.ins.2015.07.025_bib0040
– volume: 21
  start-page: 1624
  issue: 10
  year: 2010
  ident: 10.1016/j.ins.2015.07.025_bib0013
  article-title: Ramoboost: ranked minority oversampling in boosting
  publication-title: Neural Net. IEEE Transactions on
  doi: 10.1109/TNN.2010.2066988
– year: 2009
  ident: 10.1016/j.ins.2015.07.025_bib0054
– year: 2010
  ident: 10.1016/j.ins.2015.07.025_bib0048
  article-title: Documentation for the data complexity library in C++
SSID ssj0004766
Score 2.5367181
Snippet Many real-life problems can be described as unbalanced, where the number of instances belonging to one of the classes is much larger than the numbers in other...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 98
SubjectTerms Classifier ensembles
Classifiers
Diversity
Forests
Fraud
Imbalanced data sets
Learning
Oversampling
Performance enhancement
Repositories
Rotation forest
SMOTE
Undersampling
Title Diversity techniques improve the performance of the best imbalance learning ensembles
URI https://dx.doi.org/10.1016/j.ins.2015.07.025
https://www.proquest.com/docview/1778045986
Volume 325
WOSCitedRecordID wos000362380600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdKxwEOEwwQYwwZCe0AilTnneMEnWBU3YRaqTfLjm1o1SUlaaoJ8cfzOXYeDDGNA5eocp208vfL934g9IZwNwRY6OaDRDh-nCYO5yGYKmHApQg8LlxRD5uIptN4sUguB4OfTS3Mbh1lWXx9nWz-K6lhDYitS2f_gdztQ2EBPgPR4Qpkh-udCP-hzbRo-7OWuhiyyHfSFEb1agVshgAH2QB7uM5zhNV14y8BG1de8bXNM1w1We9txeM7K0C76fRL-cO5ZOXWeAF0fKHLHf6Si2L5tTI-6_NKF0616T96pBFzLsq8WBrnrSxZ0bl0P4P4_SZ3taY7qcTVcs3sl9ZjQQKd_eGO-lwYTFZty_S5sOcGPT5qJlNbiUxMdecfzN74HVZgoei-6ySou7Dax_zWWHt6Qc_mkwmdjRezk813R88c07F5O4DlHtpzoyCJh2jv9NN4cd7V1UYm1t383yYqXucH3vjVv-k1NyR8rbbMHqF9a2_gU4OTx2ggswP0sNeF8gAd29oVfIJ7pMWW6z9B8xZRuEMUtojCAB_cQxTOVb2kEYVbROEGUbhF1FM0PxvP3n907DQOJ_W80dYh0mWe0Oq-zwI3Db1UqhjEgwILIyCcx64SRCmPqJAoriKWiIgJ5QYpmOQsFd4zNMzyTD5H2BehlBEBXVQpX_KEwX4lUjcVkdT9Hg_RqDlLmtpW9Xpiypo2OYkrCsdP9fHTUUTh-A_R2_aWjenTcttmvyEQte-JUSApQOu22143xKTAhHVkjWUyr0pKIt3HS486eHGHPUfoQfdavETDbVHJY3Q_3W2XZfHKgvAXZq6uXw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversity+techniques+improve+the+performance+of+the+best+imbalance+learning+ensembles&rft.jtitle=Information+sciences&rft.au=Diez-Pastor%2C+Jose+F&rft.au=Rodriguez%2C+Juan+J&rft.au=Garcia-Osorio%2C+Cesar+I&rft.au=Kuncheva%2C+Ludmila+I&rft.date=2015-12-20&rft.issn=0020-0255&rft.volume=325&rft.spage=98&rft.epage=117&rft_id=info:doi/10.1016%2Fj.ins.2015.07.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon