Global Evaluation of Optimal Probability Distribution Functions for RDI Assessments

ABSTRACT Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration results in insufficient replenishment of runoff and groundwater. Choosing an appropriate drought index is crucial for managing water resources e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Hydrological processes Ročník 39; číslo 1
Hlavní autoři: Asadi Zarch, Mohammad Amin, Motraghi, Fatemeh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.01.2025
Wiley Subscription Services, Inc
Témata:
ISSN:0885-6087, 1099-1085
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration results in insufficient replenishment of runoff and groundwater. Choosing an appropriate drought index is crucial for managing water resources effectively. The Reconnaissance Drought Index (RDI) which considers both precipitation and potential evapotranspiration is recommended for identifying droughts in a changing climate. Standardising the index involves using a probability distribution, and choosing the correct distribution is important for accurate assessments of drought characteristics. Furthermore, identifying the optimal distributions for RDI assessments ensures reliable evaluations of subsequent hydrological processes. Based on a regional study, the index developers suggest using gamma or log‐normal probability distributions to compute the index using real observations. Furthermore, there is a lack of research on suitable distributions for RDI calculation using GCMs projections (simulated data) in drought projection studies. This global study aims to address these gaps in research by evaluating the performance of probability distributions in calculating RDI. The study consists of two phases: The first phase involves identifying the appropriate distribution for historical observed data, whilst the second phase does the same for future projections from GCMs. To achieve this, 17 probability distributions are applied. The 0.5° × 0.5° gridded CRU data from 1950 to 2018 and projections of 18 GCMs from 2006 to 2080 are utilised. The analysis identified the log logistic, inverse Gaussian and gamma distributions as the best fits for the historical period. For future projections, the gamma, inverse Gaussian and Nakagami distributions are recommended. Finally, the findings revealed for both periods, Fitting to the Best Distribution of any Grid (FBDG) performs the best for large‐scale drought studies using gridded data. In the historical period, the log logistic, inverse Gaussian and gamma distributions are the best, respectively. For the future period, the projections indicate the gamma, inverse Gaussian and Nakagami distributions present the best fit, respectively. For both periods, Fitting to the Best Distribution of any Grid (FBDG) performs the best for large‐scale drought studies using gridded data.
AbstractList Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration results in insufficient replenishment of runoff and groundwater. Choosing an appropriate drought index is crucial for managing water resources effectively. The Reconnaissance Drought Index (RDI) which considers both precipitation and potential evapotranspiration is recommended for identifying droughts in a changing climate. Standardising the index involves using a probability distribution, and choosing the correct distribution is important for accurate assessments of drought characteristics. Furthermore, identifying the optimal distributions for RDI assessments ensures reliable evaluations of subsequent hydrological processes. Based on a regional study, the index developers suggest using gamma or log‐normal probability distributions to compute the index using real observations. Furthermore, there is a lack of research on suitable distributions for RDI calculation using GCMs projections (simulated data) in drought projection studies. This global study aims to address these gaps in research by evaluating the performance of probability distributions in calculating RDI. The study consists of two phases: The first phase involves identifying the appropriate distribution for historical observed data, whilst the second phase does the same for future projections from GCMs. To achieve this, 17 probability distributions are applied. The 0.5° × 0.5° gridded CRU data from 1950 to 2018 and projections of 18 GCMs from 2006 to 2080 are utilised. The analysis identified the log logistic, inverse Gaussian and gamma distributions as the best fits for the historical period. For future projections, the gamma, inverse Gaussian and Nakagami distributions are recommended. Finally, the findings revealed for both periods, Fitting to the Best Distribution of any Grid (FBDG) performs the best for large‐scale drought studies using gridded data.
ABSTRACT Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration results in insufficient replenishment of runoff and groundwater. Choosing an appropriate drought index is crucial for managing water resources effectively. The Reconnaissance Drought Index (RDI) which considers both precipitation and potential evapotranspiration is recommended for identifying droughts in a changing climate. Standardising the index involves using a probability distribution, and choosing the correct distribution is important for accurate assessments of drought characteristics. Furthermore, identifying the optimal distributions for RDI assessments ensures reliable evaluations of subsequent hydrological processes. Based on a regional study, the index developers suggest using gamma or log‐normal probability distributions to compute the index using real observations. Furthermore, there is a lack of research on suitable distributions for RDI calculation using GCMs projections (simulated data) in drought projection studies. This global study aims to address these gaps in research by evaluating the performance of probability distributions in calculating RDI. The study consists of two phases: The first phase involves identifying the appropriate distribution for historical observed data, whilst the second phase does the same for future projections from GCMs. To achieve this, 17 probability distributions are applied. The 0.5° × 0.5° gridded CRU data from 1950 to 2018 and projections of 18 GCMs from 2006 to 2080 are utilised. The analysis identified the log logistic, inverse Gaussian and gamma distributions as the best fits for the historical period. For future projections, the gamma, inverse Gaussian and Nakagami distributions are recommended. Finally, the findings revealed for both periods, Fitting to the Best Distribution of any Grid (FBDG) performs the best for large‐scale drought studies using gridded data. In the historical period, the log logistic, inverse Gaussian and gamma distributions are the best, respectively. For the future period, the projections indicate the gamma, inverse Gaussian and Nakagami distributions present the best fit, respectively. For both periods, Fitting to the Best Distribution of any Grid (FBDG) performs the best for large‐scale drought studies using gridded data.
Author Motraghi, Fatemeh
Asadi Zarch, Mohammad Amin
Author_xml – sequence: 1
  givenname: Mohammad Amin
  orcidid: 0009-0000-2599-5890
  surname: Asadi Zarch
  fullname: Asadi Zarch, Mohammad Amin
  email: amin.asadi@yazd.ac.ir
  organization: Faculty of Natural Resources and Desert Studies, Yazd University
– sequence: 2
  givenname: Fatemeh
  surname: Motraghi
  fullname: Motraghi, Fatemeh
  organization: Technology and Industrial Campus, Yazd University
BookMark eNp9kD1rwzAQhkVJoUnaof_A0KUdnJys2JbGkG8IJPRj6GRkWaIKipVKdov_fZ2kU6Cd7rh73uN4eqhT2lIidI9hgAGi4UdzGKQAJL1CXQyMhRho3EFdoDQOE6DpDep5vwOAEVDoopeFsTk3weyLm5pX2paBVcHmUOl9O926dplro6smmGpfOZ3XJ2Zel-LY-EBZFzxPV8HYe-n9XpaVv0XXihsv735rH73NZ6-TZbjeLFaT8ToUhEAajiQfpQKrIo_jXKacMBLJQtFUFFSygpE4Z4QnPEpUAZhBQkXCiCjiPI9GCivSR4_nuwdnP2vpq2yvvZDG8FLa2mcEJzFNGI3TFn24QHe2dmX73ZGCCBMGpKWezpRw1nsnVXZwrQfXZBiyo96s1Zud9Lbs8IIVujoJrBzX5r_Etzay-ft0tnzfnhM_DkuORA
CitedBy_id crossref_primary_10_1002_hyp_70071
crossref_primary_10_1002_hyp_14919
Cites_doi 10.1080/19475705.2022.2131471
10.1186/s40677‐021‐00183‐1
10.1175/1520‐0493(1958)086<0117:ANOTGD>2.0.CO;2
10.1016/j.ejrh.2024.101661
10.5194/hess‐24‐4541‐2020
10.1007/s11069-017-2980-6
10.1175/JHM‐D‐20‐0256.1
10.1007/s41748-019-00102-3
10.1007/s11269‐012‐0026‐0
10.1016/0273-1177(95)00079-T
10.1016/j.jhydrol.2014.09.071
10.1002/joc.3875
10.1016/j.jhydrol.2022.128385
10.5194/essd-15-5449-2023
10.1029/2021EF002542
10.1007/s40899‐019‐00310‐9
10.1007/s11069‐024‐06894‐6
10.1007/s00382‐021‐06064‐5
10.5194/hess-16-2143-2012
10.1038/s41597-023-02255-3
10.1016/j.jhydrol.2017.03.017
10.1007/s40710‐017‐0259‐2
10.1007/s11269‐017‐1793‐4
10.1007/s00704-019-03050-0
10.3390/atmos14081292
10.1016/j.scitotenv.2019.05.345
10.1016/B978-0-12-416008-8.00004-8
10.1002/joc.5381
10.1002/joc.3711
10.22055/jise.2017.22113.1585
10.1007/s00024‐021‐02704‐3
10.1155/2017/4653126
10.1007/s10584‐011‐0148‐z
10.2166/ws.2022.056
10.1007/s11269‐006‐9105‐4
10.1002/joc.4267
10.3354/cr01204
10.1007/s11269‐010‐9772‐z
10.1016/j.spl.2010.08.020
10.1016/j.jhydrol.2010.07.012
10.1023/B:WARM.0000015410.47014.a4
10.1007/s11269‐022‐03304‐z
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
DOI 10.1002/hyp.70037
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage n/a
ExternalDocumentID 10_1002_hyp_70037
HYP70037
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AIQQE
CITATION
O8X
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c3307-4ea47c1fdb55be7a3932edf87cd8e9d935b93a6a26fd019068c693cd5bb24f1f3
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001390343100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6087
IngestDate Fri Jul 11 14:26:45 EDT 2025
Fri Jul 25 22:00:07 EDT 2025
Sat Nov 29 08:17:13 EST 2025
Tue Nov 18 21:43:21 EST 2025
Wed Aug 20 07:26:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3307-4ea47c1fdb55be7a3932edf87cd8e9d935b93a6a26fd019068c693cd5bb24f1f3
Notes The authors received no specific funding for this work.
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-2599-5890
PQID 3160213903
PQPubID 2034139
PageCount 20
ParticipantIDs proquest_miscellaneous_3165869857
proquest_journals_3160213903
crossref_primary_10_1002_hyp_70037
crossref_citationtrail_10_1002_hyp_70037
wiley_primary_10_1002_hyp_70037_HYP70037
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Hydrological processes
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 35
2021; 8
2023; 10
2023; 14
2017; 4
2021; 22
2019; 5
2017; 2017
2023; 15
1995; 15
2022; 613, Part A
2017; 89
2024; 51
2008
2015; 526
2012; 16
2022; 22
2024
2010; 80
2019; 684
2017; 548
2017; 31
2011; 109
2019; 42
2004; 18
2021; 178
2021
2005; 9
1965
1958; 86
2014; 59
2019
2022; 13
2022; 36
2020; 139
2022; 59
2020; 24
2015
2014
2022; 10
2012; 26
2013
2011; 25
2010; 391
2007; 21
1998; 300
2018; 38
2014; 34
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
Abramowitz M. (e_1_2_12_2_1) 1965
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
Allen R. G. (e_1_2_12_3_1) 1998; 300
e_1_2_12_49_1
IPCC (e_1_2_12_20_1) 2021
Flato G. J. (e_1_2_12_14_1) 2013
e_1_2_12_31_1
e_1_2_12_52_1
Mohammed E. M. (e_1_2_12_28_1) 2015
e_1_2_12_33_1
e_1_2_12_35_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_50_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
Tsakiris G. (e_1_2_12_39_1) 2008
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
Stocker T. (e_1_2_12_37_1) 2013
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_32_1
e_1_2_12_34_1
e_1_2_12_36_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
Tsakiris G. (e_1_2_12_42_1) 2005; 9
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – volume: 34
  start-page: 2792
  year: 2014
  end-page: 2804
  article-title: World Drought Frequency, Duration, and Severity for 1951‐2010
  publication-title: International Journal of Climatology
– volume: 178
  start-page: 1387
  issue: 4
  year: 2021
  end-page: 1403
  article-title: Accuracy Assessment of the SPEI, RDI and SPI Drought Indices in Regions of Iran with Different Climate Conditions
  publication-title: Pure and Applied Geophysics
– volume: 5
  start-page: 1345
  issue: 3
  year: 2019
  end-page: 1356
  article-title: Comparison of Reconnaissance Drought Index (RDI) and Effective Reconnaissance Drought Index (eRDI) to Evaluate Drought Severity
  publication-title: Sustainable Water Resources Management
– volume: 21
  start-page: 821
  issue: 5
  year: 2007
  end-page: 833
  article-title: Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)
  publication-title: Water Resources Management
– volume: 10
  start-page: 338
  year: 2023
  article-title: An Improved Global Vegetation Health Index Dataset in Detecting Vegetation Drought
  publication-title: Scientific Data
– volume: 24
  start-page: 4541
  issue: 9
  year: 2020
  end-page: 4565
  article-title: A Universal Standardized Precipitation Index Candidate Distribution Function for Observations and Simulations
  publication-title: Hydrology and Earth System Sciences
– year: 2021
– start-page: 577
  year: 2015
  end-page: 602
– volume: 31
  start-page: 5001
  year: 2017
  end-page: 5017
  article-title: The Effect of Temperature Adjustment on Reference Evapotranspiration and Reconnaissance Drought Index (RDI) in Iran
  publication-title: Water Resources Management
– volume: 391
  start-page: 202
  issue: 1–2
  year: 2010
  end-page: 216
  article-title: A Review of Drought Concepts
  publication-title: Journal of Hydrology
– year: 2019
  article-title: Sensitivity of SPI to Distribution Functions and Correlation Between its Values at Different Time Scales in Central Africa
  publication-title: Earth Systems and Environment
– volume: 109
  start-page: 5
  year: 2011
  end-page: 31
  article-title: The Representative Concentration Pathways: An Overview
  publication-title: Climatic Change
– volume: 548
  start-page: 322
  year: 2017
  end-page: 332
  article-title: Evaluation of the Gridded CRU TS Precipitation Dataset with the Point Raingauge Records Over the Three‐River Headwaters Region
  publication-title: Journal of Hydrology
– volume: 36
  start-page: 5259
  year: 2022
  end-page: 5276
  article-title: Past and Future Global Drought Assessment
  publication-title: Water Resources Management
– volume: 13
  start-page: 2737
  issue: 1
  year: 2022
  end-page: 2776
  article-title: Modelling Agricultural Drought: A Review of Latest Advances in Big Data Technologies
  publication-title: Geomatics, Natural Hazards and Risk
– volume: 10
  start-page: e2021EF002542
  issue: 3
  year: 2022
  article-title: Impacts of Global Climate Warming on Meteorological and Hydrological Droughts and Their Propagations
  publication-title: Earth's Future
– year: 1965
– volume: 34
  start-page: 623
  year: 2014
  end-page: 642
  article-title: Updated High‐Resolution Grids of Monthly Climatic Observations – The CRU TS3.10 Dataset
  publication-title: International Journal of Climatology
– volume: 22
  start-page: 1369
  year: 2021
  end-page: 1383
  article-title: Uncertainty in SPI Calculation and Its Impact on Drought Assessment in Different Climate Regions over China
  publication-title: Journal of Hydrometeorology
– volume: 14
  start-page: 1292
  year: 2023
  article-title: Optimal Probability Distribution and Applicable Minimum Time‐Scale for Daily Standardized Precipitation Index Time Series in South Korea
  publication-title: Atmosphere
– volume: 59
  start-page: 1
  issue: 1
  year: 2014
  end-page: 13
  article-title: Climate Classification Revisited: From Köppen to Trewartha
  publication-title: Climate Research
– volume: 26
  start-page: 2453
  year: 2012
  end-page: 2473
  article-title: Computation of Drought Index SPI with Alternative Distribution Functions
  publication-title: Water Resources Management
– volume: 2017
  year: 2017
  article-title: Drought Trends in the Iberian Peninsula Over the 148 Last 112 Years
  publication-title: Advances in Meteorology
– volume: 15
  start-page: 5449
  year: 2023
  end-page: 5466
  article-title: Global High‐Resolution Drought Indices for 1981–2022
  publication-title: Earth System Science Data
– volume: 51
  year: 2024
  article-title: How will Drought Evolve in Global Arid Zones Under Different Future Emission Scenarios?
  publication-title: Journal of Hydrology: Regional Studies
– year: 2015
– volume: 16
  start-page: 2143
  year: 2012
  end-page: 2157
  article-title: Monitoring and Quantifying Future Climate Projections of Dryness and Wetness Extremes: SPI Bias
  publication-title: Hydrology and Earth System Sciences
– start-page: 49
  year: 2014
  end-page: 61
– start-page: 741
  year: 2013
  end-page: 866
– volume: 15
  start-page: 91
  year: 1995
  end-page: 100
  article-title: Application of Vegetation Index and Brightness Temperature for Drought Detection
  publication-title: Advances in Space Research
– volume: 4
  start-page: 477
  year: 2017
  end-page: 507
  article-title: An Assessment of Climate Change Impacts on Future Water Availability and Droughts in the Kentucky River Basin
  publication-title: Environmental Processes
– volume: 613, Part A
  year: 2022
  article-title: How Standard are Standardized Drought Indices? Uncertainty Components for the SPI & SPEI Case
  publication-title: Journal of Hydrology
– volume: 89
  start-page: 555
  year: 2017
  end-page: 583
  article-title: The Applicability of Standardized Precipitation Index: Drought Characterization for Early Warning System and Weather Index Insurance in West Africa
  publication-title: Natural Hazards
– volume: 9
  start-page: 3
  issue: 10
  year: 2005
  end-page: 11
  article-title: Establishing a Drought Index Incorporating Evapotranspiration
  publication-title: European water
– volume: 42
  start-page: 117
  year: 2019
  end-page: 131
  article-title: Adaptive Evaluation of SPI, RDI, and SPEI indices in Analyzing the Trend of Intensity, Duration, and Frequency of Drought in Arid and Semi‐Arid Regions of Iran
  publication-title: JISE
– volume: 300
  start-page: D05109
  issue: 9
  year: 1998
  article-title: Crop Evapotranspiration‐Guidelines for Computing Crop Water Requirements‐FAO Irrigation and Drainage Paper 56
  publication-title: Fao, Rome
– volume: 18
  start-page: 1
  year: 2004
  end-page: 12
  article-title: Towards a Drought Watch System Based on Spatial SPI
  publication-title: Water resources manage
– volume: 80
  start-page: 1918
  issue: 23–24
  year: 2010
  end-page: 1924
  article-title: Model Selection Using Modified AIC and BIC in Joint Modeling of Paired Functional Data
  publication-title: Statistics & Probability Letters
– volume: 22
  start-page: 4373
  issue: 4
  year: 2022
  end-page: 4386
  article-title: Evaluation of the Climate Change Impact on the Intensity and Return Period for Drought Indices of SPI and SPEI (Study Area: Varamin Plain)
  publication-title: Water Supply
– volume: 35
  start-page: 4027
  issue: 13
  year: 2015
  end-page: 4040
  article-title: Candidate Distributions for Climatological Drought Indices (SPI and SPEI)
  publication-title: International Journal of Climatology
– volume: 38
  start-page: e418
  year: 2018
  end-page: e436
  article-title: Using the Normality Assumption to Calculate Probability‐Based Standardized Drought Indices: Selection Criteria with Emphases on Typical Events
  publication-title: International Journal of Climatology
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  end-page: 16
  article-title: Analysis of Meteorological Droughts in the Lake's Region of Ethiopian Rift Valley using Reconnaissance Drought Index (RDI)
  publication-title: Geoenvironmental Disasters
– start-page: 57
  year: 2008
  end-page: 62
– year: 2024
  article-title: Assessment of Drought Characteristics using SPEI and VHI in Tanzania and Their Associated Climate Factors
  publication-title: Natural Hazards
– volume: 86
  start-page: 117
  issue: 4
  year: 1958
  end-page: 122
  article-title: A Note on the Gamma Distribution
  publication-title: Monthly weather review
– volume: 139
  start-page: 1363
  year: 2020
  end-page: 1377
  article-title: Comparative Analysis of Probability Distributions for the Standardized Precipitation Index and Drought Evolution in China During 1961–2015
  publication-title: Theoretical and Applied Climatology
– volume: 526
  start-page: 183
  year: 2015
  end-page: 195
  article-title: Droughts in a Warming Climate: A Global Assessment of Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI)
  publication-title: Journal of Hydrology
– volume: 59
  start-page: 1665
  issue: 5‐6
  year: 2022
  end-page: 1685
  article-title: Twenty‐First Century Drought Analysis Across China Under Climate Change
  publication-title: Climate Dynamics
– volume: 25
  start-page: 1737
  issue: 6
  year: 2011
  end-page: 1757
  article-title: Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones
  publication-title: Water Resources Management
– volume: 684
  start-page: 229
  year: 2019
  end-page: 246
  article-title: The Contribution of Internal Climate Variability to Climate Change Impacts on Droughts
  publication-title: Science of the Total Environment
– year: 2013
– ident: e_1_2_12_18_1
  doi: 10.1080/19475705.2022.2131471
– ident: e_1_2_12_29_1
  doi: 10.1186/s40677‐021‐00183‐1
– volume: 9
  start-page: 3
  issue: 10
  year: 2005
  ident: e_1_2_12_42_1
  article-title: Establishing a Drought Index Incorporating Evapotranspiration
  publication-title: European water
– ident: e_1_2_12_38_1
  doi: 10.1175/1520‐0493(1958)086<0117:ANOTGD>2.0.CO;2
– ident: e_1_2_12_13_1
  doi: 10.1016/j.ejrh.2024.101661
– volume-title: Handbook of Mathematical Functions
  year: 1965
  ident: e_1_2_12_2_1
– volume-title: IPCC, 2013: Summary for Policymakers in Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_12_37_1
– ident: e_1_2_12_32_1
  doi: 10.5194/hess‐24‐4541‐2020
– ident: e_1_2_12_30_1
  doi: 10.1007/s11069-017-2980-6
– ident: e_1_2_12_45_1
  doi: 10.1175/JHM‐D‐20‐0256.1
– ident: e_1_2_12_17_1
  doi: 10.1007/s41748-019-00102-3
– ident: e_1_2_12_43_1
– ident: e_1_2_12_4_1
  doi: 10.1007/s11269‐012‐0026‐0
– ident: e_1_2_12_23_1
  doi: 10.1016/0273-1177(95)00079-T
– ident: e_1_2_12_6_1
  doi: 10.1016/j.jhydrol.2014.09.071
– volume: 300
  start-page: D05109
  issue: 9
  year: 1998
  ident: e_1_2_12_3_1
  article-title: Crop Evapotranspiration‐Guidelines for Computing Crop Water Requirements‐FAO Irrigation and Drainage Paper 56
  publication-title: Fao, Rome
– ident: e_1_2_12_35_1
  doi: 10.1002/joc.3875
– ident: e_1_2_12_24_1
  doi: 10.1016/j.jhydrol.2022.128385
– ident: e_1_2_12_15_1
  doi: 10.5194/essd-15-5449-2023
– ident: e_1_2_12_47_1
  doi: 10.1029/2021EF002542
– ident: e_1_2_12_48_1
  doi: 10.1007/s40899‐019‐00310‐9
– ident: e_1_2_12_26_1
  doi: 10.1007/s11069‐024‐06894‐6
– ident: e_1_2_12_51_1
  doi: 10.1007/s00382‐021‐06064‐5
– ident: e_1_2_12_34_1
  doi: 10.5194/hess-16-2143-2012
– ident: e_1_2_12_50_1
  doi: 10.1038/s41597-023-02255-3
– ident: e_1_2_12_33_1
  doi: 10.1016/j.jhydrol.2017.03.017
– ident: e_1_2_12_12_1
  doi: 10.1007/s40710‐017‐0259‐2
– start-page: 577
  volume-title: Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology: Systems Biology: Algorithms and Software Tools
  year: 2015
  ident: e_1_2_12_28_1
– ident: e_1_2_12_22_1
  doi: 10.1007/s11269‐017‐1793‐4
– ident: e_1_2_12_52_1
  doi: 10.1007/s00704-019-03050-0
– start-page: 57
  volume-title: 1st International Conference “Drought Management: Scientific and Technological Innovations”
  year: 2008
  ident: e_1_2_12_39_1
– ident: e_1_2_12_25_1
  doi: 10.3390/atmos14081292
– ident: e_1_2_12_16_1
  doi: 10.1016/j.scitotenv.2019.05.345
– ident: e_1_2_12_11_1
  doi: 10.1016/B978-0-12-416008-8.00004-8
– volume-title: Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2021
  ident: e_1_2_12_20_1
– ident: e_1_2_12_10_1
  doi: 10.1002/joc.5381
– start-page: 741
  volume-title: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_12_14_1
– ident: e_1_2_12_19_1
  doi: 10.1002/joc.3711
– ident: e_1_2_12_8_1
  doi: 10.22055/jise.2017.22113.1585
– ident: e_1_2_12_49_1
  doi: 10.1007/s00024‐021‐02704‐3
– ident: e_1_2_12_31_1
  doi: 10.1155/2017/4653126
– ident: e_1_2_12_44_1
  doi: 10.1007/s10584‐011‐0148‐z
– ident: e_1_2_12_7_1
  doi: 10.2166/ws.2022.056
– ident: e_1_2_12_40_1
  doi: 10.1007/s11269‐006‐9105‐4
– ident: e_1_2_12_36_1
  doi: 10.1002/joc.4267
– ident: e_1_2_12_9_1
  doi: 10.3354/cr01204
– ident: e_1_2_12_21_1
  doi: 10.1007/s11269‐010‐9772‐z
– ident: e_1_2_12_46_1
  doi: 10.1016/j.spl.2010.08.020
– ident: e_1_2_12_27_1
  doi: 10.1016/j.jhydrol.2010.07.012
– ident: e_1_2_12_41_1
  doi: 10.1023/B:WARM.0000015410.47014.a4
– ident: e_1_2_12_5_1
  doi: 10.1007/s11269‐022‐03304‐z
SSID ssj0004080
Score 2.4557061
Snippet ABSTRACT Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration...
Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration results in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Assessments
climate
Climate change
Climatic indexes
CRU TS 4.03 database
Distribution functions
Drought
Drought characteristics
Drought index
droughts
Evapotranspiration
GCMs
Groundwater
Groundwater runoff
Hydrologic processes
Performance evaluation
Potential evapotranspiration
Precipitation
probability
Probability distribution
Probability distribution functions
probability distributions
RDI
Regional development
runoff
Water management
Water resources
Water resources management
Title Global Evaluation of Optimal Probability Distribution Functions for RDI Assessments
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.70037
https://www.proquest.com/docview/3160213903
https://www.proquest.com/docview/3165869857
Volume 39
WOSCitedRecordID wos001390343100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1099-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004080
  issn: 0885-6087
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bSxwxFIcPugr60tYbrrUlig--jM4kkxt9kq6LBdHFC-jTkCsK7a7sqrD_fZPM7KxCC4W-DZMzF5JzkkNmzvcDOMAWU0xNnvmcyazkQmdaGZxFNBrTprCK6CQ2wS8uxN2dHCzAt1ktTM2HaDfcYmSk-ToGuNKT4zk09GH6dMQjPmURlnDw27IDS72r_u35vCwyT8JpIY5oxnLBZ2ChHB-3F79fjuY55ttMNS01_Y__9ZKf4EOTYaKT2iXWYMEN12GlETt_mG7Adc35R6ct6BuNPLoMc8evcHYwDo3pj9kp6kWqbiOIhfphBUxOikKei656P9BJS_WcbMJt__Tm-1nWaCtkhkQuZOlUyU3hraZUO65IyOOc9YIbK5y0klAtiWIKM29juTkThkliLNUal77wZAs6w9HQbQPynnPpOMFeRPxYqXhhTK4t5sLlTrAuHM66uDINeDzqX_ysamQyrkIvVamXurDfmj7VtI0_Ge3OxqlqAm5SkYKFbIXInHRhr20OoRK_f6ihG70kGyqYFDTc4jCN2t8fUp3dD9LBzr-bfoZVHNWB0wbNLnSexy_uCyyb1-fHyfhr452_AbfL6OA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bSxtBFIcPGgV9aatVGrXtVHzwZXV3ZucGfZHGEGlMgxewT8vODQuaSKKF_PfOzG42FloQ-rbsnL0wc87M4ezO9wM4wAZTTHWauJTJJOdCJarUOAloNKZ0ZkqiotgEHwzEzY0cLsHX-V6Yig_RFNxCZMT5OgR4KEgfL6iht7OHIx74Kcuwkns3oi1Y6Vx0r_uLfZFpVE7zgUQTlgo-Jwul-Li5-M_1aJFkvkxV41rTfft_b_kO3tQ5JjqpnGIDluxoE9ZqufPb2Xu4rEj_6LRBfaOxQz_87HHvzw4nvjH-MztDncDVrSWxUNevgdFNkc900UXnDJ00XM_pFlx3T6--9ZJaXSHRJJAhc1vmXGfOKEqV5SXxmZw1TnBthJVGEqokKVmJmTNhwzkTmkmiDVUK5y5zZBtao_HIfgDkHOfScoKdCACyvOSZ1qkymAubWsHacDjv40LX6PGggHFXVNBkXPheKmIvtWG_MX2oeBt_M9qbD1RRh9y0IBnz-QqRKWnDl6bZB0v4AlKO7Pgp2lDBpKD-Fodx2P79kKL3cxgPdl5v-hnWelfn_aJ_Nvi-C-s4aAXHcs0etB4nT_YjrOrfj7-mk0-1qz4Dqkzs0A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bS9xAFIcPXor6om2tuK2209IHX6LJTOYGvohrUCrbxVawTyFzw4LuLrsq7H_vzCSbbUFB8C1kTi6cmTPnMMl8P4Dv2GCKqU4TlzKZ5FyoRFUaJwGNxpTOTEVUFJvgvZ64upL9BTic7YWp-RDtgluIjDhfhwC3I-MO5tTQ6-lonwd-yiIs51QyH5bL3Yvi8ny-LzKNymk-kGjCUsFnZKEUH7QX_5-P5kXmv6VqzDXFxuve8i2sNzUmOqoHxTtYsIP3sNrInV9PN-FXTfpHJy3qGw0d-ulnj1t_tj_2jfGf2SnqBq5uI4mFCp8D4zBFvtJFF90zdNRyPScf4LI4-X18mjTqCokmgQyZ2yrnOnNGUaosr4iv5KxxgmsjrDSSUCVJxSrMnAkbzpnQTBJtqFI4d5kjW7A0GA7sNiDnOJeWE-xEAJDlFc-0TpXBXNjUCtaBvZmPS92gx4MCxk1ZQ5Nx6b1URi914FtrOqp5G08Z7cw6qmxCblKSjPl6hciUdOBr2-yDJXwBqQZ2eB9tqGBSUH-Lvdhtzz-kPP3TjwcfX276BVb63aI8P-v9-ARrOEgFx9WaHVi6G9_bXXijH-7-Tsafm5H6CFHh7Es
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Evaluation+of+Optimal+Probability+Distribution+Functions+for+RDI+Assessments&rft.jtitle=Hydrological+processes&rft.au=Mohammad+Amin+Asadi+Zarch&rft.au=Motraghi%2C+Fatemeh&rft.date=2025-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1099-1085&rft.volume=39&rft.issue=1&rft_id=info:doi/10.1002%2Fhyp.70037&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon