Improved parameterized and exact algorithms for cut problems on trees

We study the Multicut on Trees and the Generalized Multiway Cut on Trees problems. For the Multicut on Trees problem, we present a parameterized algorithm that runs in time O⁎(ρk), where ρ=2+1<1.554 is the positive root of the polynomial x4−2x2−1. This improves the current-best algorithm of Chen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 607; s. 455 - 470
Hlavní autoři: Kanj, Iyad, Lin, Guohui, Liu, Tian, Tong, Weitian, Xia, Ge, Xu, Jinhui, Yang, Boting, Zhang, Fenghui, Zhang, Peng, Zhu, Binhai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2015
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the Multicut on Trees and the Generalized Multiway Cut on Trees problems. For the Multicut on Trees problem, we present a parameterized algorithm that runs in time O⁎(ρk), where ρ=2+1<1.554 is the positive root of the polynomial x4−2x2−1. This improves the current-best algorithm of Chen et al. that runs in time O⁎(1.619k). For the Generalized Multiway Cut on Trees problem, we show that this problem is solvable in polynomial time if the number of terminal sets is fixed; this answers an open question posed in a recent paper by Liu and Zhang. By reducing the Generalized Multiway Cut on Trees problem to the Multicut on Trees problem, our results give a parameterized algorithm that solves the Generalized Multiway Cut on Trees problem in time O⁎(ρk).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2015.06.010