Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching
In this paper, we prove that a stochastic logistic population under regime switching controlled by a Markov chain is either stochastically permanent or extinctive, and we obtain the sufficient and necessary conditions for stochastic permanence and extinction under some assumptions. In the case of st...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 376; číslo 1; s. 11 - 28 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
01.04.2011
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we prove that a stochastic logistic population under regime switching controlled by a Markov chain is either stochastically permanent or extinctive, and we obtain the sufficient and necessary conditions for stochastic permanence and extinction under some assumptions. In the case of stochastic permanence we estimate the limit of the average in time of the sample path of the solution by two constants related to the stationary probability distribution of the Markov chain and the parameters of the subsystems of the population model. Finally, we illustrate our conclusions through two examples. |
|---|---|
| AbstractList | In this paper, we prove that a stochastic logistic population under regime switching controlled by a Markov chain is either stochastically permanent or extinctive, and we obtain the sufficient and necessary conditions for stochastic permanence and extinction under some assumptions. In the case of stochastic permanence we estimate the limit of the average in time of the sample path of the solution by two constants related to the stationary probability distribution of the Markov chain and the parameters of the subsystems of the population model. Finally, we illustrate our conclusions through two examples. |
| Author | Li, Xiaoyue Mao, Xuerong Jiang, Daqing Gray, Alison |
| Author_xml | – sequence: 1 givenname: Xiaoyue surname: Li fullname: Li, Xiaoyue email: lixy209@nenu.edu.cn, lixy209@yahoo.com.cn organization: School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, PR China – sequence: 2 givenname: Alison surname: Gray fullname: Gray, Alison organization: Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, Scotland, UK – sequence: 3 givenname: Daqing surname: Jiang fullname: Jiang, Daqing organization: School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, PR China – sequence: 4 givenname: Xuerong surname: Mao fullname: Mao, Xuerong organization: Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, Scotland, UK |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23927494$$DView record in Pascal Francis |
| BookMark | eNp9kU2LFDEQhoOs4OzqH_CUi8ceK0n3djd4kcUvWPCggrcmXanM1tCTDElG3T_g77Z7WkT2sKeC4nkK3rcuxUWIgYR4qWCrQF2_3m_3B2u3Gs6LLTTmidgo6K8r6JS5EBsArStdt9-ficuc9wBKNa3aiN9fTt4zMoUibXAyEFLONt1LjMFx4RiyjF7mEvHO5sIoj5QONlBAOhv0q3DABZQ-pv_BKe54NeLxNNn11ik4SjLRjg8k808ueMdh91w89XbK9OLvvBLf3r_7evOxuv384dPN29sKjYFSKWw64xoC1WunicBa06najuDGHrzRduxarce6rol63xsNIymF0HTUutqZK_FqvXu0Ge3kkw3IeTgmPsyZB2163dZ9PXN65TDFnBP5f4iCYWl82A9L48PS-LKbG5-l7oGEXM6xS7I8Pa6-WVWaw_9gSkNefoLkOBGWwUV-TP8Ddz2ijw |
| CODEN | JMANAK |
| CitedBy_id | crossref_primary_10_1016_j_mcm_2011_08_019 crossref_primary_10_1155_2021_6671499 crossref_primary_10_1016_j_chaos_2020_110462 crossref_primary_10_1016_j_physa_2017_04_056 crossref_primary_10_1016_j_physa_2019_121057 crossref_primary_10_1016_j_jde_2023_09_033 crossref_primary_10_1186_s13662_019_2266_2 crossref_primary_10_1016_j_physa_2019_121730 crossref_primary_10_1016_j_physa_2019_123116 crossref_primary_10_1007_s11071_019_04797_x crossref_primary_10_1080_00207179_2021_1971301 crossref_primary_10_1007_s10255_023_1055_6 crossref_primary_10_1007_s10492_014_0058_2 crossref_primary_10_1016_j_jfranklin_2014_04_015 crossref_primary_10_1007_s00033_023_02171_x crossref_primary_10_1080_07362994_2016_1257944 crossref_primary_10_1016_j_chaos_2018_11_023 crossref_primary_10_1155_2015_479326 crossref_primary_10_1016_j_jmaa_2021_125424 crossref_primary_10_1007_s12190_020_01320_z crossref_primary_10_1007_s00332_016_9337_2 crossref_primary_10_1016_j_ecocom_2021_100965 crossref_primary_10_1007_s10883_015_9276_5 crossref_primary_10_1016_j_jmaa_2015_04_056 crossref_primary_10_12677_aam_2025_143128 crossref_primary_10_3390_e21030252 crossref_primary_10_1016_j_jmaa_2019_06_074 crossref_primary_10_1007_s11071_016_3172_8 crossref_primary_10_1016_j_physa_2019_04_104 crossref_primary_10_1049_iet_cta_2016_0841 crossref_primary_10_1016_j_automatica_2015_03_017 crossref_primary_10_1080_17513758_2019_1609607 crossref_primary_10_1007_s12346_023_00743_w crossref_primary_10_1016_j_physa_2019_04_070 crossref_primary_10_1016_j_aml_2012_04_010 crossref_primary_10_1155_2021_9479012 crossref_primary_10_1007_s12190_013_0725_6 crossref_primary_10_1016_j_spl_2012_11_006 crossref_primary_10_1155_2016_8453175 crossref_primary_10_1016_j_cnsns_2015_05_010 crossref_primary_10_1186_s13660_019_2072_0 crossref_primary_10_1186_s13662_015_0666_5 crossref_primary_10_1016_j_cnsns_2019_03_027 crossref_primary_10_1186_s13662_017_1440_7 crossref_primary_10_1080_17442508_2019_1612897 crossref_primary_10_1016_j_apm_2022_09_019 crossref_primary_10_1080_00207179_2019_1695951 crossref_primary_10_1016_j_apm_2019_10_010 crossref_primary_10_1016_j_sysconle_2012_11_008 crossref_primary_10_1007_s00332_017_9413_2 crossref_primary_10_1016_j_chaos_2012_08_011 crossref_primary_10_1155_2014_927013 crossref_primary_10_1016_j_amc_2019_124582 crossref_primary_10_1155_2019_8631272 crossref_primary_10_1007_s00477_020_01856_3 crossref_primary_10_1155_2014_320460 crossref_primary_10_1007_s00332_013_9167_4 crossref_primary_10_1007_s11071_016_2728_y crossref_primary_10_1016_j_physa_2019_124064 crossref_primary_10_1007_s12190_013_0666_0 crossref_primary_10_1016_j_chaos_2020_110601 crossref_primary_10_1002_mma_1608 crossref_primary_10_1080_03610926_2018_1465089 crossref_primary_10_1080_23307706_2014_885291 crossref_primary_10_1016_j_matcom_2020_10_002 crossref_primary_10_1155_2014_963712 crossref_primary_10_1007_s11071_020_06151_y crossref_primary_10_1186_s13662_020_02894_5 crossref_primary_10_1016_j_jmaa_2024_128096 crossref_primary_10_1155_2012_292740 crossref_primary_10_1016_j_jfranklin_2018_05_047 crossref_primary_10_1016_j_amc_2015_08_040 crossref_primary_10_1016_j_matcom_2013_04_011 crossref_primary_10_1186_s13662_015_0608_2 crossref_primary_10_1016_j_matcom_2023_03_034 crossref_primary_10_1049_iet_cta_2018_5506 crossref_primary_10_1016_j_cam_2013_03_037 crossref_primary_10_1016_j_matcom_2013_09_006 crossref_primary_10_1155_2020_5024830 crossref_primary_10_3390_math11122735 crossref_primary_10_3390_math13050784 crossref_primary_10_1186_s13662_018_1528_8 crossref_primary_10_1142_S0129167X14501055 crossref_primary_10_1080_07362994_2019_1695628 crossref_primary_10_1016_j_amc_2018_11_005 crossref_primary_10_1007_s11071_014_1371_8 crossref_primary_10_1155_2013_129072 crossref_primary_10_1016_j_jmaa_2022_126956 crossref_primary_10_1186_s13662_014_0345_y crossref_primary_10_1016_j_amc_2021_126236 crossref_primary_10_1016_j_jmaa_2012_11_043 crossref_primary_10_1016_j_jmaa_2016_04_016 crossref_primary_10_1016_j_cnsns_2015_04_008 crossref_primary_10_1016_j_cnsns_2014_06_023 crossref_primary_10_1016_j_physa_2017_12_088 crossref_primary_10_1016_j_physa_2019_121782 crossref_primary_10_1016_j_physa_2019_121264 crossref_primary_10_1016_j_physa_2019_123049 crossref_primary_10_1155_2018_6146027 crossref_primary_10_1155_2014_637862 crossref_primary_10_1007_s12559_012_9149_0 crossref_primary_10_1155_2019_4876165 crossref_primary_10_1016_j_amc_2017_10_030 crossref_primary_10_1155_2014_495275 crossref_primary_10_1186_s13662_016_1011_3 crossref_primary_10_1002_mma_10586 crossref_primary_10_1016_j_nahs_2014_07_003 crossref_primary_10_1016_j_amc_2020_125040 crossref_primary_10_1186_s13660_019_2014_x crossref_primary_10_1016_j_amc_2014_07_012 crossref_primary_10_1016_j_nahs_2018_05_002 crossref_primary_10_1007_s12190_022_01752_9 crossref_primary_10_1016_j_amc_2014_11_094 crossref_primary_10_1016_j_amc_2015_05_083 crossref_primary_10_1016_j_aml_2021_107670 crossref_primary_10_1186_s13662_020_02633_w crossref_primary_10_1016_j_cnsns_2015_04_010 crossref_primary_10_1016_j_aml_2012_03_015 crossref_primary_10_1155_2018_3127404 crossref_primary_10_1016_j_physa_2019_122075 crossref_primary_10_1080_00207721_2016_1266528 crossref_primary_10_1016_j_physa_2018_09_189 crossref_primary_10_1016_j_cnsns_2016_01_013 crossref_primary_10_1186_s13662_017_1251_x crossref_primary_10_1016_j_amc_2021_126388 crossref_primary_10_1080_07362994_2019_1679645 crossref_primary_10_1155_2012_241702 crossref_primary_10_1016_j_cnsns_2016_12_020 crossref_primary_10_1016_j_jfranklin_2020_04_017 crossref_primary_10_1002_mma_7870 crossref_primary_10_1007_s12190_013_0669_x crossref_primary_10_1016_j_mbs_2024_109223 crossref_primary_10_1155_2013_357869 crossref_primary_10_1016_j_physa_2014_11_060 crossref_primary_10_2298_TSCI2203743W crossref_primary_10_1002_mma_8839 crossref_primary_10_1093_imamat_hxaf008 crossref_primary_10_1016_j_cnsns_2016_05_003 crossref_primary_10_1016_j_amc_2018_03_044 crossref_primary_10_1002_mma_9880 crossref_primary_10_1016_j_jmaa_2013_06_015 crossref_primary_10_1155_2017_3742197 crossref_primary_10_1186_s13662_019_2291_1 crossref_primary_10_1515_ms_2015_0119 crossref_primary_10_1016_j_nahs_2017_10_004 crossref_primary_10_1155_2015_862507 crossref_primary_10_1155_2019_8057153 crossref_primary_10_1137_15M1024512 crossref_primary_10_1155_2013_918569 crossref_primary_10_1016_j_amc_2017_08_042 crossref_primary_10_1155_2019_8326164 crossref_primary_10_1016_j_physa_2018_09_168 crossref_primary_10_1080_15326349_2024_2376223 |
| Cites_doi | 10.1016/j.automatica.2006.09.006 10.1016/S0362-546X(00)85003-8 10.1007/BF02462011 10.1006/jdeq.1995.1011 10.1016/j.jmaa.2007.08.014 10.1016/S0304-4149(01)00126-0 10.1016/S0022-247X(03)00539-0 10.2307/1936370 10.1016/j.jmaa.2003.12.004 10.1142/S021949370500133X 10.1016/j.jmaa.2004.08.027 10.1016/j.cam.2004.02.001 10.1016/0362-546X(86)90111-2 10.1016/j.jmaa.2006.12.032 10.1016/j.jmaa.2005.11.009 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW |
| DOI | 10.1016/j.jmaa.2010.10.053 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1096-0813 |
| EndPage | 28 |
| ExternalDocumentID | 23927494 10_1016_j_jmaa_2010_10_053 S0022247X10009005 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 10701020; 60574025; 10971021; 10971022; 60740430664 – fundername: China Postdoctoral Science Foundation grantid: 20070420949 – fundername: Key Laboratory for Applied Statistics of MOE – fundername: Key Project of Chinese Ministry of Education grantid: 106062; 109051 – fundername: NCET grantid: 080755 – fundername: Natural Science Foundation of Jilin Province grantid: 20101593 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ UPT VH1 VOH WH7 WUQ XOL XPP YQT YYP ZCG ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c330t-1c583d5e0192d2ee0aa3814ab0db90f32ab8722b444ee9f9320be11c058e7d4d3 |
| ISICitedReferencesCount | 195 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286155800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-247X |
| IngestDate | Wed Apr 02 07:28:22 EDT 2025 Tue Nov 18 22:03:26 EST 2025 Sat Nov 29 02:55:59 EST 2025 Fri Feb 23 02:23:21 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Brownian motion Generalized Itô's formula Markov chain Stochastic permanence Stochastic differential equation Necessary condition Sufficient condition Mathematical analysis Probability distribution |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-1c583d5e0192d2ee0aa3814ab0db90f32ab8722b444ee9f9320be11c058e7d4d3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jmaa.2010.10.053 |
| PageCount | 18 |
| ParticipantIDs | pascalfrancis_primary_23927494 crossref_primary_10_1016_j_jmaa_2010_10_053 crossref_citationtrail_10_1016_j_jmaa_2010_10_053 elsevier_sciencedirect_doi_10_1016_j_jmaa_2010_10_053 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-04-01 |
| PublicationDateYYYYMMDD | 2011-04-01 |
| PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Journal of mathematical analysis and applications |
| PublicationYear | 2011 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Jiang, Shi (br0050) 2005; 303 Ahmad, Lazer (br0010) 2000; 40 Pang, Deng, Mao (br0120) 2008; 15 Gard (br0080) 1986; 10 Bahar, Mao (br0100) 2004; 292 Luo, Mao (br0140) 2007; 334 Slatkin (br0160) 1978; 59 Jiang, Shi, Li (br0060) 2008; 340 Du, Kon, Sato, Takeuchi (br0150) 2004; 170 Mao (br0180) 1997 Bahar, Mao (br0110) 2004; 11 Freedman, Ruan (br0170) 1995; 115 Mao, Marion, Renshaw (br0030) 2003; 287 Takeuchi, Du, Hieu, Sato (br0130) 2006; 323 Mao, Yuan (br0190) 2006 Gard (br0090) 1998 Gard (br0070) 1984; 46 Mao, Yin, Yuan (br0200) 2007; 43 Mao, Marion, Renshaw (br0020) 2002; 97 Mao (br0040) 2005; 5 Mao (10.1016/j.jmaa.2010.10.053_br0190) 2006 Jiang (10.1016/j.jmaa.2010.10.053_br0050) 2005; 303 Mao (10.1016/j.jmaa.2010.10.053_br0180) 1997 Mao (10.1016/j.jmaa.2010.10.053_br0040) 2005; 5 Gard (10.1016/j.jmaa.2010.10.053_br0070) 1984; 46 Bahar (10.1016/j.jmaa.2010.10.053_br0100) 2004; 292 Gard (10.1016/j.jmaa.2010.10.053_br0090) 1998 Ahmad (10.1016/j.jmaa.2010.10.053_br0010) 2000; 40 Freedman (10.1016/j.jmaa.2010.10.053_br0170) 1995; 115 Gard (10.1016/j.jmaa.2010.10.053_br0080) 1986; 10 Mao (10.1016/j.jmaa.2010.10.053_br0030) 2003; 287 Pang (10.1016/j.jmaa.2010.10.053_br0120) 2008; 15 Slatkin (10.1016/j.jmaa.2010.10.053_br0160) 1978; 59 Mao (10.1016/j.jmaa.2010.10.053_br0020) 2002; 97 Jiang (10.1016/j.jmaa.2010.10.053_br0060) 2008; 340 Bahar (10.1016/j.jmaa.2010.10.053_br0110) 2004; 11 Luo (10.1016/j.jmaa.2010.10.053_br0140) 2007; 334 Mao (10.1016/j.jmaa.2010.10.053_br0200) 2007; 43 Takeuchi (10.1016/j.jmaa.2010.10.053_br0130) 2006; 323 Du (10.1016/j.jmaa.2010.10.053_br0150) 2004; 170 |
| References_xml | – volume: 97 start-page: 95 year: 2002 end-page: 110 ident: br0020 article-title: Environmental Brownian noise suppresses explosions in population dynamics publication-title: Stochastic Process. Appl. – volume: 40 start-page: 37 year: 2000 end-page: 49 ident: br0010 article-title: Average conditions for global asymptotic stability in a nonautonomous Lotka–Volterra system publication-title: Nonlinear Anal. – volume: 287 start-page: 141 year: 2003 end-page: 156 ident: br0030 article-title: Asymptotic behavior of the stochastic Lotka–Volterra model publication-title: J. Math. Anal. Appl. – volume: 292 start-page: 364 year: 2004 end-page: 380 ident: br0100 article-title: Stochastic delay Lotka–Volterra model publication-title: J. Math. Anal. Appl. – volume: 10 start-page: 1411 year: 1986 end-page: 1419 ident: br0080 article-title: Stability for multispecies population models in random environments publication-title: Nonlinear Anal. – year: 2006 ident: br0190 article-title: Stochastic Differential Equations with Markovian Switching – volume: 5 start-page: 149 year: 2005 end-page: 162 ident: br0040 article-title: Delay population dynamics and environmental noise publication-title: Stoch. Dyn. – volume: 323 start-page: 938 year: 2006 end-page: 957 ident: br0130 article-title: Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment publication-title: J. Math. Anal. Appl. – volume: 303 start-page: 164 year: 2005 end-page: 172 ident: br0050 article-title: A note on nonautonomous logistic equation with random perturbation publication-title: J. Math. Anal. Appl. – volume: 340 start-page: 588 year: 2008 end-page: 597 ident: br0060 article-title: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation publication-title: J. Math. Anal. Appl. – volume: 59 start-page: 249 year: 1978 end-page: 256 ident: br0160 article-title: The dynamics of a population in a Markovian environment publication-title: Ecology – volume: 46 start-page: 357 year: 1984 end-page: 370 ident: br0070 article-title: Persistence in stochastic food web models publication-title: Bull. Math. Biol. – volume: 15 start-page: 602 year: 2008 end-page: 620 ident: br0120 article-title: Asymptotic property of stochastic population dynamics publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. – volume: 11 start-page: 377 year: 2004 end-page: 400 ident: br0110 article-title: Stochastic delay population dynamics publication-title: Int. J. Pure Appl. Math. – volume: 43 start-page: 264 year: 2007 end-page: 273 ident: br0200 article-title: Stabilization and destabilization of hybrid systems of stochastic differential equations publication-title: Automatica – year: 1997 ident: br0180 article-title: Stochastic Differential Equations and Applications – volume: 170 start-page: 399 year: 2004 end-page: 422 ident: br0150 article-title: Dynamical behavior of Lotka–Volterra competition systems: Non-autonomous bistable