Decomposition‐based multiinnovation gradient identification algorithms for a special bilinear system based on its input‐output representation

Summary This article considers the parameter estimation for a special bilinear system with colored noise. Its input‐output representation is derived by eliminating the state variables in the bilinear system. Based on the input‐output representation of the bilinear system, a multiinnovation generaliz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of robust and nonlinear control Ročník 30; číslo 9; s. 3607 - 3623
Hlavní autoři: Wang, Longjin, Ji, Yan, Yang, Hualin, Xu, Ling
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley Subscription Services, Inc 01.06.2020
Témata:
ISSN:1049-8923, 1099-1239
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Summary This article considers the parameter estimation for a special bilinear system with colored noise. Its input‐output representation is derived by eliminating the state variables in the bilinear system. Based on the input‐output representation of the bilinear system, a multiinnovation generalized extended stochastic gradient (MI‐GESG) algorithm is proposed by using the multiinnovation identification theory. Furthermore, a decomposition‐based multiinnovation (ie, hierarchical multiinnovation) generalized extended stochastic gradient identification (H‐MI‐GESG) algorithm is derived to enhance the parameter estimation accuracy by using the hierarchical identification principle, and a GESG algorithm is presented for comparison. Compared with the existing identification algorithms for the bilinear system, the proposed MI‐GESG and H‐MI‐GESG algorithms can generate more accurate parameter estimation. Finally, a simulation example is provided to verify the effectiveness of the proposed algorithms.
Bibliografie:Funding information
National Natural Science Foundation of China, 61803049
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.4959