Robust FOPID controller design for fractional‐order delay systems using positive stability region analysis

Summary In this paper, a robust fractional‐order PID (FOPID) controller design method for fractional‐order delay systems is proposed based on positive stability region (PSR) analysis. Firstly, the PSR is presented to improve the existing stability region (SR) in D‐decomposition method. Then, the opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control Jg. 29; H. 15; S. 5195 - 5212
Hauptverfasser: Zhang, Shuo, Liu, Lu, Cui, Xinshu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.10.2019
Schlagworte:
ISSN:1049-8923, 1099-1239
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary In this paper, a robust fractional‐order PID (FOPID) controller design method for fractional‐order delay systems is proposed based on positive stability region (PSR) analysis. Firstly, the PSR is presented to improve the existing stability region (SR) in D‐decomposition method. Then, the optimal fractional orders λ and μ of FOPID controller are achieved at the biggest three‐dimensional PSR, which means the best robustness. Given the optimal λ and μ, the other FOPID controller parameters kp, ki, kd can be solved under the control specifications, including gain crossover frequency, phase margin, and an extended flat phase constraint. In addition, the steps of the proposed robust FOPID controller design process are listed at length, and an example is given to illustrate the corresponding steps. At last, the control performances of the obtained robust FOPID controller are compared with some other controllers (PID and FOPI). The simulation results illustrate the superior robustness as well as the transient performance of the proposed control algorithm.
AbstractList In this paper, a robust fractional‐order PID (FOPID) controller design method for fractional‐order delay systems is proposed based on positive stability region (PSR) analysis. Firstly, the PSR is presented to improve the existing stability region (SR) in D‐decomposition method. Then, the optimal fractional orders λ and μ of FOPID controller are achieved at the biggest three‐dimensional PSR, which means the best robustness. Given the optimal λ and μ , the other FOPID controller parameters k p , k i , k d can be solved under the control specifications, including gain crossover frequency, phase margin, and an extended flat phase constraint. In addition, the steps of the proposed robust FOPID controller design process are listed at length, and an example is given to illustrate the corresponding steps. At last, the control performances of the obtained robust FOPID controller are compared with some other controllers (PID and FOPI). The simulation results illustrate the superior robustness as well as the transient performance of the proposed control algorithm.
In this paper, a robust fractional‐order PID (FOPID) controller design method for fractional‐order delay systems is proposed based on positive stability region (PSR) analysis. Firstly, the PSR is presented to improve the existing stability region (SR) in D‐decomposition method. Then, the optimal fractional orders λ and μ of FOPID controller are achieved at the biggest three‐dimensional PSR, which means the best robustness. Given the optimal λ and μ, the other FOPID controller parameters kp, ki, kd can be solved under the control specifications, including gain crossover frequency, phase margin, and an extended flat phase constraint. In addition, the steps of the proposed robust FOPID controller design process are listed at length, and an example is given to illustrate the corresponding steps. At last, the control performances of the obtained robust FOPID controller are compared with some other controllers (PID and FOPI). The simulation results illustrate the superior robustness as well as the transient performance of the proposed control algorithm.
Summary In this paper, a robust fractional‐order PID (FOPID) controller design method for fractional‐order delay systems is proposed based on positive stability region (PSR) analysis. Firstly, the PSR is presented to improve the existing stability region (SR) in D‐decomposition method. Then, the optimal fractional orders λ and μ of FOPID controller are achieved at the biggest three‐dimensional PSR, which means the best robustness. Given the optimal λ and μ, the other FOPID controller parameters kp, ki, kd can be solved under the control specifications, including gain crossover frequency, phase margin, and an extended flat phase constraint. In addition, the steps of the proposed robust FOPID controller design process are listed at length, and an example is given to illustrate the corresponding steps. At last, the control performances of the obtained robust FOPID controller are compared with some other controllers (PID and FOPI). The simulation results illustrate the superior robustness as well as the transient performance of the proposed control algorithm.
Author Zhang, Shuo
Liu, Lu
Cui, Xinshu
Author_xml – sequence: 1
  givenname: Shuo
  orcidid: 0000-0002-2824-618X
  surname: Zhang
  fullname: Zhang, Shuo
  organization: Northwestern Polytechnical University
– sequence: 2
  givenname: Lu
  orcidid: 0000-0003-3179-1004
  surname: Liu
  fullname: Liu, Lu
  email: liulu12201220@nwpu.edu.cn
  organization: Northwestern Polytechnical University
– sequence: 3
  givenname: Xinshu
  surname: Cui
  fullname: Cui, Xinshu
  organization: Northeastern University
BookMark eNp1kMFKAzEQhoNUsFbBRwh48bI12Ww3zVGq1UKxUvS8JNlsSUk3NZMqe_MRfEafxN3Wk-hpBub7hpn_FPVqXxuELigZUkLS61DrYZbn_Aj1KREioSkTva7PRDIWKTtBpwBrQtpZmvWRW3q1g4ini6fZLda-jsE7ZwIuDdhVjSsfcBWkjtbX0n19fPpQ7qdONhgaiGYDeAe2XuGtBxvtm8EQpbLOxgYHs2o9LFu1AQtn6LiSDsz5Tx2gl-nd8-QhmS_uZ5ObeaIZIzwR5ViLjGaKVCVVTGidUVoxrpXmo1HOlRClyfOxMFyxkaElKYVUmdIk12UlJBugy8PebfCvOwOxWPtdaI-AIk3HLOWcC9pSwwOlgwcIpiq0jbJ7NAZpXUFJ0SVatIkWXaKtcPVL2Aa7kaH5C00O6Lt1pvmXK5aPkz3_DeI8ioY
CitedBy_id crossref_primary_10_1002_rnc_5638
crossref_primary_10_1080_02533839_2025_2505234
crossref_primary_10_1002_rnc_6449
crossref_primary_10_1049_cth2_12044
crossref_primary_10_1080_03081079_2021_1993847
crossref_primary_10_1007_s40747_021_00431_9
crossref_primary_10_1016_j_amc_2020_125111
crossref_primary_10_1016_j_isatra_2021_04_045
crossref_primary_10_1002_ese3_1355
crossref_primary_10_3390_app9224958
crossref_primary_10_1109_TFUZZ_2020_2966420
crossref_primary_10_1007_s40313_019_00552_0
crossref_primary_10_1007_s13369_023_08313_7
crossref_primary_10_1515_fca_2020_0007
crossref_primary_10_1155_2020_9523549
crossref_primary_10_1002_rnc_7304
crossref_primary_10_1631_FITEE_2000438
crossref_primary_10_3390_fractalfract8020122
crossref_primary_10_1002_rnc_7894
crossref_primary_10_1016_j_isatra_2020_11_009
crossref_primary_10_1177_09544070241244837
Cites_doi 10.1016/S1474-6670(17)38220-4
10.1016/j.conengprac.2007.08.006
10.1007/s11071-006-9094-0
10.1109/JETCAS.2013.2265797
10.1142/3779
10.1016/j.physa.2009.07.024
10.1016/j.amc.2018.11.020
10.1109/TAC.2007.906243
10.1016/j.jprocont.2013.10.008
10.1007/s11633-015-0941-7
10.1016/j.ins.2018.06.059
10.1016/j.isatra.2018.01.025
10.1515/9783110497977
10.1016/j.neucom.2015.07.077
10.1016/j.isatra.2014.09.012
10.1016/j.conengprac.2009.07.005
10.1515/fca-2017-0008
10.1002/rnc.3363
10.1016/j.jfranklin.2017.12.020
10.1002/rnc.4490
10.1002/rnc.3677
10.1007/s10955-007-9294-0
10.1103/PhysRevE.70.051915
10.1016/j.eswa.2012.01.007
10.1016/j.automatica.2012.05.072
10.1016/j.nahs.2014.10.001
10.1002/rnc.3041
10.1016/j.automatica.2005.08.010
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.4667
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 5212
ExternalDocumentID 10_1002_rnc_4667
RNC4667
Genre article
GrantInformation_xml – fundername: Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University)
  funderid: 1817
– fundername: Natural Science Foundation of Shaanxi Province
  funderid: 2019JQ-164
– fundername: Fundamental Research Funds for the Central Universities of China
  funderid: G2018KY0305; G2018KY0302
– fundername: China Postdoctoral Science
  funderid: 2019M50274
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AI.
AIDQK
AIDYY
AIQQE
AMVHM
ASPBG
AVWKF
AZFZN
CITATION
CMOOK
FEDTE
HF~
HVGLF
LW6
M59
O8X
PALCI
RIWAO
RJQFR
SAMSI
VH1
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3307-9d8c9414b0fd1b39cc411f37cbc75567b99de6689e7b35e1d0d9ab4bc06cdf9a3
IEDL.DBID DRFUL
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478265400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1049-8923
IngestDate Fri Jul 25 12:23:57 EDT 2025
Sat Nov 29 03:22:05 EST 2025
Tue Nov 18 21:50:50 EST 2025
Wed Jan 22 16:38:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3307-9d8c9414b0fd1b39cc411f37cbc75567b99de6689e7b35e1d0d9ab4bc06cdf9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3179-1004
0000-0002-2824-618X
PQID 2283277791
PQPubID 1026344
PageCount 18
ParticipantIDs proquest_journals_2283277791
crossref_citationtrail_10_1002_rnc_4667
crossref_primary_10_1002_rnc_4667
wiley_primary_10_1002_rnc_4667_RNC4667
PublicationCentury 2000
PublicationDate 1 October 2019
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 1 October 2019
  day: 01
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 126
2017; 20
2013; 3
2015; 16
2017; 27
2009; 60
2018; 465
2008; 16
2015; 55
2006
2014; 24
2012; 39
2004
2007; 52
1999
2006; 42
2004; 70
2000
2017; 14
2018; 355
2017
2009; 388
2019; 29
2007; 5
2013
2012; 48
2016; 171
2019; 350
2016; 26
2018; 75
2012; 42
2007; 48
2009; 17
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
Sheng H (e_1_2_8_6_1) 2012; 42
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Petráš I (e_1_2_8_16_1) 2009; 60
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
Luo Y (e_1_2_8_23_1) 2013
e_1_2_8_22_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_35_1
Podlubny I (e_1_2_8_14_1) 1999
Xue D (e_1_2_8_20_1) 2007; 5
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Åström KJ (e_1_2_8_15_1) 2006
e_1_2_8_30_1
References_xml – volume: 75
  start-page: 226
  year: 2018
  end-page: 235
  article-title: Continuous fractional‐order zero phase error tracking control
  publication-title: ISA Transactions
– volume: 42
  start-page: 2735
  issue: 1
  year: 2012
  article-title: Fractional processes and fractional‐order signal processing
  publication-title: Signals Commun Technol
– volume: 27
  start-page: 2145
  issue: 12
  year: 2017
  end-page: 2164
  article-title: Robust isophase margin control of oscillatory systems with large uncertainties in their parameters: a fractional order control approach
  publication-title: Int J Robust Nonlinear Control
– volume: 52
  start-page: 1964
  issue: 10
  year: 2007
  end-page: 1969
  article-title: An algorithm for stabilization of fractional‐order time delay systems using fractional‐order PID controllers
  publication-title: IEEE Trans Autom Control
– volume: 350
  start-page: 133
  year: 2019
  end-page: 152
  article-title: Closed‐loop time response analysis of irrational fractional‐order systems with numerical laplace transform technique
  publication-title: Appl Math Comput
– volume: 48
  start-page: 409
  issue: 4
  year: 2007
  end-page: 416
  article-title: Stability analysis of linear fractional differential system with multiple time delays
  publication-title: Nonlinear Dynamics
– volume: 55
  start-page: 227
  year: 2015
  end-page: 233
  article-title: Variable‐order fuzzy fractional PID controller
  publication-title: ISA Transactions
– volume: 16
  start-page: 104
  year: 2015
  end-page: 121
  article-title: Mittag‐Leffler stability of fractional‐order Hopfield neural networks
  publication-title: Nonlinear Anal Hybrid Syst
– volume: 48
  start-page: 2159
  issue: 9
  year: 2012
  end-page: 2167
  article-title: Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems
  publication-title: Automatica
– volume: 3
  start-page: 416
  issue: 3
  year: 2013
  end-page: 424
  article-title: A survey of fractional‐order circuit models for biology and biomedicine
  publication-title: IEEE J Emerg Sel Top Circuits Syst
– year: 2000
– volume: 26
  start-page: 1112
  issue: 5
  year: 2016
  end-page: 1142
  article-title: Graphical tuning method of FOPID controllers for fractional order uncertain system achieving robust D‐stability
  publication-title: Int J Robust Nonlinear Control
– volume: 16
  start-page: 798
  issue: 7
  year: 2008
  end-page: 812
  article-title: Tuning and auto‐tuning of fractional order controllers for industry applications
  publication-title: Control Eng Pract
– volume: 39
  start-page: 6887
  issue: 8
  year: 2012
  end-page: 6896
  article-title: Optimum design of fractional order controller for AVR system using chaotic ant swarm
  publication-title: Expert Syst Appl
– volume: 20
  start-page: 159
  issue: 1
  year: 2017
  end-page: 172
  article-title: Completeness on the stability criterion of fractional order LTI systems
  publication-title: Fract Calc Appl Anal
– volume: 5
  start-page: 771
  year: 2007
  end-page: 776
  article-title: Fractional order PID controller design for fractional order system
  publication-title: Control Theory Appl
– volume: 126
  start-page: 1285
  issue: 6
  year: 2007
  end-page: 1286
  article-title: Fractional calculus in bioengineering
  publication-title: J Stat Phys
– volume: 24
  start-page: 3009
  issue: 17
  year: 2014
  end-page: 3026
  article-title: ∞ optimization‐based fractional‐order PID controllers design
  publication-title: Int J Robust Nonlinear Control
– volume: 24
  start-page: 37
  issue: 1
  year: 2014
  end-page: 47
  article-title: Robust stabilizing regions of fractional‐order controllers of time‐delay fractional‐order systems
  publication-title: J Process Control
– volume: 42
  start-page: 13
  issue: 1
  year: 2006
  end-page: 26
  article-title: Stability regions in the parameter space: D‐decomposition revisited
  publication-title: Automatica
– volume: 355
  start-page: 1107
  issue: 3
  year: 2018
  end-page: 1138
  article-title: Stabilizing region of controller for fractional order system with general interval uncertainties and an interval delay
  publication-title: J Frankl Inst
– year: 2006
– volume: 388
  start-page: 4586
  issue: 21
  year: 2009
  end-page: 4592
  article-title: Variable‐order fractional differential operators in anomalous diffusion modeling
  publication-title: Phys A Stat Mech Appl
– volume: 171
  start-page: 1075
  year: 2016
  end-page: 1084
  article-title: Stability analysis of fractional‐order Hopfield neural networks with discontinuous activation functions
  publication-title: Neurocomputing
– year: 2004
– volume: 29
  start-page: 2283
  issue: 8
  year: 2019
  end-page: 2295
  article-title: Robust stability analysis for fractional‐order systems with time delay based on finite spectrum assignment
  publication-title: Int J Robust Nonlinear Control
– volume: 60
  start-page: 117
  issue: 3
  year: 2009
  end-page: 128
  article-title: Fractional‐order feedback control of a DC motor
  publication-title: J Electr Eng
– year: 2017
– volume: 17
  start-page: 1380
  issue: 12
  year: 2009
  end-page: 1387
  article-title: Design of a fractional order PID controller for an AVR using particle swarm optimization
  publication-title: Control Eng Pract
– volume: 465
  start-page: 38
  year: 2018
  end-page: 60
  article-title: Design of optimal lighting control strategy based on multi‐variable fractional‐order extremum seeking method
  publication-title: Information Science
– volume: 14
  start-page: 340
  issue: 3
  year: 2017
  end-page: 349
  article-title: Robust stabilizing regions of fractional‐order controllers for fractional‐order systems with time‐delays
  publication-title: Int J Autom Comput
– volume: 70
  issue: 5
  year: 2004
  article-title: Fractional diffusion modeling of ion channel gating
  publication-title: Phys Rev E
– year: 1999
– year: 2013
– ident: e_1_2_8_19_1
  doi: 10.1016/S1474-6670(17)38220-4
– ident: e_1_2_8_17_1
  doi: 10.1016/j.conengprac.2007.08.006
– ident: e_1_2_8_34_1
  doi: 10.1007/s11071-006-9094-0
– ident: e_1_2_8_4_1
  doi: 10.1109/JETCAS.2013.2265797
– ident: e_1_2_8_13_1
  doi: 10.1142/3779
– volume: 5
  start-page: 771
  year: 2007
  ident: e_1_2_8_20_1
  article-title: Fractional order PID controller design for fractional order system
  publication-title: Control Theory Appl
– ident: e_1_2_8_3_1
  doi: 10.1016/j.physa.2009.07.024
– ident: e_1_2_8_12_1
  doi: 10.1016/j.amc.2018.11.020
– ident: e_1_2_8_29_1
  doi: 10.1109/TAC.2007.906243
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jprocont.2013.10.008
– ident: e_1_2_8_31_1
  doi: 10.1007/s11633-015-0941-7
– ident: e_1_2_8_36_1
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ins.2018.06.059
– ident: e_1_2_8_27_1
  doi: 10.1016/j.isatra.2018.01.025
– ident: e_1_2_8_2_1
  doi: 10.1515/9783110497977
– ident: e_1_2_8_25_1
  doi: 10.1016/j.neucom.2015.07.077
– ident: e_1_2_8_18_1
  doi: 10.1016/j.isatra.2014.09.012
– volume: 42
  start-page: 2735
  issue: 1
  year: 2012
  ident: e_1_2_8_6_1
  article-title: Fractional processes and fractional‐order signal processing
  publication-title: Signals Commun Technol
– ident: e_1_2_8_24_1
  doi: 10.1016/j.conengprac.2009.07.005
– ident: e_1_2_8_10_1
  doi: 10.1515/fca-2017-0008
– ident: e_1_2_8_26_1
  doi: 10.1002/rnc.3363
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jfranklin.2017.12.020
– ident: e_1_2_8_9_1
  doi: 10.1002/rnc.4490
– ident: e_1_2_8_7_1
  doi: 10.1002/rnc.3677
– volume-title: Fractional Order Motion Controls
  year: 2013
  ident: e_1_2_8_23_1
– volume-title: Fractional Differential Equations
  year: 1999
  ident: e_1_2_8_14_1
– ident: e_1_2_8_5_1
  doi: 10.1007/s10955-007-9294-0
– volume-title: Advanced PID Control
  year: 2006
  ident: e_1_2_8_15_1
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevE.70.051915
– ident: e_1_2_8_21_1
  doi: 10.1016/j.eswa.2012.01.007
– ident: e_1_2_8_30_1
  doi: 10.1016/j.automatica.2012.05.072
– ident: e_1_2_8_8_1
  doi: 10.1016/j.nahs.2014.10.001
– volume: 60
  start-page: 117
  issue: 3
  year: 2009
  ident: e_1_2_8_16_1
  article-title: Fractional‐order feedback control of a DC motor
  publication-title: J Electr Eng
– ident: e_1_2_8_22_1
  doi: 10.1002/rnc.3041
– ident: e_1_2_8_28_1
  doi: 10.1016/j.automatica.2005.08.010
SSID ssj0009924
Score 2.384856
Snippet Summary In this paper, a robust fractional‐order PID (FOPID) controller design method for fractional‐order delay systems is proposed based on positive...
In this paper, a robust fractional‐order PID (FOPID) controller design method for fractional‐order delay systems is proposed based on positive stability region...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5195
SubjectTerms Algorithms
Computer simulation
Control algorithms
Control stability
Control systems design
Control theory
Controllers
Crossovers
Delay
delay system
FOPID control
fractional‐order
positive stability region (PSR)
Proportional integral derivative
robust analysis
Robust control
Stability analysis
Transient performance
Title Robust FOPID controller design for fractional‐order delay systems using positive stability region analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.4667
https://www.proquest.com/docview/2283277791
Volume 29
WOSCitedRecordID wos000478265400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-1239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009924
  issn: 1049-8923
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsNAFIYP2rrQhXexWmUE0VVo0iRzWUprUSi1FAvdhcwlIpRWkrbQnY_gM_okzmTSi6AguAqEGQhnzpn5Cf98B-Ba-BQzxUMHC66cgFHpxK7wHWxeY6VCJnKIa5t0OnQwYN3CVWnuwlg-xPKHm6mMfL82BR7zrLaChqa6fgKMySaU6zptgxKUm71Wv71C7jLb0lZrYIdqHbNAz7r12mLu98NopTDXdWp-0LT2_vOJ-7BbyEt0Z_PhADbU6BB21qCDRzDsjfk0m6DWU_exiQqr-lClSOZmDqRVLEpSe98hHn6-f-R0TmRoknNkwc8ZMnb5F2QdXzOFtMTMTbZzZBo9jEcoLlgnx9Bv3T83Hpyi54IjfMOLZJIKFngBdxPpcZ8JEXhe4hPBBQlDTDhjUmFMmSLcD5UnXcliHnDhYiETFvsnUBqNR-oUkMddP8Y4UYxomZYoSmPiYp64VJoUCCpwuwh-JAoguemLMYwsSrke6fhFJn4VuFqOfLMQjh_GVBfrFxVlmEWG7VMnhDCvAjf5Sv06P-p1GuZ59teB57CtxROzxr4qlCbpVF3AlphNXrP0skjGL4On51w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsNAFIYPtQrqwrtYrTqC6CqYNMlccCWtpcVapSi4C5lLRCitpLXQnY_gM_okzmQSq6AguAqEMxBmzsn8DP98B-BY-BQzxUMHC66cgFHpxK7wHWxeY6VCJjKIa4d0u_Thgd2W4Ly4C2P5EJ8HbqYysv-1KXBzIH02o4amuoACjMkczAc6i8IyzDd6zfvOjLnLbE9bLYIdqoVMwZ51a2fF2O-70UxifhWq2U7TXP3XN67BSi4w0YXNiHUoqcEGLH_BDm5CvzfkL6Mxat7cthsoN6v3VYpkZudAWseiJLU3HuL---tbxudEhic5RRb9PELGMP-IrOdropAWmZnNdopMq4fhAMU57WQL7puXd_WWk3ddcIRviJFMUsECL-BuIj3uMyECz0t8IrggYYgJZ0wqjClThPuh8qQrWcwDLlwsZMJifxvKg-FA7QDyuOvHGCeKES3UEkVpTFzME5dKkwRBBU6L2Y9EjiQ3nTH6kYUp1yI9f5GZvwocfUY-WwzHDzHVYgGjvBBHkaH71AghzKvASbZUv46Pet26ee7-NfAQFlt3152o0-5e7cGSllLM2vyqUB6nL2ofFsRk_DRKD_LM_ABSwOtM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1da9swFIYPXVPGdtF1bcfSZpsGpb0ysWNb0qFXJZlZWUhDaKF3xvpwKYQkOB_Qu_2E_cb9kkmW3aTQQmFXBiOBOTpHejGvngNwIkNOUYvYo1JoL0KuvMyXoUfta6p1jLKEuPbZYMBvb3G4Bef1XRjHh3j84WYro9yvbYHrmcrba2poYQooopS9gUYUIzVV2eiNkpv-mrmLrqetEcEeN0KmZs_6nXY99-lptJaYm0K1PGmSD__1jXuwWwlMcuEy4iNs6ck-vN_ADh7AeDQVy_mCJFfDyx6pzOpjXRBV2jmI0bEkL9yNh2z89_efks9JLE_ygTj085xYw_wdcZ6vlSZGZJY22wdiWz1MJySraCeHcJP8uO7-9KquC54MLTESFZcYBZHwcxWIEKWMgiAPmRSSxTFlAlFpSjlqJsJYB8pXmIlISJ9KlWMWfoLtyXSiPwMJhB9mlOYamRFqueY8Yz4Vuc-VTYKoCWd19FNZIcltZ4xx6mDKndTEL7Xxa8L3x5Ezh-F4ZkyrXsC0KsR5auk-HcYYBk04LZfqxfnpaNC1z6PXDvwGb4e9JO1fDn4dwzujpNC5_FqwvSiW-gvsyNXifl58rRLzH_6G6sc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+FOPID+controller+design+for+fractional%E2%80%90order+delay+systems+using+positive+stability+region+analysis&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Zhang%2C+Shuo&rft.au=Liu%2C+Lu&rft.au=Cui%2C+Xinshu&rft.date=2019-10-01&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=29&rft.issue=15&rft.spage=5195&rft.epage=5212&rft_id=info:doi/10.1002%2Frnc.4667&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rnc_4667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon