On the variational problem for upper tails in sparse random graphs

What is the probability that the number of triangles in Gn,p, the Erdős‐Rényi random graph with edge density p, is at least twice its mean? Writing it as exp[−r(n,p)], already the order of the rate function r(n, p) was a longstanding open problem when p = o(1), finally settled in 2012 by Chatterjee...

Full description

Saved in:
Bibliographic Details
Published in:Random structures & algorithms Vol. 50; no. 3; pp. 420 - 436
Main Authors: Lubetzky, Eyal, Zhao, Yufei
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.05.2017
Subjects:
ISSN:1042-9832, 1098-2418
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract What is the probability that the number of triangles in Gn,p, the Erdős‐Rényi random graph with edge density p, is at least twice its mean? Writing it as exp[−r(n,p)], already the order of the rate function r(n, p) was a longstanding open problem when p = o(1), finally settled in 2012 by Chatterjee and by DeMarco and Kahn, who independently showed that r(n,p)≍n2p2log(1/p) for p≳lognn; the exact asymptotics of r(n, p) remained unknown. The following variational problem can be related to this large deviation question at p≳lognn: for δ > 0 fixed, what is the minimum asymptotic p‐relative entropy of a weighted graph on n vertices with triangle density at least (1 + δ)p3? A beautiful large deviation framework of Chatterjee and Varadhan (2011) reduces upper tails for triangles to a limiting version of this problem for fixed p. A very recent breakthrough of Chatterjee and Dembo extended its validity to n−α≪p≪1 for an explicit α > 0, and plausibly it holds in all of the above sparse regime. In this note we show that the solution to the variational problem is min{12δ2/3 , 13δ} when n−1/2 ≪ p≪1 vs. 12δ2/3 when n−1≪p≪n−1/2 (the transition between these regimes is expressed in the count of triangles minus an edge in the minimizer). From the results of Chatterjee and Dembo, this shows for instance that the probability that Gn,p for n−α≤p≪1 has twice as many triangles as its expectation is exp[−r(n,p)] where r(n,p)∼13n2p2log(1/p). Our results further extend to k‐cliques for any fixed k, as well as give the order of the upper tail rate function for an arbitrary fixed subgraph when p≥n−α. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 420–436, 2017
AbstractList What is the probability that the number of triangles in [Formulaomitted], the Erds-Renyi random graph with edge density p, is at least twice its mean? Writing it as [Formulaomitted], already the order of the rate function r(n, p) was a longstanding open problem when p=o(1), finally settled in 2012 by Chatterjee and by DeMarco and Kahn, who independently showed that [Formulaomitted] for [Formulaomitted]; the exact asymptotics of r(n, p) remained unknown. The following variational problem can be related to this large deviation question at [Formulaomitted]: for delta >0 fixed, what is the minimum asymptotic p-relative entropy of a weighted graph on n vertices with triangle density at least (1+ delta )p super(3)? A beautiful large deviation framework of Chatterjee and Varadhan (2011) reduces upper tails for triangles to a limiting version of this problem for fixed p. A very recent breakthrough of Chatterjee and Dembo extended its validity to [Formulaomitted] for an explicit alpha >0, and plausibly it holds in all of the above sparse regime. In this note we show that the solution to the variational problem is [Formulaomitted] when [Formulaomitted] vs. [Formulaomitted] when [Formulaomitted] (the transition between these regimes is expressed in the count of triangles minus an edge in the minimizer). From the results of Chatterjee and Dembo, this shows for instance that the probability that [Formulaomitted] for [Formulaomitted] has twice as many triangles as its expectation is [Formulaomitted] where [Formulaomitted]. Our results further extend to k-cliques for any fixed k, as well as give the order of the upper tail rate function for an arbitrary fixed subgraph when [Formulaomitted]. Random Struct. Alg., 50, 420-436, 2017
What is the probability that the number of triangles in G n ,p, the Erds-Rényi random graph with edge density p, is at least twice its mean? Writing it as exp [-r (n ,p )], already the order of the rate function r(n, p) was a longstanding open problem when p=o(1), finally settled in 2012 by Chatterjee and by DeMarco and Kahn, who independently showed that r (n ,p )n 2 p 2 log (1 /p ) for p log n n; the exact asymptotics of r(n, p) remained unknown. The following variational problem can be related to this large deviation question at p log n n: for [delta]>0 fixed, what is the minimum asymptotic p-relative entropy of a weighted graph on n vertices with triangle density at least (1+[delta])p3? A beautiful large deviation framework of Chatterjee and Varadhan (2011) reduces upper tails for triangles to a limiting version of this problem for fixed p. A very recent breakthrough of Chatterjee and Dembo extended its validity to n -[alpha] p 1 for an explicit [alpha]>0, and plausibly it holds in all of the above sparse regime. In this note we show that the solution to the variational problem is min {1 2 [delta]2 /3 ,1 3 [delta]} when n -1 /2 p 1 vs. 1 2 [delta]2 /3 when n -1 p n -1 /2 (the transition between these regimes is expressed in the count of triangles minus an edge in the minimizer). From the results of Chatterjee and Dembo, this shows for instance that the probability that G n ,p for n -[alpha] ≤p 1 has twice as many triangles as its expectation is exp [-r (n ,p )] where r (n ,p )1 3 n 2 p 2 log (1 /p ). Our results further extend to k-cliques for any fixed k, as well as give the order of the upper tail rate function for an arbitrary fixed subgraph when p ≥n -[alpha]. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 420-436, 2017
What is the probability that the number of triangles in , the Erdős‐Rényi random graph with edge density p , is at least twice its mean? Writing it as , already the order of the rate function r ( n, p ) was a longstanding open problem when p  =  o (1), finally settled in 2012 by Chatterjee and by DeMarco and Kahn, who independently showed that for ; the exact asymptotics of r ( n, p ) remained unknown. The following variational problem can be related to this large deviation question at : for δ  > 0 fixed, what is the minimum asymptotic p ‐relative entropy of a weighted graph on n vertices with triangle density at least (1 +  δ ) p 3 ? A beautiful large deviation framework of Chatterjee and Varadhan (2011) reduces upper tails for triangles to a limiting version of this problem for fixed p . A very recent breakthrough of Chatterjee and Dembo extended its validity to for an explicit α  > 0, and plausibly it holds in all of the above sparse regime. In this note we show that the solution to the variational problem is when vs. when (the transition between these regimes is expressed in the count of triangles minus an edge in the minimizer). From the results of Chatterjee and Dembo, this shows for instance that the probability that for has twice as many triangles as its expectation is where . Our results further extend to k ‐cliques for any fixed k , as well as give the order of the upper tail rate function for an arbitrary fixed subgraph when . © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 420–436, 2017
What is the probability that the number of triangles in Gn,p, the Erdős‐Rényi random graph with edge density p, is at least twice its mean? Writing it as exp[−r(n,p)], already the order of the rate function r(n, p) was a longstanding open problem when p = o(1), finally settled in 2012 by Chatterjee and by DeMarco and Kahn, who independently showed that r(n,p)≍n2p2log(1/p) for p≳lognn; the exact asymptotics of r(n, p) remained unknown. The following variational problem can be related to this large deviation question at p≳lognn: for δ > 0 fixed, what is the minimum asymptotic p‐relative entropy of a weighted graph on n vertices with triangle density at least (1 + δ)p3? A beautiful large deviation framework of Chatterjee and Varadhan (2011) reduces upper tails for triangles to a limiting version of this problem for fixed p. A very recent breakthrough of Chatterjee and Dembo extended its validity to n−α≪p≪1 for an explicit α > 0, and plausibly it holds in all of the above sparse regime. In this note we show that the solution to the variational problem is min{12δ2/3 , 13δ} when n−1/2 ≪ p≪1 vs. 12δ2/3 when n−1≪p≪n−1/2 (the transition between these regimes is expressed in the count of triangles minus an edge in the minimizer). From the results of Chatterjee and Dembo, this shows for instance that the probability that Gn,p for n−α≤p≪1 has twice as many triangles as its expectation is exp[−r(n,p)] where r(n,p)∼13n2p2log(1/p). Our results further extend to k‐cliques for any fixed k, as well as give the order of the upper tail rate function for an arbitrary fixed subgraph when p≥n−α. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 420–436, 2017
Author Lubetzky, Eyal
Zhao, Yufei
Author_xml – sequence: 1
  givenname: Eyal
  surname: Lubetzky
  fullname: Lubetzky, Eyal
  email: eyal@courant.nyu.edu
  organization: New York University
– sequence: 2
  givenname: Yufei
  surname: Zhao
  fullname: Zhao, Yufei
  email: yufei.zhao@maths.ox.ac.uk
  organization: University of Oxford
BookMark eNp1kMtOwzAURC1UJNrCgj-wxAYWaa_txLGXpeIlVarEY225rkNTpXGwE1D_HvexqmB17-LMaGYGqFe72iJ0TWBEAOjYBz2iwDNxhvoEpEhoSkRv96c0kYLRCzQIYQ0AOaOsj-7nNW5XFn9rX-q2dLWucOPdorIbXDiPu6axHre6rAIuaxwa7YPFXtdLt8GfXjercInOC10Fe3W8Q_Tx-PA-fU5m86eX6WSWGMZAJMxQMCmTQljNmCFgDFkymYHklBdQ5MAJZEamOU3lkoMuTAGGS64jQxeaDdHtwTfm--psaNWmDMZWla6t64IiQjIhKGd5RG9O0LXrfOy2owSILCYikRofKONdCN4WypTtfoTWx8KKgNptquKmar9pVNydKBpfbrTf_ske3X_Kym7_B9Xr2-Sg-AVKH4YG
CitedBy_id crossref_primary_10_1214_22_AOP1610
crossref_primary_10_1002_rsa_21011
crossref_primary_10_1017_S0963548316000262
crossref_primary_10_1214_20_AOP1495
crossref_primary_10_1215_00127094_2023_0029
crossref_primary_10_1214_19_AOP1387
crossref_primary_10_1016_j_ejc_2025_104189
crossref_primary_10_1007_s00440_022_01164_7
crossref_primary_10_1016_j_aam_2020_102047
crossref_primary_10_1093_imrn_rny238
crossref_primary_10_1214_21_AAP1745
crossref_primary_10_1214_21_AAP1704
crossref_primary_10_1017_apr_2019_42
crossref_primary_10_1215_00127094_2021_0067
crossref_primary_10_1002_rsa_21146
crossref_primary_10_1002_rsa_21147
crossref_primary_10_1093_imrn_rnad302
crossref_primary_10_1002_rsa_21187
crossref_primary_10_1002_cpa_22036
crossref_primary_10_1016_j_aim_2020_107289
crossref_primary_10_1214_20_AOP1427
crossref_primary_10_1007_s00440_023_01232_6
crossref_primary_10_1007_s00440_025_01359_8
crossref_primary_10_1093_imrn_rny022
crossref_primary_10_1214_19_AOP1352
crossref_primary_10_1007_s10955_018_1991_3
crossref_primary_10_1007_s00493_024_00086_3
crossref_primary_10_1002_rsa_20859
crossref_primary_10_1016_j_aim_2017_08_003
crossref_primary_10_1016_j_jfa_2021_109349
crossref_primary_10_1137_19M1258827
crossref_primary_10_1214_19_AAP1516
crossref_primary_10_1112_jlms_12954
crossref_primary_10_1016_j_aim_2025_110156
crossref_primary_10_1214_23_AAP2025
crossref_primary_10_1002_rsa_20975
crossref_primary_10_1214_20_AOP1490
crossref_primary_10_1137_18M1230852
Cites_doi 10.1002/rsa.20381
10.1002/rsa.10031
10.1017/CBO9780511814068
10.1017/S0963548399004095
10.1002/rsa.10113
10.1016/j.ejc.2011.03.014
10.1002/rsa.20382
10.1016/j.jctb.2006.05.002
10.1016/j.aim.2008.07.008
10.1214/aop/1176989534
10.1007/s00039-007-0599-6
10.1002/rsa.20536
10.1002/rsa.20440
10.1007/s004930050052
10.1007/BF02771528
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
– notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/rsa.20658
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage 436
ExternalDocumentID 4321167203
10_1002_rsa_20658
RSA20658
Genre article
GrantInformation_xml – fundername: Microsoft Research PhD Fellowship
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3308-3c20c43988ea33c10cc1d39509626f0f706105c947249d60afcf0c696a9502ba3
IEDL.DBID DRFUL
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397569800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1042-9832
IngestDate Thu Jul 10 22:38:18 EDT 2025
Sun Jul 13 04:26:41 EDT 2025
Tue Nov 18 21:13:37 EST 2025
Sat Nov 29 02:48:12 EST 2025
Wed Jan 22 16:34:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3308-3c20c43988ea33c10cc1d39509626f0f706105c947249d60afcf0c696a9502ba3
Notes Supported by Microsoft Research PhD Fellowship [to Y.Z.].
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1880853301
PQPubID 1016429
PageCount 17
ParticipantIDs proquest_miscellaneous_1893882637
proquest_journals_1880853301
crossref_citationtrail_10_1002_rsa_20658
crossref_primary_10_1002_rsa_20658
wiley_primary_10_1002_rsa_20658_RSA20658
PublicationCentury 2000
PublicationDate May 2017
2017-05-00
20170501
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Random structures & algorithms
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
2004; 142
2015; 47
2006; 96
2001
2012
2000
2002; 20
1999; 19
2004; 24
2008; 219
2011; 32
1992; 20
2012; 41
1978
2012; 40
2001; 10
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Lovász L. (e_1_2_7_17_1) 2012
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Janson S. (e_1_2_7_12_1) 2000
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_11_1
Janson S. (e_1_2_7_15_1) 2004; 24
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 142
  start-page: 61
  year: 2004
  end-page: 92
  article-title: Upper tails for subgraph counts in random graphs
  publication-title: Israel J Math
– volume: 24
  start-page: 615
  year: 2004
  end-page: 640
  publication-title: The deletion method for upper tail estimates Combinatorica
– volume: 96
  start-page: 933
  year: 2006
  end-page: 957
  article-title: Limits of dense graph sequences
  publication-title: J Combin Theory Ser B
– volume: 32
  start-page: 1000
  year: 2011
  end-page: 1017
  article-title: The large deviation principle for the Erdős‐Rényi random graph
  publication-title: Eur J Combin
– volume: 40
  start-page: 452
  year: 2012
  end-page: 459
  article-title: Upper tails for triangles
  publication-title: Random Struct Algorithms
– volume: 40
  start-page: 437
  year: 2012
  end-page: 451
  article-title: The missing log in large deviations for triangle counts
  publication-title: Random Struct Algorithms
– year: 2001
– volume: 20
  start-page: 317
  year: 2002
  end-page: 342
  article-title: The infamous upper tail
  publication-title: Random Struct Algorithms
– volume: 17
  start-page: 252
  year: 2007
  end-page: 270
  article-title: Szemerédi's lemma for the analyst
  publication-title: Geom Funct Anal
– volume: 19
  start-page: 175
  year: 1999
  end-page: 220
  article-title: Quick approximation to matrices and applications
  publication-title: Combinatorica
– volume: 41
  start-page: 469
  year: 2012
  end-page: 487
  article-title: Tight upper tail bounds for cliques
  publication-title: Random Struct Algorithms
– year: 2000
– volume: 47
  start-page: 109—146
  year: 2015
  article-title: On replica symmetry of large deviations in random graphs
  publication-title: Random Struct Algorithms
– volume: 10
  start-page: 79
  year: 2001
  end-page: 94
  article-title: A large deviation result on the number of small subgraphs of a random graph
  publication-title: Combin Probab Comput
– volume: 24
  start-page: 166
  year: 2004
  end-page: 174
  article-title: Divide and conquer martingales and the number of triangles in a random graph
  publication-title: Random Struct Algorithms
– start-page: 399
  year: 1978
  end-page: 401
– volume: 219
  start-page: 1801
  year: 2008
  end-page: 1851
  article-title: Convergent sequences of dense graphs I. Subgraph frequencies, metric properties and testing
  publication-title: Adv Math
– volume: 20
  start-page: 1893
  year: 1992
  end-page: 1901
  article-title: A generalization of Hölder's inequality and some probability inequalities
  publication-title: Ann Probab
– year: 2012
– ident: e_1_2_7_5_1
  doi: 10.1002/rsa.20381
– ident: e_1_2_7_14_1
  doi: 10.1002/rsa.10031
– ident: e_1_2_7_3_1
  doi: 10.1017/CBO9780511814068
– ident: e_1_2_7_2_1
– ident: e_1_2_7_22_1
  doi: 10.1017/S0963548399004095
– ident: e_1_2_7_16_1
  doi: 10.1002/rsa.10113
– volume-title: Large networks and graph limits, volume 60 of American mathematical society colloquium publications
  year: 2012
  ident: e_1_2_7_17_1
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ejc.2011.03.014
– ident: e_1_2_7_21_1
– ident: e_1_2_7_9_1
  doi: 10.1002/rsa.20382
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jctb.2006.05.002
– ident: e_1_2_7_4_1
  doi: 10.1016/j.aim.2008.07.008
– ident: e_1_2_7_10_1
  doi: 10.1214/aop/1176989534
– ident: e_1_2_7_6_1
– ident: e_1_2_7_19_1
  doi: 10.1007/s00039-007-0599-6
– ident: e_1_2_7_20_1
  doi: 10.1002/rsa.20536
– ident: e_1_2_7_8_1
  doi: 10.1002/rsa.20440
– volume-title: Random graphs, Wiley‐Interscience series in discrete mathematics and optimization
  year: 2000
  ident: e_1_2_7_12_1
– ident: e_1_2_7_11_1
  doi: 10.1007/s004930050052
– volume: 24
  start-page: 615
  year: 2004
  ident: e_1_2_7_15_1
  publication-title: The deletion method for upper tail estimates Combinatorica
– ident: e_1_2_7_13_1
  doi: 10.1007/BF02771528
SSID ssj0007323
Score 2.4428165
Snippet What is the probability that the number of triangles in Gn,p, the Erdős‐Rényi random graph with edge density p, is at least twice its mean? Writing it as...
What is the probability that the number of triangles in , the Erdős‐Rényi random graph with edge density p , is at least twice its mean? Writing it as ,...
What is the probability that the number of triangles in G n ,p, the Erds-Rényi random graph with edge density p, is at least twice its mean? Writing it as exp...
What is the probability that the number of triangles in [Formulaomitted], the Erds-Renyi random graph with edge density p, is at least twice its mean? Writing...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 420
SubjectTerms Asymptotic properties
Constraining
Density
Deviation
Graph theory
Graphs
large deviations
sparse random graphs
Triangles
upper tails of subgraph counts
Vibration
Title On the variational problem for upper tails in sparse random graphs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20658
https://www.proquest.com/docview/1880853301
https://www.proquest.com/docview/1893882637
Volume 50
WOSCitedRecordID wos000397569800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1098-2418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007323
  issn: 1042-9832
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsX6YhUPXoLb3W02i6f6KB5qFR_gLWy3GyhoWpK2v9_ZvKqgIHhLyIQs857N7DcAZ5FUShqhPWoi7gnBtYdaEnkaxW-ktFgBZAeFe7LfD97e1GMNLsuzMDk-RLXh5iwj89fOwPUgvViAhiapgw3CALoEDYZ6K-rQuHnqvvYqRyw5y_vrBfMUam4JLETZRfXy93C0yDG_ZqpZqOmu_2uRG7BWZJikk6vEJtRsvAWr9xU8a7oNVw8xwVsyx0K52AwkxWQZgkksmU0mNiGutzQlo5ig00lSSzCqDccfJIO4TnfgtXv7cn3nFcMUPMO52wM1jBrMPoLAas5NixrTGnLl0F-YH9FIYmCnbaOExIJs6FMdmYgaX_kaadhA812ox-PY7gGhXAfC-n7QtlxESmjMeZlpUzsUA-Nb2oTzkqehKZDG3cCL9zDHSGYhsiXM2NKE04p0ksNr_ER0WAomLCwsDR2OXOBaY1tNOKkeo224Hx46tuOZo1EcKwifS1xSJqbfPxI-PXeyi_2_kx7ACnNRPut_PIT6NJnZI1g28-koTY4LdfwEbpfhWQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mFNQHv8Xp1Cg--FLMkqxpwJf5MRS3KVPBtxKzFATtRuv293tpu6qgIPjW0isN95H76OV3AEeRVEoaoT1qIu4JwbWHWhJ5GsVvpLSYAWQHhTuy1wuentRdBU6nZ2FyfIiy4OYsI9uvnYG7gvTJJ2pokjrcIPSgMzArUI2aVZi96LcfO-VOLDnLG-wF8xSq7hRZiLKT8uXv_ugzyPwaqma-pr38v1WuwFIRY5JWrhSrULHxGix2S4DWdB3ObmOCt2SCqXJRDiTFbBmCYSwZj0Y2Ia67NCUvMcFtJ0ktQb82GL6RDOQ63YDH9uXD-ZVXjFPwDOeuCmoYNRh_BIHVnJsGNaYx4MrhvzA_opFE106bRgmJKdnApzoyETW-8jXSsGfNN6EaD2O7BYRyHQjr-0HTchEpoTHqZaZJ7UA8G9_SGhxPmRqaAmvcjbx4DXOUZBYiW8KMLTU4LElHOcDGT0T1qWTCwsbS0CHJBa45tlGDg_IxWof75aFjOxw7GsUxh_C5xCVlcvr9I2H_vpVdbP-ddB_mrx66nbBz3bvZgQXmfH7WDVmH6nsytrswZybvL2myV-jmB_bJ5Uk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-ytoz2Yd1HR7O1mzb2sBcTRZIlC_bSj5mNpmnIVuibUWUJAqtj7KZ__06242ywwWBvNj5jcd8nn34H8MErrZUVJqLW80gIbiLUEh8ZFL9VymEF0BwUnqjpNLm50bMBfFqfhWnxIfoNt2AZjb8OBu7K3I82qKFVHXCDMII-gm0Ra4lmuX0-T68nvSdWnLUN9oJFGlV3jSxE2ah_-fd4tEkyf01Vm1iT7v_fKp_Cky7HJCetUjyDgSuew95lD9Bav4DTq4LgLXnAUrnbDiTdbBmCaSxZlaWrSOgurcmiIOh2qtoRjGv58o40INf1AVynn7-ffYm6cQqR5TzsglpGLeYfSeIM53ZMrR3nXAf8FyY99QpDO42tFgpLslxS462nVmppkIbdGv4Stopl4Q6BUG4S4aRMYseF18Jg1stsTF0ubq10dAgf10zNbIc1HkZe_MhalGSWIVuyhi1DeN-Tli3Axp-IjtaSyTobq7OAJJeE5tjxEN71j9E6wi8PU7jlKtBojjWE5AqX1Mjp7x_J5t9OmotX_076Fh7PztNs8nV68Rp2WQj5TTPkEWzdVyt3DDv24X5RV2861fwJqFHkxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+variational+problem+for+upper+tails+in+sparse+random+graphs&rft.jtitle=Random+structures+%26+algorithms&rft.au=Lubetzky%2C+Eyal&rft.au=Zhao%2C+Yufei&rft.date=2017-05-01&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=50&rft.issue=3&rft.spage=420&rft.epage=436&rft_id=info:doi/10.1002%2Frsa.20658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rsa_20658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon