Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching

In this paper, we prove that a stochastic logistic population under regime switching controlled by a Markov chain is either stochastically permanent or extinctive, and we obtain the sufficient and necessary conditions for stochastic permanence and extinction under some assumptions. In the case of st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 376; číslo 1; s. 11 - 28
Hlavní autoři: Li, Xiaoyue, Gray, Alison, Jiang, Daqing, Mao, Xuerong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.04.2011
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we prove that a stochastic logistic population under regime switching controlled by a Markov chain is either stochastically permanent or extinctive, and we obtain the sufficient and necessary conditions for stochastic permanence and extinction under some assumptions. In the case of stochastic permanence we estimate the limit of the average in time of the sample path of the solution by two constants related to the stationary probability distribution of the Markov chain and the parameters of the subsystems of the population model. Finally, we illustrate our conclusions through two examples.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2010.10.053