Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching

In this paper, we prove that a stochastic logistic population under regime switching controlled by a Markov chain is either stochastically permanent or extinctive, and we obtain the sufficient and necessary conditions for stochastic permanence and extinction under some assumptions. In the case of st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 376; číslo 1; s. 11 - 28
Hlavní autoři: Li, Xiaoyue, Gray, Alison, Jiang, Daqing, Mao, Xuerong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.04.2011
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we prove that a stochastic logistic population under regime switching controlled by a Markov chain is either stochastically permanent or extinctive, and we obtain the sufficient and necessary conditions for stochastic permanence and extinction under some assumptions. In the case of stochastic permanence we estimate the limit of the average in time of the sample path of the solution by two constants related to the stationary probability distribution of the Markov chain and the parameters of the subsystems of the population model. Finally, we illustrate our conclusions through two examples.
AbstractList In this paper, we prove that a stochastic logistic population under regime switching controlled by a Markov chain is either stochastically permanent or extinctive, and we obtain the sufficient and necessary conditions for stochastic permanence and extinction under some assumptions. In the case of stochastic permanence we estimate the limit of the average in time of the sample path of the solution by two constants related to the stationary probability distribution of the Markov chain and the parameters of the subsystems of the population model. Finally, we illustrate our conclusions through two examples.
Author Li, Xiaoyue
Mao, Xuerong
Jiang, Daqing
Gray, Alison
Author_xml – sequence: 1
  givenname: Xiaoyue
  surname: Li
  fullname: Li, Xiaoyue
  email: lixy209@nenu.edu.cn, lixy209@yahoo.com.cn
  organization: School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, PR China
– sequence: 2
  givenname: Alison
  surname: Gray
  fullname: Gray, Alison
  organization: Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, Scotland, UK
– sequence: 3
  givenname: Daqing
  surname: Jiang
  fullname: Jiang, Daqing
  organization: School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, PR China
– sequence: 4
  givenname: Xuerong
  surname: Mao
  fullname: Mao, Xuerong
  organization: Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, Scotland, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23927494$$DView record in Pascal Francis
BookMark eNp9kU2LFDEQhoOs4OzqH_CUi8ceK0n3djd4kcUvWPCggrcmXanM1tCTDElG3T_g77Z7WkT2sKeC4nkK3rcuxUWIgYR4qWCrQF2_3m_3B2u3Gs6LLTTmidgo6K8r6JS5EBsArStdt9-ficuc9wBKNa3aiN9fTt4zMoUibXAyEFLONt1LjMFx4RiyjF7mEvHO5sIoj5QONlBAOhv0q3DABZQ-pv_BKe54NeLxNNn11ik4SjLRjg8k808ueMdh91w89XbK9OLvvBLf3r_7evOxuv384dPN29sKjYFSKWw64xoC1WunicBa06najuDGHrzRduxarce6rol63xsNIymF0HTUutqZK_FqvXu0Ge3kkw3IeTgmPsyZB2163dZ9PXN65TDFnBP5f4iCYWl82A9L48PS-LKbG5-l7oGEXM6xS7I8Pa6-WVWaw_9gSkNefoLkOBGWwUV-TP8Ddz2ijw
CODEN JMANAK
CitedBy_id crossref_primary_10_1016_j_mcm_2011_08_019
crossref_primary_10_1155_2021_6671499
crossref_primary_10_1016_j_chaos_2020_110462
crossref_primary_10_1016_j_physa_2017_04_056
crossref_primary_10_1016_j_physa_2019_121057
crossref_primary_10_1016_j_jde_2023_09_033
crossref_primary_10_1186_s13662_019_2266_2
crossref_primary_10_1016_j_physa_2019_121730
crossref_primary_10_1016_j_physa_2019_123116
crossref_primary_10_1007_s11071_019_04797_x
crossref_primary_10_1080_00207179_2021_1971301
crossref_primary_10_1007_s10255_023_1055_6
crossref_primary_10_1007_s10492_014_0058_2
crossref_primary_10_1016_j_jfranklin_2014_04_015
crossref_primary_10_1007_s00033_023_02171_x
crossref_primary_10_1080_07362994_2016_1257944
crossref_primary_10_1016_j_chaos_2018_11_023
crossref_primary_10_1155_2015_479326
crossref_primary_10_1016_j_jmaa_2021_125424
crossref_primary_10_1007_s12190_020_01320_z
crossref_primary_10_1007_s00332_016_9337_2
crossref_primary_10_1016_j_ecocom_2021_100965
crossref_primary_10_1007_s10883_015_9276_5
crossref_primary_10_1016_j_jmaa_2015_04_056
crossref_primary_10_12677_aam_2025_143128
crossref_primary_10_3390_e21030252
crossref_primary_10_1016_j_jmaa_2019_06_074
crossref_primary_10_1007_s11071_016_3172_8
crossref_primary_10_1016_j_physa_2019_04_104
crossref_primary_10_1049_iet_cta_2016_0841
crossref_primary_10_1016_j_automatica_2015_03_017
crossref_primary_10_1080_17513758_2019_1609607
crossref_primary_10_1007_s12346_023_00743_w
crossref_primary_10_1016_j_physa_2019_04_070
crossref_primary_10_1016_j_aml_2012_04_010
crossref_primary_10_1155_2021_9479012
crossref_primary_10_1007_s12190_013_0725_6
crossref_primary_10_1016_j_spl_2012_11_006
crossref_primary_10_1155_2016_8453175
crossref_primary_10_1016_j_cnsns_2015_05_010
crossref_primary_10_1186_s13660_019_2072_0
crossref_primary_10_1186_s13662_015_0666_5
crossref_primary_10_1016_j_cnsns_2019_03_027
crossref_primary_10_1186_s13662_017_1440_7
crossref_primary_10_1080_17442508_2019_1612897
crossref_primary_10_1016_j_apm_2022_09_019
crossref_primary_10_1080_00207179_2019_1695951
crossref_primary_10_1016_j_apm_2019_10_010
crossref_primary_10_1016_j_sysconle_2012_11_008
crossref_primary_10_1007_s00332_017_9413_2
crossref_primary_10_1016_j_chaos_2012_08_011
crossref_primary_10_1155_2014_927013
crossref_primary_10_1016_j_amc_2019_124582
crossref_primary_10_1155_2019_8631272
crossref_primary_10_1007_s00477_020_01856_3
crossref_primary_10_1155_2014_320460
crossref_primary_10_1007_s00332_013_9167_4
crossref_primary_10_1007_s11071_016_2728_y
crossref_primary_10_1016_j_physa_2019_124064
crossref_primary_10_1007_s12190_013_0666_0
crossref_primary_10_1016_j_chaos_2020_110601
crossref_primary_10_1002_mma_1608
crossref_primary_10_1080_03610926_2018_1465089
crossref_primary_10_1080_23307706_2014_885291
crossref_primary_10_1016_j_matcom_2020_10_002
crossref_primary_10_1155_2014_963712
crossref_primary_10_1007_s11071_020_06151_y
crossref_primary_10_1186_s13662_020_02894_5
crossref_primary_10_1016_j_jmaa_2024_128096
crossref_primary_10_1155_2012_292740
crossref_primary_10_1016_j_jfranklin_2018_05_047
crossref_primary_10_1016_j_amc_2015_08_040
crossref_primary_10_1016_j_matcom_2013_04_011
crossref_primary_10_1186_s13662_015_0608_2
crossref_primary_10_1016_j_matcom_2023_03_034
crossref_primary_10_1049_iet_cta_2018_5506