case and the effect of telegraph noise publication-title: J. Comput. Appl. Math. – volume: 115 start-page: 173 year: 1995 end-page: 192 ident: br0170 article-title: Uniform persistence in functional differential equations publication-title: J. Differential Equations – volume: 334 start-page: 69 year: 2007 end-page: 84 ident: br0140 article-title: Stochastic population dynamics under regime switching publication-title: J. Math. Anal. Appl. – year: 1998 ident: br0090 article-title: Introduction to Stochastic Differential Equations – volume: 43 start-page: 264 year: 2007 ident: 10.1016/j.jmaa.2010.10.053_br0200 article-title: Stabilization and destabilization of hybrid systems of stochastic differential equations publication-title: Automatica doi: 10.1016/j.automatica.2006.09.006 – volume: 40 start-page: 37 year: 2000 ident: 10.1016/j.jmaa.2010.10.053_br0010 article-title: Average conditions for global asymptotic stability in a nonautonomous Lotka–Volterra system publication-title: Nonlinear Anal. doi: 10.1016/S0362-546X(00)85003-8 – volume: 46 start-page: 357 year: 1984 ident: 10.1016/j.jmaa.2010.10.053_br0070 article-title: Persistence in stochastic food web models publication-title: Bull. Math. Biol. doi: 10.1007/BF02462011 – volume: 115 start-page: 173 year: 1995 ident: 10.1016/j.jmaa.2010.10.053_br0170 article-title: Uniform persistence in functional differential equations publication-title: J. Differential Equations doi: 10.1006/jdeq.1995.1011 – volume: 340 start-page: 588 year: 2008 ident: 10.1016/j.jmaa.2010.10.053_br0060 article-title: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2007.08.014 – volume: 97 start-page: 95 year: 2002 ident: 10.1016/j.jmaa.2010.10.053_br0020 article-title: Environmental Brownian noise suppresses explosions in population dynamics publication-title: Stochastic Process. Appl. doi: 10.1016/S0304-4149(01)00126-0 – volume: 287 start-page: 141 year: 2003 ident: 10.1016/j.jmaa.2010.10.053_br0030 article-title: Asymptotic behavior of the stochastic Lotka–Volterra model publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(03)00539-0 – volume: 59 start-page: 249 year: 1978 ident: 10.1016/j.jmaa.2010.10.053_br0160 article-title: The dynamics of a population in a Markovian environment publication-title: Ecology doi: 10.2307/1936370 – volume: 292 start-page: 364 year: 2004 ident: 10.1016/j.jmaa.2010.10.053_br0100 article-title: Stochastic delay Lotka–Volterra model publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2003.12.004 – volume: 5 start-page: 149 issue: 2 year: 2005 ident: 10.1016/j.jmaa.2010.10.053_br0040 article-title: Delay population dynamics and environmental noise publication-title: Stoch. Dyn. doi: 10.1142/S021949370500133X – volume: 303 start-page: 164 year: 2005 ident: 10.1016/j.jmaa.2010.10.053_br0050 article-title: A note on nonautonomous logistic equation with random perturbation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2004.08.027 – volume: 15 start-page: 602 year: 2008 ident: 10.1016/j.jmaa.2010.10.053_br0120 article-title: Asymptotic property of stochastic population dynamics publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. – year: 2006 ident: 10.1016/j.jmaa.2010.10.053_br0190 – volume: 170 start-page: 399 year: 2004 ident: 10.1016/j.jmaa.2010.10.053_br0150 article-title: Dynamical behavior of Lotka–Volterra competition systems: Non-autonomous bistable case and the effect of telegraph noise publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2004.02.001 – volume: 10 start-page: 1411 year: 1986 ident: 10.1016/j.jmaa.2010.10.053_br0080 article-title: Stability for multispecies population models in random environments publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(86)90111-2 – volume: 11 start-page: 377 year: 2004 ident: 10.1016/j.jmaa.2010.10.053_br0110 article-title: Stochastic delay population dynamics publication-title: Int. J. Pure Appl. Math. – volume: 334 start-page: 69 year: 2007 ident: 10.1016/j.jmaa.2010.10.053_br0140 article-title: Stochastic population dynamics under regime switching publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.12.032 – year: 1997 ident: 10.1016/j.jmaa.2010.10.053_br0180 – volume: 323 start-page: 938 year: 2006 ident: 10.1016/j.jmaa.2010.10.053_br0130 article-title: Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.11.009 – year: 1998 ident: 10.1016/j.jmaa.2010.10.053_br0090 |
| SSID | ssj0011571 |
| Score | 2.434799 |
| Snippet | In this paper, we prove that a stochastic logistic population under regime switching controlled by a Markov chain is either stochastically permanent or... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 11 |
| SubjectTerms | Brownian motion Exact sciences and technology Generalized Itô's formula Markov chain Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Sciences and techniques of general use Stochastic differential equation Stochastic permanence |
| Title | Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching |
| URI | https://dx.doi.org/10.1016/j.jmaa.2010.10.053 |
| Volume | 376 |
| WOSCitedRecordID | wos000286155800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0813 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0011571 issn: 0022-247X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwGLWqjgcQQly1cZn8wFsVlIuDk8cJxk0wIW1IeYt8i0i1piVpx_YH-If8Hz7bsZMObQIkXqLKip2q59T5bJ_vfAg9F9qUPGNpwDgXAYkUDzihOXBZqCrOoJs0Jq4f6dFRVhT558nkp8uFOTulTZOdn-er_wo1tAHYOnX2L-D2g0IDfAbQ4Qqww_WPgD_eGFcIpx1vlE4E0No4WPnK2gvfIOgTX5l2adbWxQvWKJc7ANN13QivQRzdaNOFdA9f9qszhXTbmS7wsFCz7nu9NurMK4LehXeJNR4FvSGKMYwdnaR7lZCRGhQ1W15sPAHftuzCpuZoIZRXANX9xvdr9s093my0m63gYqPaZd8qhz1bMt7i8Lk3W9JQk4cQE1rYN5mdvkMtqc5sdqub3xNbYGaLyHa27qd5-963Oeq_vVHs5sb8xXzBmFUCajGgNTi-5NR9bDKL4RvpM5PcOOvuxDTNsynaOXh_WHzwx1tRSiNnY6879NlcVnh4-UlXRUy3V6wDsCpbgGUUFZ3cRXd6ZPGBpeE9NFHNfXTrk0e5e4B-DITEADT2hMQDIfGywgPP8EBI02MgJAZCjm90hMQjQmJDSGwJiT0hH6Ivbw5PXr0L-uofgUiScB1EIs0SmSq9BpGxUiFjEF0SxkPJ87BKYsYzGsecEKJUXsE6JOQqikSYZopKIpNHaNosG7WLMKx5VJKxMJEwQKxkDnGyogwGJPylCsUeitwvXIreGl9XaDktnQZyXmpUSo2KbgNU9tDM91lZY5hr704dcGUf2tqQtQSeXdtvfwtl_6gY1jWU5OTxPw78BN0c_mlP0XTdbtQzdEOcreuu3e_5-guK4N6R |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sufficient+and+necessary+conditions+of+stochastic+permanence+and+extinction+for+stochastic+logistic+populations+under+regime+switching&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Li%2C+Xiaoyue&rft.au=Gray%2C+Alison&rft.au=Jiang%2C+Daqing&rft.au=Mao%2C+Xuerong&rft.date=2011-04-01&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=376&rft.issue=1&rft.spage=11&rft.epage=28&rft_id=info:doi/10.1016%2Fj.jmaa.2010.10.053&rft.externalDocID=S0022247X10009005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |