Invariant subspaces of finite codimension in Banach spaces of analytic functions
We give a characterization of invariant subspaces of finite codimension in Banach spaces of vector-valued analytic functions in several variables, where invariant refers to invariance under multiplication by any polynomial. We obtain very weak conditions under which our characterization applies, tha...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 373; číslo 1; s. 1 - 12 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
2011
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We give a characterization of invariant subspaces of finite codimension in Banach spaces of vector-valued analytic functions in several variables, where invariant refers to invariance under multiplication by any polynomial. We obtain very weak conditions under which our characterization applies, that unifies and improves a number of previous results. In the vector-valued case, the results are new even for one complex variable. As a concrete application in several variables, we consider the Bergman space on a strictly pseudo-convex domain, and we improve previous results (assuming
C
∞
-boundary) to the case of
C
2
-boundary. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2010.06.001 |