crossref_primary_10_1016_j_cam_2013_03_037
crossref_primary_10_1016_j_matcom_2013_09_006
crossref_primary_10_1155_2020_5024830
crossref_primary_10_3390_math11122735
crossref_primary_10_3390_math13050784
crossref_primary_10_1186_s13662_018_1528_8
crossref_primary_10_1142_S0129167X14501055
crossref_primary_10_1080_07362994_2019_1695628
crossref_primary_10_1016_j_amc_2018_11_005
crossref_primary_10_1007_s11071_014_1371_8
crossref_primary_10_1155_2013_129072
crossref_primary_10_1016_j_jmaa_2022_126956
crossref_primary_10_1186_s13662_014_0345_y
crossref_primary_10_1016_j_amc_2021_126236
crossref_primary_10_1016_j_jmaa_2012_11_043
crossref_primary_10_1016_j_jmaa_2016_04_016
crossref_primary_10_1016_j_cnsns_2015_04_008
crossref_primary_10_1016_j_cnsns_2014_06_023
crossref_primary_10_1016_j_physa_2017_12_088
crossref_primary_10_1016_j_physa_2019_121782
crossref_primary_10_1016_j_physa_2019_121264
crossref_primary_10_1016_j_physa_2019_123049
crossref_primary_10_1155_2018_6146027
crossref_primary_10_1155_2014_637862
crossref_primary_10_1007_s12559_012_9149_0
crossref_primary_10_1155_2019_4876165
crossref_primary_10_1016_j_amc_2017_10_030
crossref_primary_10_1155_2014_495275
crossref_primary_10_1186_s13662_016_1011_3
crossref_primary_10_1002_mma_10586
crossref_primary_10_1016_j_nahs_2014_07_003
crossref_primary_10_1016_j_amc_2020_125040
crossref_primary_10_1186_s13660_019_2014_x
crossref_primary_10_1016_j_amc_2014_07_012
crossref_primary_10_1016_j_nahs_2018_05_002
crossref_primary_10_1007_s12190_022_01752_9
crossref_primary_10_1016_j_amc_2014_11_094
crossref_primary_10_1016_j_amc_2015_05_083
crossref_primary_10_1016_j_aml_2021_107670
crossref_primary_10_1186_s13662_020_02633_w
crossref_primary_10_1016_j_cnsns_2015_04_010
crossref_primary_10_1016_j_aml_2012_03_015
crossref_primary_10_1155_2018_3127404
crossref_primary_10_1016_j_physa_2019_122075
crossref_primary_10_1080_00207721_2016_1266528
crossref_primary_10_1016_j_physa_2018_09_189
crossref_primary_10_1016_j_cnsns_2016_01_013
crossref_primary_10_1186_s13662_017_1251_x
crossref_primary_10_1016_j_amc_2021_126388
crossref_primary_10_1080_07362994_2019_1679645
crossref_primary_10_1155_2012_241702
crossref_primary_10_1016_j_cnsns_2016_12_020
crossref_primary_10_1016_j_jfranklin_2020_04_017
crossref_primary_10_1002_mma_7870
crossref_primary_10_1007_s12190_013_0669_x
crossref_primary_10_1016_j_mbs_2024_109223
crossref_primary_10_1155_2013_357869
crossref_primary_10_1016_j_physa_2014_11_060
crossref_primary_10_2298_TSCI2203743W
crossref_primary_10_1002_mma_8839
crossref_primary_10_1093_imamat_hxaf008
crossref_primary_10_1016_j_cnsns_2016_05_003
crossref_primary_10_1016_j_amc_2018_03_044
crossref_primary_10_1002_mma_9880
crossref_primary_10_1016_j_jmaa_2013_06_015
crossref_primary_10_1155_2017_3742197
crossref_primary_10_1186_s13662_019_2291_1
crossref_primary_10_1515_ms_2015_0119
crossref_primary_10_1016_j_nahs_2017_10_004
crossref_primary_10_1155_2015_862507
crossref_primary_10_1155_2019_8057153
crossref_primary_10_1137_15M1024512
crossref_primary_10_1155_2013_918569
crossref_primary_10_1016_j_amc_2017_08_042
crossref_primary_10_1155_2019_8326164
crossref_primary_10_1016_j_physa_2018_09_168
crossref_primary_10_1080_15326349_2024_2376223
