Invariant subspaces of finite codimension in Banach spaces of analytic functions

We give a characterization of invariant subspaces of finite codimension in Banach spaces of vector-valued analytic functions in several variables, where invariant refers to invariance under multiplication by any polynomial. We obtain very weak conditions under which our characterization applies, tha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 373; číslo 1; s. 1 - 12
Hlavní autor: Carlsson, Marcus
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 2011
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We give a characterization of invariant subspaces of finite codimension in Banach spaces of vector-valued analytic functions in several variables, where invariant refers to invariance under multiplication by any polynomial. We obtain very weak conditions under which our characterization applies, that unifies and improves a number of previous results. In the vector-valued case, the results are new even for one complex variable. As a concrete application in several variables, we consider the Bergman space on a strictly pseudo-convex domain, and we improve previous results (assuming C ∞ -boundary) to the case of C 2 -boundary.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2010.06.001