Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms

This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of archaeological science Ročník 148; s. 105654
Hlavní autori: Berganzo-Besga, Iban, Orengo, Hector A., Lumbreras, Felipe, Aliende, Paloma, Ramsey, Monica N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2022
Predmet:
ISSN:0305-4403
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This approach has been tested in three key phytolith genera for the study of agricultural origins in Near East archaeology: Avena, Hordeum and Triticum. Also, this classification has been validated at species-level using Triticum boeoticum and dicoccoides images. Due to the diversity of microscopes, cameras and chemical treatments that can influence images of phytolith slides, three types of data augmentation techniques have been implemented: rotation of the images at 45-degree angles, random colour and brightness jittering, and random blur/sharpen. The implemented workflow has resulted in an overall accuracy of 93.68% for phytolith genera, improving previous attempts. The algorithm has also demonstrated its potential to automatize the classification of phytoliths species with an overall accuracy of 100%. The open code and platforms employed to develop the algorithm assure the method's accessibility, reproducibility and reusability. •Deep learning automates identification and classification of multi-cell phytoliths.•Can be applied to digitalised slides and integrated into digital microscopes.•Can differentiate between phytolith genera but also species.•Presents an overall accuracy of 93% and analyses the whole slide.•Provides complementary metrics with new relevant information on phytoliths.
AbstractList This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This approach has been tested in three key phytolith genera for the study of agricultural origins in Near East archaeology: Avena, Hordeum and Triticum. Also, this classification has been validated at species-level using Triticum boeoticum and dicoccoides images. Due to the diversity of microscopes, cameras and chemical treatments that can influence images of phytolith slides, three types of data augmentation techniques have been implemented: rotation of the images at 45-degree angles, random colour and brightness jittering, and random blur/sharpen. The implemented workflow has resulted in an overall accuracy of 93.68% for phytolith genera, improving previous attempts. The algorithm has also demonstrated its potential to automatize the classification of phytoliths species with an overall accuracy of 100%. The open code and platforms employed to develop the algorithm assure the method's accessibility, reproducibility and reusability.
This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This approach has been tested in three key phytolith genera for the study of agricultural origins in Near East archaeology: Avena, Hordeum and Triticum. Also, this classification has been validated at species-level using Triticum boeoticum and dicoccoides images. Due to the diversity of microscopes, cameras and chemical treatments that can influence images of phytolith slides, three types of data augmentation techniques have been implemented: rotation of the images at 45-degree angles, random colour and brightness jittering, and random blur/sharpen. The implemented workflow has resulted in an overall accuracy of 93.68% for phytolith genera, improving previous attempts. The algorithm has also demonstrated its potential to automatize the classification of phytoliths species with an overall accuracy of 100%. The open code and platforms employed to develop the algorithm assure the method's accessibility, reproducibility and reusability. •Deep learning automates identification and classification of multi-cell phytoliths.•Can be applied to digitalised slides and integrated into digital microscopes.•Can differentiate between phytolith genera but also species.•Presents an overall accuracy of 93% and analyses the whole slide.•Provides complementary metrics with new relevant information on phytoliths.
ArticleNumber 105654
Author Ramsey, Monica N.
Lumbreras, Felipe
Aliende, Paloma
Berganzo-Besga, Iban
Orengo, Hector A.
Author_xml – sequence: 1
  givenname: Iban
  surname: Berganzo-Besga
  fullname: Berganzo-Besga, Iban
  organization: Landscape Archaeology Research Group, Catalan Institute of Classical Archaeology, Pl. Rovellat s/n, 43003, Tarragona, Spain
– sequence: 2
  givenname: Hector A.
  orcidid: 0000-0002-9385-2370
  surname: Orengo
  fullname: Orengo, Hector A.
  email: horengo@icac.cat
  organization: Landscape Archaeology Research Group, Catalan Institute of Classical Archaeology, Pl. Rovellat s/n, 43003, Tarragona, Spain
– sequence: 3
  givenname: Felipe
  surname: Lumbreras
  fullname: Lumbreras, Felipe
  organization: Computer Vision Center, Computer Science Department, Universitat Autònoma de Barcelona, Edifici O, Campus UAB, 08193, Bellaterra, Spain
– sequence: 4
  givenname: Paloma
  surname: Aliende
  fullname: Aliende, Paloma
  organization: Landscape Archaeology Research Group, Catalan Institute of Classical Archaeology, Pl. Rovellat s/n, 43003, Tarragona, Spain
– sequence: 5
  givenname: Monica N.
  surname: Ramsey
  fullname: Ramsey, Monica N.
  organization: McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
BookMark eNp9kD1PwzAQhj0UibbwA9g8sqTYcT4aMZXyKVWCAWbLsS-tIycutoPUf4_bMDFUN5zOep_T-ZmhSW97QOiGkgUltLhrF63wi5SkaZzzIs8maEoYyZMsI-wSzbxvCaE0z9MpUqsh2E4EUFhBABm07bHoFZZGeK8bLcXpyTa4G0zQiQRj8MfuEKzRYefx4HW_xY8Ae7wB4fo4JQ_Cx30rs7UuZjp_hS4aYTxc__U5-np--ly_Jpv3l7f1apNIxkhIqAQmakVI01RVJaoMMgBI65rVBUtpI2M1BQWpAEi2FLRidQolK6AoaUEyNke34969s98D-MA77Y8Hix7s4Hla0iXLlyUlMUrHqHTWewcN3zvdCXfglPCjRd7yaJEfLfLRYmTKf4zU4aQnOKHNWfJ-JCH-_keD415q6CUo7aJzrqw-Q_8CH1CSkg
CitedBy_id crossref_primary_10_4108_eetpht_10_5477
crossref_primary_10_1093_aob_mcae116
crossref_primary_10_1007_s00334_023_00908_2
crossref_primary_10_1016_j_microc_2024_112243
crossref_primary_10_1007_s12145_023_00975_z
crossref_primary_10_1007_s13748_024_00331_2
crossref_primary_10_1038_s41598_023_38190_x
crossref_primary_10_1016_j_jas_2025_106244
crossref_primary_10_1093_aob_mcaf088
Cites_doi 10.1017/S1431927620024629
10.1007/s12520-016-0341-0
10.1371/journal.pone.0004448
10.1093/aob/mcaa102
10.1016/j.quaint.2007.11.008
10.3389/fpls.2019.01736
10.1093/aob/mcz064
10.1007/s12520-014-0190-7
10.3390/rs13204181
10.1111/jse.12258
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jas.2022.105654
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline History & Archaeology
ExternalDocumentID 10_1016_j_jas_2022_105654
S0305440322001121
GeographicLocations Middle East
GeographicLocations_xml – name: Middle East
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JO
AABNK
AABXZ
AACJB
AACTN
AAEDT
AAEDW
AAFJI
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABMMH
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADMHG
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AETEA
AEZYN
AFJKZ
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LPU
M3X
M41
MAGPM
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSH
SSM
SSO
SSS
SSZ
T5K
TN5
VJK
WUQ
XOL
XPP
YQT
ZCG
ZMT
ZU3
~02
~G-
9DU
AAYWO
AAYXX
ABUFD
ACLOT
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c330t-1ce3abd00ff999a94e4eee2bb3b6321fcfcff61ecdee048a193b2e736e6716043
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000891291000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-4403
IngestDate Thu Oct 02 22:54:21 EDT 2025
Tue Nov 18 22:18:51 EST 2025
Sat Nov 29 08:02:21 EST 2025
Sat Apr 19 15:52:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Phytoliths
Google colaboratory
Computational archaeology
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-1ce3abd00ff999a94e4eee2bb3b6321fcfcff61ecdee048a193b2e736e6716043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9385-2370
PQID 2718358710
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718358710
crossref_primary_10_1016_j_jas_2022_105654
crossref_citationtrail_10_1016_j_jas_2022_105654
elsevier_sciencedirect_doi_10_1016_j_jas_2022_105654
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Journal of archaeological science
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Orengo, Garcia-Molsosa, Berganzo-Besga, Landauer, Aliende, Tres-Martínez (bib11) 2021
Hošková, Pokorná, Neustupa, Pokorný (bib8) 2021; 127
Rapp, Mulholland (bib14) 1992
Battiato, Guarnera, Ortis, Trenta, Ascari, Siniscalco, De Gregorio, Suárez (bib2) 2021
Lu, Zhang, Wu, Liu, Xu, Li (bib10) 2009; 4
Rosen (bib15) 1992; ume 1
(bib9) 2019; 124
Anichini, Banterle, Buxeda i Garrigós, Callieri, Dershowitz, Dubbini, Lucendo, Evans, Gattiglia, Green, Gualandi, Hervas, Itkin, Madrid i Fernandez, Miguel, Remmy, Richards, Scopigno, Vila, Wolf, Wright, Zallocco (bib1) 2020; 52
Cai, Ge (bib4) 2017; 55
Strömberg (bib16) 2009; 193
Ge, Lu, Zhang, Wang, He, Huan (bib6) 2018; 10
(bib12) 2019
Waleed (bib18) 2017
Weisskopf, Lee (bib19) 2016; 8
Torres (bib17) 2020
Piperno (bib13) 2006
Berganzo-Besga, Orengo, Lumbreras, Carrero-Pazos, Fonte, Vilas-Estévez (bib3) 2021; 13
Ge (bib7) 2019; 10
Díez-Pastor, Latorre-Carmona, Arnaiz-González, Ruiz-Pérez, Zurro (bib5) 2020; 26
Ge (10.1016/j.jas.2022.105654_bib7) 2019; 10
Lu (10.1016/j.jas.2022.105654_bib10) 2009; 4
Díez-Pastor (10.1016/j.jas.2022.105654_bib5) 2020; 26
Rosen (10.1016/j.jas.2022.105654_bib15) 1992; ume 1
Orengo (10.1016/j.jas.2022.105654_bib11) 2021
Berganzo-Besga (10.1016/j.jas.2022.105654_bib3) 2021; 13
Strömberg (10.1016/j.jas.2022.105654_bib16) 2009; 193
Battiato (10.1016/j.jas.2022.105654_bib2) 2021
Anichini (10.1016/j.jas.2022.105654_bib1) 2020; 52
(10.1016/j.jas.2022.105654_bib12) 2019
Ge (10.1016/j.jas.2022.105654_bib6) 2018; 10
Hošková (10.1016/j.jas.2022.105654_bib8) 2021; 127
Waleed (10.1016/j.jas.2022.105654_bib18) 2017
Torres (10.1016/j.jas.2022.105654_bib17) 2020
Cai (10.1016/j.jas.2022.105654_bib4) 2017; 55
Piperno (10.1016/j.jas.2022.105654_bib13) 2006
(10.1016/j.jas.2022.105654_bib9) 2019; 124
Weisskopf (10.1016/j.jas.2022.105654_bib19) 2016; 8
Rapp (10.1016/j.jas.2022.105654_bib14) 1992
References_xml – volume: 193
  start-page: 124
  year: 2009
  end-page: 140
  ident: bib16
  article-title: Methodological concerns for analysis of phytolith assemblages: does count size matter?
  publication-title: Quat. Int.
– start-page: 231
  year: 2020
  end-page: 253
  ident: bib17
  article-title: Python Deep Learning. Introducción Práctica con Keras y TensorFlow2
– volume: 10
  start-page: 1736
  year: 2019
  ident: bib7
  article-title: Phytoliths in inflorescence bracts: preliminary results of an investigation on common panicoideae plants in China
  publication-title: Front. Plant Sci.
– volume: 13
  start-page: 4181
  year: 2021
  ident: bib3
  article-title: Hybrid MSRM-based deep learning and multitemporal sentinel 2-based machine learning algorithm detects near 10k archaeological tumuli in North-Western Iberia
  publication-title: Rem. Sens.
– start-page: 1
  year: 2021
  end-page: 8
  ident: bib11
  article-title: New developments in drone-based automated surface survey: towards a functional and effective survey system
  publication-title: Archaeol. Prospect.
– year: 2006
  ident: bib13
  article-title: Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists
– volume: 55
  start-page: 377
  year: 2017
  end-page: 384
  ident: bib4
  article-title: Machine learning algorithms improve the power of phytolith analysis: a case study of the tribe Oryzeae (Poaceae)
  publication-title: J. Systemat. Evol.
– volume: 26
  start-page: 1158
  year: 2020
  end-page: 1167
  ident: bib5
  article-title: You Are Not My Type”: An Evaluation of Classification Methods for Automatic Phytolith Identification
  publication-title: Microsc. Microanal.
– start-page: 469
  year: 2021
  end-page: 479
  ident: bib2
  article-title: Pollen grain classification challenge 2020
  publication-title: Pattern Recognition. ICPR International Workshops and Challenges
– volume: 127
  start-page: 191
  year: 2021
  end-page: 201
  ident: bib8
  article-title: Inter- and intraspecific variation in grass phytolith shape and size: a geometric morphometrics perspective
  publication-title: Ann. Bot.
– volume: 124
  start-page: 189
  year: 2019
  end-page: 199
  ident: bib9
  article-title: International code for phytolith nomenclature (ICPN) 2.0
  publication-title: Ann. Bot.
– volume: 10
  start-page: 61
  year: 2018
  end-page: 73
  ident: bib6
  article-title: Phytolith analysis for the identification of barnyard millet (
  publication-title: Archaeol. Anthropol. Sci.
– volume: 52
  year: 2020
  ident: bib1
  article-title: Developing the ArchAIDE Application: a digital workflow for identifying, organising and sharing archaeological pottery using automated image recognition
  publication-title: Internet Archaeol.
– volume: 4
  start-page: e4448
  year: 2009
  ident: bib10
  article-title: Phytoliths analysis for the discrimination of foxtail millet (
  publication-title: PLoS One
– volume: ume 1
  start-page: 129
  year: 1992
  end-page: 147
  ident: bib15
  article-title: Preliminary identification of silica skeletons from near eastern archaeological sites: an anatomical approach
  publication-title: Phytolith Systematics: Emerging Issues. Advances in Archaeological and Museum Science
– year: 1992
  ident: bib14
  article-title: Phytolith Systematics: Emerging Issues. Advances in Archaeological and Museum Science
– year: 2017
  ident: bib18
  article-title: Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow
– year: 2019
  ident: bib12
  article-title: Phytolith Automatic Identification System” v.0.2
– volume: 8
  start-page: 29
  year: 2016
  end-page: 42
  ident: bib19
  article-title: Phytolith identification criteria for foxtail and broomcorn millets: a new approach to calculating crop ratios
  publication-title: Archaeol. Anthropol. Sci.
– volume: 26
  start-page: 1158
  issue: 6
  year: 2020
  ident: 10.1016/j.jas.2022.105654_bib5
  article-title: You Are Not My Type”: An Evaluation of Classification Methods for Automatic Phytolith Identification
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927620024629
– volume: 10
  start-page: 61
  year: 2018
  ident: 10.1016/j.jas.2022.105654_bib6
  article-title: Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications
  publication-title: Archaeol. Anthropol. Sci.
  doi: 10.1007/s12520-016-0341-0
– volume: 4
  start-page: e4448
  issue: 2
  year: 2009
  ident: 10.1016/j.jas.2022.105654_bib10
  article-title: Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004448
– start-page: 1
  year: 2021
  ident: 10.1016/j.jas.2022.105654_bib11
  article-title: New developments in drone-based automated surface survey: towards a functional and effective survey system
  publication-title: Archaeol. Prospect.
– year: 2019
  ident: 10.1016/j.jas.2022.105654_bib12
– volume: 127
  start-page: 191
  issue: 2
  year: 2021
  ident: 10.1016/j.jas.2022.105654_bib8
  article-title: Inter- and intraspecific variation in grass phytolith shape and size: a geometric morphometrics perspective
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcaa102
– volume: 193
  start-page: 124
  issue: 1–2
  year: 2009
  ident: 10.1016/j.jas.2022.105654_bib16
  article-title: Methodological concerns for analysis of phytolith assemblages: does count size matter?
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2007.11.008
– volume: 10
  start-page: 1736
  year: 2019
  ident: 10.1016/j.jas.2022.105654_bib7
  article-title: Phytoliths in inflorescence bracts: preliminary results of an investigation on common panicoideae plants in China
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01736
– volume: 124
  start-page: 189
  issue: 2
  year: 2019
  ident: 10.1016/j.jas.2022.105654_bib9
  article-title: International code for phytolith nomenclature (ICPN) 2.0
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcz064
– volume: 8
  start-page: 29
  issue: 1
  year: 2016
  ident: 10.1016/j.jas.2022.105654_bib19
  article-title: Phytolith identification criteria for foxtail and broomcorn millets: a new approach to calculating crop ratios
  publication-title: Archaeol. Anthropol. Sci.
  doi: 10.1007/s12520-014-0190-7
– year: 1992
  ident: 10.1016/j.jas.2022.105654_bib14
– volume: ume 1
  start-page: 129
  year: 1992
  ident: 10.1016/j.jas.2022.105654_bib15
  article-title: Preliminary identification of silica skeletons from near eastern archaeological sites: an anatomical approach
– start-page: 231
  year: 2020
  ident: 10.1016/j.jas.2022.105654_bib17
– volume: 52
  year: 2020
  ident: 10.1016/j.jas.2022.105654_bib1
  article-title: Developing the ArchAIDE Application: a digital workflow for identifying, organising and sharing archaeological pottery using automated image recognition
  publication-title: Internet Archaeol.
– year: 2006
  ident: 10.1016/j.jas.2022.105654_bib13
– volume: 13
  start-page: 4181
  year: 2021
  ident: 10.1016/j.jas.2022.105654_bib3
  article-title: Hybrid MSRM-based deep learning and multitemporal sentinel 2-based machine learning algorithm detects near 10k archaeological tumuli in North-Western Iberia
  publication-title: Rem. Sens.
  doi: 10.3390/rs13204181
– start-page: 469
  year: 2021
  ident: 10.1016/j.jas.2022.105654_bib2
  article-title: Pollen grain classification challenge 2020
– volume: 55
  start-page: 377
  issue: 4
  year: 2017
  ident: 10.1016/j.jas.2022.105654_bib4
  article-title: Machine learning algorithms improve the power of phytolith analysis: a case study of the tribe Oryzeae (Poaceae)
  publication-title: J. Systemat. Evol.
  doi: 10.1111/jse.12258
– year: 2017
  ident: 10.1016/j.jas.2022.105654_bib18
SSID ssj0011552
Score 2.4277923
Snippet This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105654
SubjectTerms algorithms
archaeology
automation
color
Computational archaeology
Deep learning
Google colaboratory
Hordeum
Machine learning
Middle East
paleoecology
Phytoliths
species
Triticum monococcum subsp. aegilopoides
Title Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms
URI https://dx.doi.org/10.1016/j.jas.2022.105654
https://www.proquest.com/docview/2718358710
Volume 148
WOSCitedRecordID wos000891291000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  issn: 0305-4403
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0011552
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMXxKOI8tIioR6ItnLW76MLiSiq0h5SKTfLux63jVLbJE7VcOGvM-td26RAVQ4okhVZ4yTa-bLzzc6LkA9hKl0RJhYDIXzmIGFliZcGDIahK4a4KQduVg-b8CeTYDYLT3u9H00tzPXCz_Pg5iYs_6uq8R4qW5XO_oO62w_FG_gelY5XVDte76X4aF0VSEORSKZQgZkErorXFE9WiUEtSayTCZmsT-8uNpXKhLtYDdb16cFngLJpvnrODtHWpYNocV4sUcY0OP-d0taNl6DdTo11bT1-UHWf3wt2CCt9nHskOmyeLCE_L7QlVIGEQXTQJgutr9BxX-rSszEsLssOp0ihc905-DRZFMbImFMMzn_JCDHVW5bLHMeyt3ZmJxiUahKx5zrsj_u9PnqYH8wT1XqdcyPcGbcmoD85icdnx8fxdDSb7pffmBo7psLzZgbLA7LDfTcM-mQnOhrNvraBKNWhTgei9M9rAuN1iuCtb_0btbll5GvmMn1CHhv90EhD5SnpQf6M7Or-MBu6T6NWa5vnJG3hQ1v4UIQP3YYPLTLawYd28KE1fKiCD92GD-3gs0vOxqPppy_MTOJg0ratig0l2IlILSvL0KFIQgccAOBC2MKz-TCT-Mq8IcgUAE1Cgl6B4ODbHnjoj1uO_YL08yKHl4R6rhtIIZ1Mct9JLE_wEKVsHiZ25gk_3CNWs4ixNG3q1bSURdzkI85jXPdYrXus132PfGwfKXWPlruEnUYzsfkbaPIYI6bueux9o8UYN2C1tkkOxRqFkN3ZboBM_dU9ZF6TRx3835B-tVzDW_JQXleXq-U7g76f0_isJg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+and+classification+of+multi-cell+Phytoliths+using+Deep+Learning-Based+Algorithms&rft.jtitle=Journal+of+archaeological+science&rft.au=Berganzo-Besga%2C+Iban&rft.au=Orengo%2C+Hector+A.&rft.au=Lumbreras%2C+Felipe&rft.au=Aliende%2C+Paloma&rft.date=2022-12-01&rft.issn=0305-4403&rft.volume=148+p.105654-&rft_id=info:doi/10.1016%2Fj.jas.2022.105654&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-4403&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-4403&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-4403&client=summon