Cites_doi 10.1016/j.automatica.2006.09.006
10.1016/S0362-546X(00)85003-8
10.1007/BF02462011
10.1006/jdeq.1995.1011
10.1016/j.jmaa.2007.08.014
10.1016/S0304-4149(01)00126-0
10.1016/S0022-247X(03)00539-0
10.2307/1936370
10.1016/j.jmaa.2003.12.004
10.1142/S021949370500133X
10.1016/j.jmaa.2004.08.027
10.1016/j.cam.2004.02.001
10.1016/0362-546X(86)90111-2
10.1016/j.jmaa.2006.12.032
10.1016/j.jmaa.2005.11.009
ContentType Journal Article
Copyright 2010 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.jmaa.2010.10.053
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 28
ExternalDocumentID 23927494
10_1016_j_jmaa_2010_10_053
S0022247X10009005
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 10701020; 60574025; 10971021; 10971022; 60740430664
– fundername: China Postdoctoral Science Foundation
  grantid: 20070420949
– fundername: Key Laboratory for Applied Statistics of MOE
– fundername: Key Project of Chinese Ministry of Education
  grantid: 106062; 109051
– fundername: NCET
  grantid: 080755
– fundername: Natural Science Foundation of Jilin Province
  grantid: 20101593
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
VH1
VOH
WH7
WUQ
XOL
XPP
YQT
YYP
ZCG
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c330t-1c583d5e0192d2ee0aa3814ab0db90f32ab8722b444ee9f9320be11c058e7d4d3
ISICitedReferencesCount 195
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286155800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-247X
IngestDate Wed Apr 02 07:28:22 EDT 2025
Tue Nov 18 22:03:26 EST 2025
Sat Nov 29 02:55:59 EST 2025
Fri Feb 23 02:23:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Brownian motion
Generalized Itô's formula
Markov chain
Stochastic permanence
Stochastic differential equation
Necessary condition
Sufficient condition
Mathematical analysis
Probability distribution
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-1c583d5e0192d2ee0aa3814ab0db90f32ab8722b444ee9f9320be11c058e7d4d3
OpenAccessLink https://dx.doi.org/10.1016/j.jmaa.2010.10.053
PageCount 18
ParticipantIDs pascalfrancis_primary_23927494
crossref_primary_10_1016_j_jmaa_2010_10_053
crossref_citationtrail_10_1016_j_jmaa_2010_10_053
elsevier_sciencedirect_doi_10_1016_j_jmaa_2010_10_053
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Jiang, Shi (br0050) 2005; 303
Ahmad, Lazer (br0010) 2000; 40
Pang, Deng, Mao (br0120) 2008; 15
Gard (br0080) 1986; 10
Bahar, Mao (br0100) 2004; 292
Luo, Mao (br0140) 2007; 334
Slatkin (br0160) 1978; 59
Jiang, Shi, Li (br0060) 2008; 340
Du, Kon, Sato, Takeuchi (br0150) 2004; 170
Mao (br0180) 1997
Bahar, Mao (br0110) 2004; 11
Freedman, Ruan (br0170) 1995; 115
Mao, Marion, Renshaw (br0030) 2003; 287
Takeuchi, Du, Hieu, Sato (br0130) 2006; 323
Mao, Yuan (br0190) 2006
Gard (br0090) 1998
Gard (br0070) 1984; 46
Mao, Yin, Yuan (br0200) 2007; 43
Mao, Marion, Renshaw (br0020) 2002; 97
Mao (br0040) 2005; 5
Mao (10.1016/j.jmaa.2010.10.053_br0190) 2006
Jiang (10.1016/j.jmaa.2010.10.053_br0050) 2005; 303
Mao (10.1016/j.jmaa.2010.10.053_br0180) 1997
Mao (10.1016/j.jmaa.2010.10.053_br0040) 2005; 5
Gard (10.1016/j.jmaa.2010.10.053_br0070) 1984; 46
Bahar (10.1016/j.jmaa.2010.10.053_br0100) 2004; 292
Gard (10.1016/j.jmaa.2010.10.053_br0090) 1998
Ahmad (10.1016/j.jmaa.2010.10.053_br0010) 2000; 40
Freedman (10.1016/j.jmaa.2010.10.053_br0170) 1995; 115
Gard (10.1016/j.jmaa.2010.10.053_br0080) 1986; 10
Mao (10.1016/j.jmaa.2010.10.053_br0030) 2003; 287
Pang (10.1016/j.jmaa.2010.10.053_br0120) 2008; 15
Slatkin (10.1016/j.jmaa.2010.10.053_br0160) 1978; 59
Mao (10.1016/j.jmaa.2010.10.053_br0020) 2002; 97
Jiang (10.1016/j.jmaa.2010.10.053_br0060) 2008; 340
Bahar (10.1016/j.jmaa.2010.10.053_br0110) 2004; 11
Luo (10.1016/j.jmaa.2010.10.053_br0140) 2007; 334
Mao (10.1016/j.jmaa.2010.10.053_br0200) 2007; 43
Takeuchi (10.1016/j.jmaa.2010.10.053_br0130) 2006; 323
Du (10.1016/j.jmaa.2010.10.053_br0150) 2004; 170
References_xml – volume: 97
  start-page: 95
  year: 2002
  end-page: 110
  ident: br0020
  article-title: Environmental Brownian noise suppresses explosions in population dynamics
  publication-title: Stochastic Process. Appl.
– volume: 40
  start-page: 37
  year: 2000
  end-page: 49
  ident: br0010
  article-title: Average conditions for global asymptotic stability in a nonautonomous Lotka–Volterra system
  publication-title: Nonlinear Anal.
– volume: 287
  start-page: 141
  year: 2003
  end-page: 156
  ident: br0030
  article-title: Asymptotic behavior of the stochastic Lotka–Volterra model
  publication-title: J. Math. Anal. Appl.
– volume: 292
  start-page: 364
  year: 2004
  end-page: 380
  ident: br0100
  article-title: Stochastic delay Lotka–Volterra model
  publication-title: J. Math. Anal. Appl.
– volume: 10
  start-page: 1411
  year: 1986
  end-page: 1419
  ident: br0080
  article-title: Stability for multispecies population models in random environments
  publication-title: Nonlinear Anal.
– year: 2006
  ident: br0190
  article-title: Stochastic Differential Equations with Markovian Switching
– volume: 5
  start-page: 149
  year: 2005
  end-page: 162
  ident: br0040
  article-title: Delay population dynamics and environmental noise
  publication-title: Stoch. Dyn.
– volume: 323
  start-page: 938
  year: 2006
  end-page: 957
  ident: br0130
  article-title: Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment
  publication-title: J. Math. Anal. Appl.
– volume: 303
  start-page: 164
  year: 2005
  end-page: 172
  ident: br0050
  article-title: A note on nonautonomous logistic equation with random perturbation
  publication-title: J. Math. Anal. Appl.
– volume: 340
  start-page: 588
  year: 2008
  end-page: 597
  ident: br0060
  article-title: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation
  publication-title: J. Math. Anal. Appl.
– volume: 59
  start-page: 249
  year: 1978
  end-page: 256
  ident: br0160
  article-title: The dynamics of a population in a Markovian environment
  publication-title: Ecology
– volume: 46
  start-page: 357
  year: 1984
  end-page: 370
  ident: br0070
  article-title: Persistence in stochastic food web models
  publication-title: Bull. Math. Biol.
– volume: 15
  start-page: 602
  year: 2008
  end-page: 620
  ident: br0120
  article-title: Asymptotic property of stochastic population dynamics
  publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.
– volume: 11
  start-page: 377
  year: 2004
  end-page: 400
  ident: br0110
  article-title: Stochastic delay population dynamics
  publication-title: Int. J. Pure Appl. Math.
– volume: 43
  start-page: 264
  year: 2007
  end-page: 273
  ident: br0200
  article-title: Stabilization and destabilization of hybrid systems of stochastic differential equations
  publication-title: Automatica
– year: 1997
  ident: br0180
  article-title: Stochastic Differential Equations and Applications
– volume: 170
  start-page: 399
  year: 2004
  end-page: 422
  ident: br0150
  article-title: Dynamical behavior of Lotka–Volterra competition systems: Non-autonomous bistable case and the effect of telegraph noise
  publication-title: J. Comput. Appl. Math.
– volume: 115
  start-page: 173
  year: 1995
  end-page: 192
  ident: br0170
  article-title: Uniform persistence in functional differential equations
  publication-title: J. Differential Equations
– volume: 334
  start-page: 69
  year: 2007
  end-page: 84
  ident: br0140
  article-title: Stochastic population dynamics under regime switching
  publication-title: J. Math. Anal. Appl.
– year: 1998
  ident: br0090
  article-title: Introduction to Stochastic Differential Equations
– volume: 43
  start-page: 264
  year: 2007
  ident: 10.1016/j.jmaa.2010.10.053_br0200
  article-title: Stabilization and destabilization of hybrid systems of stochastic differential equations
  publication-title: Automatica
  doi: 10.1016/j.automatica.2006.09.006
– volume: 40
  start-page: 37
  year: 2000
  ident: 10.1016/j.jmaa.2010.10.053_br0010
  article-title: Average conditions for global asymptotic stability in a nonautonomous Lotka–Volterra system
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(00)85003-8
– volume: 46
  start-page: 357
  year: 1984
  ident: 10.1016/j.jmaa.2010.10.053_br0070
  article-title: Persistence in stochastic food web models
  publication-title: Bull. Math. Biol.
  doi: 10.1007/BF02462011
– volume: 115
  start-page: 173
  year: 1995
  ident: 10.1016/j.jmaa.2010.10.053_br0170
  article-title: Uniform persistence in functional differential equations
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1995.1011
– volume: 340
  start-page: 588
  year: 2008
  ident: 10.1016/j.jmaa.2010.10.053_br0060
  article-title: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.08.014
– volume: 97
  start-page: 95
  year: 2002
  ident: 10.1016/j.jmaa.2010.10.053_br0020
  article-title: Environmental Brownian noise suppresses explosions in population dynamics
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/S0304-4149(01)00126-0
– volume: 287
  start-page: 141
  year: 2003
  ident: 10.1016/j.jmaa.2010.10.053_br0030
  article-title: Asymptotic behavior of the stochastic Lotka–Volterra model
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(03)00539-0
– volume: 59
  start-page: 249
  year: 1978
  ident: 10.1016/j.jmaa.2010.10.053_br0160
  article-title: The dynamics of a population in a Markovian environment
  publication-title: Ecology
  doi: 10.2307/1936370
– volume: 292
  start-page: 364
  year: 2004
  ident: 10.1016/j.jmaa.2010.10.053_br0100
  article-title: Stochastic delay Lotka–Volterra model
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2003.12.004
– volume: 5
  start-page: 149
  issue: 2
  year: 2005
  ident: 10.1016/j.jmaa.2010.10.053_br0040
  article-title: Delay population dynamics and environmental noise
  publication-title: Stoch. Dyn.
  doi: 10.1142/S021949370500133X
– volume: 303
  start-page: 164
  year: 2005
  ident: 10.1016/j.jmaa.2010.10.053_br0050
  article-title: A note on nonautonomous logistic equation with random perturbation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.08.027
– volume: 15
  start-page: 602
  year: 2008
  ident: 10.1016/j.jmaa.2010.10.053_br0120
  article-title: Asymptotic property of stochastic population dynamics
  publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.
– year: 2006
  ident: 10.1016/j.jmaa.2010.10.053_br0190
– volume: 170
  start-page: 399
  year: 2004
  ident: 10.1016/j.jmaa.2010.10.053_br0150
  article-title: Dynamical behavior of Lotka–Volterra competition systems: Non-autonomous bistable case and the effect of telegraph noise
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.02.001
– volume: 10
  start-page: 1411
  year: 1986
  ident: 10.1016/j.jmaa.2010.10.053_br0080
  article-title: Stability for multispecies population models in random environments
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(86)90111-2
– volume: 11
  start-page: 377
  year: 2004
  ident: 10.1016/j.jmaa.2010.10.053_br0110
  article-title: Stochastic delay population dynamics
  publication-title: Int. J. Pure Appl. Math.
– volume: 334
  start-page: 69
  year: 2007
  ident: 10.1016/j.jmaa.2010.10.053_br0140
  article-title: Stochastic population dynamics under regime switching
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.12.032
– year: 1997
  ident: 10.1016/j.jmaa.2010.10.053_br0180
– volume: 323
  start-page: 938
  year: 2006
  ident: 10.1016/j.jmaa.2010.10.053_br0130
  article-title: Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.11.009
– year: 1998
  ident: 10.1016/j.jmaa.2010.10.053_br0090
SSID ssj0011571
Score 2.434799
Snippet In this paper, we prove that a stochastic logistic population under regime switching controlled by a Markov chain is either stochastically permanent or...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Brownian motion
Exact sciences and technology
Generalized Itô's formula
Markov chain
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Sciences and techniques of general use
Stochastic differential equation
Stochastic permanence
Title Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching
URI https://dx.doi.org/10.1016/j.jmaa.2010.10.053
Volume 376
WOSCitedRecordID wos000286155800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0813
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011571
  issn: 0022-247X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwGLWqjgcQQly1cZn8wFsVlIuDk8cJxk0wIW1IeYt8i0i1piVpx_YH-If8Hz7bsZMObQIkXqLKip2q59T5bJ_vfAg9F9qUPGNpwDgXAYkUDzihOXBZqCrOoJs0Jq4f6dFRVhT558nkp8uFOTulTZOdn-er_wo1tAHYOnX2L-D2g0IDfAbQ4Qqww_WPgD_eGFcIpx1vlE4E0No4WPnK2gvfIOgTX5l2adbWxQvWKJc7ANN13QivQRzdaNOFdA9f9qszhXTbmS7wsFCz7nu9NurMK4LehXeJNR4FvSGKMYwdnaR7lZCRGhQ1W15sPAHftuzCpuZoIZRXANX9xvdr9s093my0m63gYqPaZd8qhz1bMt7i8Lk3W9JQk4cQE1rYN5mdvkMtqc5sdqub3xNbYGaLyHa27qd5-963Oeq_vVHs5sb8xXzBmFUCajGgNTi-5NR9bDKL4RvpM5PcOOvuxDTNsynaOXh_WHzwx1tRSiNnY6879NlcVnh4-UlXRUy3V6wDsCpbgGUUFZ3cRXd6ZPGBpeE9NFHNfXTrk0e5e4B-DITEADT2hMQDIfGywgPP8EBI02MgJAZCjm90hMQjQmJDSGwJiT0hH6Ivbw5PXr0L-uofgUiScB1EIs0SmSq9BpGxUiFjEF0SxkPJ87BKYsYzGsecEKJUXsE6JOQqikSYZopKIpNHaNosG7WLMKx5VJKxMJEwQKxkDnGyogwGJPylCsUeitwvXIreGl9XaDktnQZyXmpUSo2KbgNU9tDM91lZY5hr704dcGUf2tqQtQSeXdtvfwtl_6gY1jWU5OTxPw78BN0c_mlP0XTdbtQzdEOcreuu3e_5-guK4N6R
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sufficient+and+necessary+conditions+of+stochastic+permanence+and+extinction+for+stochastic+logistic+populations+under+regime+switching&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Li%2C+Xiaoyue&rft.au=Gray%2C+Alison&rft.au=Jiang%2C+Daqing&rft.au=Mao%2C+Xuerong&rft.date=2011-04-01&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=376&rft.issue=1&rft.spage=11&rft.epage=28&rft_id=info:doi/10.1016%2Fj.jmaa.2010.10.053&rft.externalDocID=S0022247X10009005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon