Some integral inequalities for harmonic h-convex functions involving hypergeometric functions

The aim of this paper is to establish some new Hermite–Hadamard type inequalities for harmonic h-convex functions involving hypergeometric functions. We also discuss some new and known special cases, which can be deduced from our results. The ideas and techniques of this paper may inspire further re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 252; s. 257 - 262
Hlavní autori: Mihai, Marcela V., Noor, Muhammad Aslam, Noor, Khalida Inayat, Awan, Muhammad Uzair
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.02.2015
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The aim of this paper is to establish some new Hermite–Hadamard type inequalities for harmonic h-convex functions involving hypergeometric functions. We also discuss some new and known special cases, which can be deduced from our results. The ideas and techniques of this paper may inspire further research in this field.
AbstractList The aim of this paper is to establish some new Hermite-Hadamard type inequalities for harmonic h-convex functions involving hypergeometric functions. We also discuss some new and known special cases, which can be deduced from our results. The ideas and techniques of this paper may inspire further research in this field.
Author Mihai, Marcela V.
Awan, Muhammad Uzair
Noor, Muhammad Aslam
Noor, Khalida Inayat
Author_xml – sequence: 1
  givenname: Marcela V.
  surname: Mihai
  fullname: Mihai, Marcela V.
  email: marcelamihai58@yahoo.com
  organization: Department of Mathematics, University of Craiova, Street A. I. Cuza 13, Craiova RO-200585, Romania
– sequence: 2
  givenname: Muhammad Aslam
  surname: Noor
  fullname: Noor, Muhammad Aslam
  email: noormaslam@gmail.com
  organization: Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
– sequence: 3
  givenname: Khalida Inayat
  surname: Noor
  fullname: Noor, Khalida Inayat
  email: khalidanoor@hotmail.com
  organization: Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
– sequence: 4
  givenname: Muhammad Uzair
  surname: Awan
  fullname: Awan, Muhammad Uzair
  email: awan.uzair@gmail.com
  organization: Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
BookMark eNp9kD1PwzAURS1UJErhB7BlZEmwE8exxYQqvqRKDMCILNd5aV0ldmu7Ff33uCpiYOj03nDOle69RCPrLCB0Q3BBMGF3q0INuigxoQUpC0z4GRoT3lR5zagYoTHGguUVxtUFugxhhTFuGKFj9PXuBsiMjbDwqk8PbLaqN9FAyDrns6Xyg7NGZ8tcO7uD76zbWh2NsyHBO9fvjF1ky_0a_AJSVPSJ_UOu0Hmn-gDXv3eCPp8eP6Yv-ezt-XX6MMt1VeGYE11iTIBrKuZcMUpVm0qJOaVNWQtRdYzWZSOg1LhlohGcMqUoAWg1b0rBqwm6PeauvdtsIUQ5mKCh75UFtw2SMCZ4zYVoEkqOqPYuBA-dXHszKL-XBMvDlHIl05TyMKUkpUxTJqf552gT1aFh9Mr0J837owmp_c6Al0EbsBpa40FH2Tpzwv4Bn62RSA
CitedBy_id crossref_primary_10_1186_s13660_020_02495_6
crossref_primary_10_3390_math11081957
crossref_primary_10_3390_axioms12040399
crossref_primary_10_1109_ACCESS_2019_2938341
crossref_primary_10_1080_09720502_2019_1698402
crossref_primary_10_1186_s13660_018_1896_3
crossref_primary_10_1186_s13660_017_1391_2
crossref_primary_10_1186_s13662_020_03004_1
crossref_primary_10_3390_math11020278
Cites_doi 10.5556/j.tkjm.45.2014.1365
10.1080/17476933.2014.976814
10.12785/amis/080623
10.1155/2014/346305
10.12785/amis/090129
10.1155/2014/279158
10.12988/ijma.2014.45136
10.1016/j.jmaa.2006.02.086
10.2298/FIL1504807N
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright_xml – notice: 2014 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.amc.2014.12.018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 262
ExternalDocumentID 10_1016_j_amc_2014_12_018
S0096300314016725
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-1c2001e8c49b8a644ad1019b44725993f645279e2c0d6979846aa41eedc872983
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349032500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Sep 27 16:53:46 EDT 2025
Sat Nov 29 06:12:42 EST 2025
Tue Nov 18 21:05:50 EST 2025
Fri Feb 23 02:30:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hypergeometric functions
Hermite–Hadamard’s inequalities
Convex
Harmonic h-convex functions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-1c2001e8c49b8a644ad1019b44725993f645279e2c0d6979846aa41eedc872983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669858997
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1669858997
crossref_primary_10_1016_j_amc_2014_12_018
crossref_citationtrail_10_1016_j_amc_2014_12_018
elsevier_sciencedirect_doi_10_1016_j_amc_2014_12_018
PublicationCentury 2000
PublicationDate 2015-02-01
2015-02-00
20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Noor, Cristescu, Awan (b0065) 2015
Dragomir, Pecaric, Persson (b0020) 1995; 21
Breckner (b0005) 1978; 23
Khattri (b0035) 2010; 117
Noor, Noor, Awan (b0070) 2015; 9
Varošanec (b0095) 2007; 326
Noor, Noor, Awan, Costache (b0080) 2015
M.V. Mihai, F.C. Mitroi, Hermite–Hadamard type inequalities obtained via Riemann-Liouville fractional calculus, Acta Math. Univ. Comenianae, Slovakia, Vol. LXXXIII, 2 (2104) 209–215.
Chen, Wu (b0025) 2014; 2014
Park (b0090) 2014; 8
Işcan (b0045) 2014; 2014
Noor, Noor, Awan (b0075) 2014
Dragomir (b0015) 2013; 16
Mihai (b0060) 2014; 45
Noor, Noor, Awan, Khan (b0085) 2014; 8
Kilbas, Srivastava, Trujillo (b0040) 2006
Cristescu, Lupsa (b0010) 2002
Mihai (b0050) 2013; 127–132
Godunova, Levin (b0030) 1985
Noor (10.1016/j.amc.2014.12.018_b0085) 2014; 8
Kilbas (10.1016/j.amc.2014.12.018_b0040) 2006
Mihai (10.1016/j.amc.2014.12.018_b0060) 2014; 45
Cristescu (10.1016/j.amc.2014.12.018_b0010) 2002
Varošanec (10.1016/j.amc.2014.12.018_b0095) 2007; 326
Noor (10.1016/j.amc.2014.12.018_b0080) 2015
Park (10.1016/j.amc.2014.12.018_b0090) 2014; 8
Dragomir (10.1016/j.amc.2014.12.018_b0015) 2013; 16
Işcan (10.1016/j.amc.2014.12.018_b0045) 2014; 2014
Chen (10.1016/j.amc.2014.12.018_b0025) 2014; 2014
Breckner (10.1016/j.amc.2014.12.018_b0005) 1978; 23
Khattri (10.1016/j.amc.2014.12.018_b0035) 2010; 117
Noor (10.1016/j.amc.2014.12.018_b0065) 2015
Noor (10.1016/j.amc.2014.12.018_b0075) 2014
Godunova (10.1016/j.amc.2014.12.018_b0030) 1985
Noor (10.1016/j.amc.2014.12.018_b0070) 2015; 9
10.1016/j.amc.2014.12.018_b0055
Dragomir (10.1016/j.amc.2014.12.018_b0020) 1995; 21
Mihai (10.1016/j.amc.2014.12.018_b0050) 2013; 127–132
References_xml – volume: 2014
  start-page: 7
  year: 2014
  ident: b0025
  article-title: Hermite–Hadamard type inequalities for harmonically
  publication-title: Sci. World J.
– volume: 45
  start-page: 285
  year: 2014
  end-page: 296
  ident: b0060
  article-title: New inequalities for co-ordinated convex functions via Riemann–Liouville fractional calculus
  publication-title: Tamkang J. Math.
– reference: M.V. Mihai, F.C. Mitroi, Hermite–Hadamard type inequalities obtained via Riemann-Liouville fractional calculus, Acta Math. Univ. Comenianae, Slovakia, Vol. LXXXIII, 2 (2104) 209–215.
– volume: 21
  start-page: 335
  year: 1995
  end-page: 341
  ident: b0020
  article-title: Some inequalities of Hadamard type
  publication-title: Soochow J. Math.
– start-page: 138
  year: 1985
  end-page: 142
  ident: b0030
  article-title: Neravenstva dlja funkcii sirokogo klassa soderzascego vypuklye monotonnye i nekotorye drugie vidy funkii
  publication-title: Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. MGPI Moskva.
– volume: 326
  start-page: 303
  year: 2007
  end-page: 311
  ident: b0095
  article-title: On
  publication-title: J. Math. Anal. Appl.
– year: 2014
  ident: b0075
  article-title: Integral inequalities for coordinated Harmonically convex functions
  publication-title: Complex Var. Elliptic Equ.
– year: 2015
  ident: b0080
  article-title: Some integral inequalities for harmonically
  publication-title: U.P.B. Sci. Bull. Serai A.
– volume: 2014
  start-page: 10
  year: 2014
  ident: b0045
  article-title: Hermite–Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions
  publication-title: J. Math.
– volume: 127–132
  year: 2013
  ident: b0050
  article-title: New Hermite–Hadamard type inequalities obtained via Riemann–Liouville fractional calculus
  publication-title: An Univ. Oradea Fasc. Mat.
– volume: 23
  start-page: 13
  year: 1978
  end-page: 20
  ident: b0005
  article-title: Stetigkeitsaussagen fiir eine Klasse verallgemeinerter convexer funktionen in topologischen linearen Raumen
  publication-title: Pupl. Inst. Math.
– year: 2006
  ident: b0040
  article-title: Theory and Applications of Fractional Differential Equations
– volume: 9
  start-page: 233
  year: 2015
  end-page: 243
  ident: b0070
  article-title: Generalized convexity and integral inequalities
  publication-title: Appl. Math. Inf. Sci.
– volume: 8
  start-page: 2865
  year: 2014
  end-page: 2872
  ident: b0085
  article-title: Fractional Hermite–Hadamard inequalities for some new classes of Godunova–Levin functions
  publication-title: Appl. Math. Inf. Sci.
– volume: 8
  start-page: 1321
  year: 2014
  end-page: 1337
  ident: b0090
  article-title: Hermite–Hadamard-like and Simpson-like type inequalities for harmonically convex functions
  publication-title: Int. J. Math. Anal.
– year: 2002
  ident: b0010
  article-title: Non-Connected Convexities and Applications
– volume: 16
  start-page: 11
  year: 2013
  ident: b0015
  article-title: Inequalities of Hermite–Hadamard type for
  publication-title: RGMIA Research Report Collection
– volume: 117
  start-page: 273
  year: 2010
  end-page: 277
  ident: b0035
  article-title: Three proofs of the inequality
  publication-title: Am. Math. Mon.
– year: 2015
  ident: b0065
  article-title: Generalized fractional Hermite–Hadamard inequalities for twice differentiable s-convex functions
  publication-title: Filomat
– volume: 45
  start-page: 285
  issue: 3
  year: 2014
  ident: 10.1016/j.amc.2014.12.018_b0060
  article-title: New inequalities for co-ordinated convex functions via Riemann–Liouville fractional calculus
  publication-title: Tamkang J. Math.
  doi: 10.5556/j.tkjm.45.2014.1365
– year: 2014
  ident: 10.1016/j.amc.2014.12.018_b0075
  article-title: Integral inequalities for coordinated Harmonically convex functions
  publication-title: Complex Var. Elliptic Equ.
  doi: 10.1080/17476933.2014.976814
– volume: 127–132
  year: 2013
  ident: 10.1016/j.amc.2014.12.018_b0050
  article-title: New Hermite–Hadamard type inequalities obtained via Riemann–Liouville fractional calculus
  publication-title: An Univ. Oradea Fasc. Mat.
– ident: 10.1016/j.amc.2014.12.018_b0055
– volume: 8
  start-page: 2865
  issue: 6
  year: 2014
  ident: 10.1016/j.amc.2014.12.018_b0085
  article-title: Fractional Hermite–Hadamard inequalities for some new classes of Godunova–Levin functions
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.12785/amis/080623
– start-page: 138
  year: 1985
  ident: 10.1016/j.amc.2014.12.018_b0030
  article-title: Neravenstva dlja funkcii sirokogo klassa soderzascego vypuklye monotonnye i nekotorye drugie vidy funkii
  publication-title: Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. MGPI Moskva.
– volume: 2014
  start-page: 10
  year: 2014
  ident: 10.1016/j.amc.2014.12.018_b0045
  article-title: Hermite–Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions
  publication-title: J. Math.
  doi: 10.1155/2014/346305
– volume: 21
  start-page: 335
  year: 1995
  ident: 10.1016/j.amc.2014.12.018_b0020
  article-title: Some inequalities of Hadamard type
  publication-title: Soochow J. Math.
– year: 2006
  ident: 10.1016/j.amc.2014.12.018_b0040
– volume: 9
  start-page: 233
  issue: 1
  year: 2015
  ident: 10.1016/j.amc.2014.12.018_b0070
  article-title: Generalized convexity and integral inequalities
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.12785/amis/090129
– year: 2002
  ident: 10.1016/j.amc.2014.12.018_b0010
– volume: 16
  start-page: 11
  year: 2013
  ident: 10.1016/j.amc.2014.12.018_b0015
  article-title: Inequalities of Hermite–Hadamard type for h-convex functions on linear spaces
  publication-title: RGMIA Research Report Collection
– volume: 2014
  start-page: 7
  year: 2014
  ident: 10.1016/j.amc.2014.12.018_b0025
  article-title: Hermite–Hadamard type inequalities for harmonically s-convex functions
  publication-title: Sci. World J.
  doi: 10.1155/2014/279158
– year: 2015
  ident: 10.1016/j.amc.2014.12.018_b0080
  article-title: Some integral inequalities for harmonically h-convex functions
  publication-title: U.P.B. Sci. Bull. Serai A.
– volume: 117
  start-page: 273
  issue: 3
  year: 2010
  ident: 10.1016/j.amc.2014.12.018_b0035
  article-title: Three proofs of the inequality e<1+1nn+0.5
  publication-title: Am. Math. Mon.
– volume: 8
  start-page: 1321
  issue: 27
  year: 2014
  ident: 10.1016/j.amc.2014.12.018_b0090
  article-title: Hermite–Hadamard-like and Simpson-like type inequalities for harmonically convex functions
  publication-title: Int. J. Math. Anal.
  doi: 10.12988/ijma.2014.45136
– volume: 326
  start-page: 303
  year: 2007
  ident: 10.1016/j.amc.2014.12.018_b0095
  article-title: On h-convexity
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.02.086
– volume: 23
  start-page: 13
  year: 1978
  ident: 10.1016/j.amc.2014.12.018_b0005
  article-title: Stetigkeitsaussagen fiir eine Klasse verallgemeinerter convexer funktionen in topologischen linearen Raumen
  publication-title: Pupl. Inst. Math.
– year: 2015
  ident: 10.1016/j.amc.2014.12.018_b0065
  article-title: Generalized fractional Hermite–Hadamard inequalities for twice differentiable s-convex functions
  publication-title: Filomat
  doi: 10.2298/FIL1504807N
SSID ssj0007614
Score 2.3396246
Snippet The aim of this paper is to establish some new Hermite–Hadamard type inequalities for harmonic h-convex functions involving hypergeometric functions. We also...
The aim of this paper is to establish some new Hermite-Hadamard type inequalities for harmonic h-convex functions involving hypergeometric functions. We also...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 257
SubjectTerms Computation
Convex
Harmonic h-convex functions
Harmonics
Hermite–Hadamard’s inequalities
Hypergeometric functions
Inequalities
Integrals
Mathematical analysis
Mathematical models
Title Some integral inequalities for harmonic h-convex functions involving hypergeometric functions
URI https://dx.doi.org/10.1016/j.amc.2014.12.018
https://www.proquest.com/docview/1669858997
Volume 252
WOSCitedRecordID wos000349032500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELZCywM8VOUSpRQZiScqV3t41_ZjhFqVIxVSD-UFWY7X26TKbqIcJfCr-ImM1-vNgagAiZdVtLE3Xs-X8cx45jNCbzJqad20IUzkEaHgKBOlQkVSQYOYp4CYqkLu6hM7O-Pdrvjcav3wtTC3Q1aWfLEQ4_8qargHwrals38h7uahcAM-g9DhCmKH6x8J_nxUGM8CYQk1jKubBI-4Sim0VNXVqTd9UmWcLw7t0uYzykFZVRGGPrink2sDj7IM_ssmq7asN2CLhvl16qvkxvP1Hf7OoD72umNLK4fq8OqoiUKPXMCgM--rolAZAGaois1vP_bhHTIF6kx9U02mTvurC982fS-_q8FkNZARJj732UfXfIXNWgKodbFIHAROCRqnpDmLSZI6qlOvxSNHhOv1sGO9rpf0yCn8X1YLF7i4OVKFJbMMaRUYrpeDdRLuczsOOwzrj6YsSu6h7YglAvTodvv9cfdDs_oD2h3zdz1uv5Ne5RRu_NDvbKENq6AydS520U7to-C2w9Yj1DLlY_SwsxTzE_TFogx7lOFVlGFAGfYowx5luIEQblCG11G2bPIUXZ4cX7w7JfVJHUTHcTAjobapeYZrKnpcgYmtMnhj0aMUpgos4NxunzNhIh1kqWACjF6laAj2mebg3fH4GdoqR6V5jnAUm6DXo4lI84gKI4RmSZJmNM-5zmF-91Dg50zqmsbenqYylD5f8UbCNEs7zTKMJEzzHnrbdBk7Dpe7GlMvCFkboc64lICau7q99kKToKDtrpsqzWg-lWGaCp5wIdiLf3v0Pnqw_Lu8RFuzydwcoPv6djaYTl7V-PsJBmi5zg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+integral+inequalities+for+harmonic+h-convex+functions+involving+hypergeometric+functions&rft.jtitle=Applied+mathematics+and+computation&rft.au=Mihai%2C+Marcela+V.&rft.au=Noor%2C+Muhammad+Aslam&rft.au=Noor%2C+Khalida+Inayat&rft.au=Awan%2C+Muhammad+Uzair&rft.date=2015-02-01&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=252&rft.spage=257&rft.epage=262&rft_id=info:doi/10.1016%2Fj.amc.2014.12.018&rft.externalDocID=S0096300314016725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon