Global Evaluation of Optimal Probability Distribution Functions for RDI Assessments
ABSTRACT Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration results in insufficient replenishment of runoff and groundwater. Choosing an appropriate drought index is crucial for managing water resources e...
Uloženo v:
| Vydáno v: | Hydrological processes Ročník 39; číslo 1 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2025
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0885-6087, 1099-1085 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABSTRACT
Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration results in insufficient replenishment of runoff and groundwater. Choosing an appropriate drought index is crucial for managing water resources effectively. The Reconnaissance Drought Index (RDI) which considers both precipitation and potential evapotranspiration is recommended for identifying droughts in a changing climate. Standardising the index involves using a probability distribution, and choosing the correct distribution is important for accurate assessments of drought characteristics. Furthermore, identifying the optimal distributions for RDI assessments ensures reliable evaluations of subsequent hydrological processes. Based on a regional study, the index developers suggest using gamma or log‐normal probability distributions to compute the index using real observations. Furthermore, there is a lack of research on suitable distributions for RDI calculation using GCMs projections (simulated data) in drought projection studies. This global study aims to address these gaps in research by evaluating the performance of probability distributions in calculating RDI. The study consists of two phases: The first phase involves identifying the appropriate distribution for historical observed data, whilst the second phase does the same for future projections from GCMs. To achieve this, 17 probability distributions are applied. The 0.5° × 0.5° gridded CRU data from 1950 to 2018 and projections of 18 GCMs from 2006 to 2080 are utilised. The analysis identified the log logistic, inverse Gaussian and gamma distributions as the best fits for the historical period. For future projections, the gamma, inverse Gaussian and Nakagami distributions are recommended. Finally, the findings revealed for both periods, Fitting to the Best Distribution of any Grid (FBDG) performs the best for large‐scale drought studies using gridded data.
In the historical period, the log logistic, inverse Gaussian and gamma distributions are the best, respectively.
For the future period, the projections indicate the gamma, inverse Gaussian and Nakagami distributions present the best fit, respectively.
For both periods, Fitting to the Best Distribution of any Grid (FBDG) performs the best for large‐scale drought studies using gridded data. |
|---|---|
| AbstractList | Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration results in insufficient replenishment of runoff and groundwater. Choosing an appropriate drought index is crucial for managing water resources effectively. The Reconnaissance Drought Index (RDI) which considers both precipitation and potential evapotranspiration is recommended for identifying droughts in a changing climate. Standardising the index involves using a probability distribution, and choosing the correct distribution is important for accurate assessments of drought characteristics. Furthermore, identifying the optimal distributions for RDI assessments ensures reliable evaluations of subsequent hydrological processes. Based on a regional study, the index developers suggest using gamma or log‐normal probability distributions to compute the index using real observations. Furthermore, there is a lack of research on suitable distributions for RDI calculation using GCMs projections (simulated data) in drought projection studies. This global study aims to address these gaps in research by evaluating the performance of probability distributions in calculating RDI. The study consists of two phases: The first phase involves identifying the appropriate distribution for historical observed data, whilst the second phase does the same for future projections from GCMs. To achieve this, 17 probability distributions are applied. The 0.5° × 0.5° gridded CRU data from 1950 to 2018 and projections of 18 GCMs from 2006 to 2080 are utilised. The analysis identified the log logistic, inverse Gaussian and gamma distributions as the best fits for the historical period. For future projections, the gamma, inverse Gaussian and Nakagami distributions are recommended. Finally, the findings revealed for both periods, Fitting to the Best Distribution of any Grid (FBDG) performs the best for large‐scale drought studies using gridded data. ABSTRACT Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration results in insufficient replenishment of runoff and groundwater. Choosing an appropriate drought index is crucial for managing water resources effectively. The Reconnaissance Drought Index (RDI) which considers both precipitation and potential evapotranspiration is recommended for identifying droughts in a changing climate. Standardising the index involves using a probability distribution, and choosing the correct distribution is important for accurate assessments of drought characteristics. Furthermore, identifying the optimal distributions for RDI assessments ensures reliable evaluations of subsequent hydrological processes. Based on a regional study, the index developers suggest using gamma or log‐normal probability distributions to compute the index using real observations. Furthermore, there is a lack of research on suitable distributions for RDI calculation using GCMs projections (simulated data) in drought projection studies. This global study aims to address these gaps in research by evaluating the performance of probability distributions in calculating RDI. The study consists of two phases: The first phase involves identifying the appropriate distribution for historical observed data, whilst the second phase does the same for future projections from GCMs. To achieve this, 17 probability distributions are applied. The 0.5° × 0.5° gridded CRU data from 1950 to 2018 and projections of 18 GCMs from 2006 to 2080 are utilised. The analysis identified the log logistic, inverse Gaussian and gamma distributions as the best fits for the historical period. For future projections, the gamma, inverse Gaussian and Nakagami distributions are recommended. Finally, the findings revealed for both periods, Fitting to the Best Distribution of any Grid (FBDG) performs the best for large‐scale drought studies using gridded data. In the historical period, the log logistic, inverse Gaussian and gamma distributions are the best, respectively. For the future period, the projections indicate the gamma, inverse Gaussian and Nakagami distributions present the best fit, respectively. For both periods, Fitting to the Best Distribution of any Grid (FBDG) performs the best for large‐scale drought studies using gridded data. |
| Author | Motraghi, Fatemeh Asadi Zarch, Mohammad Amin |
| Author_xml | – sequence: 1 givenname: Mohammad Amin orcidid: 0009-0000-2599-5890 surname: Asadi Zarch fullname: Asadi Zarch, Mohammad Amin email: amin.asadi@yazd.ac.ir organization: Faculty of Natural Resources and Desert Studies, Yazd University – sequence: 2 givenname: Fatemeh surname: Motraghi fullname: Motraghi, Fatemeh organization: Technology and Industrial Campus, Yazd University |
| BookMark | eNp9kD1rwzAQhkVJoUnaof_A0KUdnJys2JbGkG8IJPRj6GRkWaIKipVKdov_fZ2kU6Cd7rh73uN4eqhT2lIidI9hgAGi4UdzGKQAJL1CXQyMhRho3EFdoDQOE6DpDep5vwOAEVDoopeFsTk3weyLm5pX2paBVcHmUOl9O926dplro6smmGpfOZ3XJ2Zel-LY-EBZFzxPV8HYe-n9XpaVv0XXihsv735rH73NZ6-TZbjeLFaT8ToUhEAajiQfpQKrIo_jXKacMBLJQtFUFFSygpE4Z4QnPEpUAZhBQkXCiCjiPI9GCivSR4_nuwdnP2vpq2yvvZDG8FLa2mcEJzFNGI3TFn24QHe2dmX73ZGCCBMGpKWezpRw1nsnVXZwrQfXZBiyo96s1Zud9Lbs8IIVujoJrBzX5r_Etzay-ft0tnzfnhM_DkuORA |
| CitedBy_id | crossref_primary_10_1002_hyp_70071 crossref_primary_10_1002_hyp_14919 |
| Cites_doi | 10.1080/19475705.2022.2131471 10.1186/s40677‐021‐00183‐1 10.1175/1520‐0493(1958)086<0117:ANOTGD>2.0.CO;2 10.1016/j.ejrh.2024.101661 10.5194/hess‐24‐4541‐2020 10.1007/s11069-017-2980-6 10.1175/JHM‐D‐20‐0256.1 10.1007/s41748-019-00102-3 10.1007/s11269‐012‐0026‐0 10.1016/0273-1177(95)00079-T 10.1016/j.jhydrol.2014.09.071 10.1002/joc.3875 10.1016/j.jhydrol.2022.128385 10.5194/essd-15-5449-2023 10.1029/2021EF002542 10.1007/s40899‐019‐00310‐9 10.1007/s11069‐024‐06894‐6 10.1007/s00382‐021‐06064‐5 10.5194/hess-16-2143-2012 10.1038/s41597-023-02255-3 10.1016/j.jhydrol.2017.03.017 10.1007/s40710‐017‐0259‐2 10.1007/s11269‐017‐1793‐4 10.1007/s00704-019-03050-0 10.3390/atmos14081292 10.1016/j.scitotenv.2019.05.345 10.1016/B978-0-12-416008-8.00004-8 10.1002/joc.5381 10.1002/joc.3711 10.22055/jise.2017.22113.1585 10.1007/s00024‐021‐02704‐3 10.1155/2017/4653126 10.1007/s10584‐011‐0148‐z 10.2166/ws.2022.056 10.1007/s11269‐006‐9105‐4 10.1002/joc.4267 10.3354/cr01204 10.1007/s11269‐010‐9772‐z 10.1016/j.spl.2010.08.020 10.1016/j.jhydrol.2010.07.012 10.1023/B:WARM.0000015410.47014.a4 10.1007/s11269‐022‐03304‐z |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7S9 L.6 |
| DOI | 10.1002/hyp.70037 |
| DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1099-1085 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_hyp_70037 HYP70037 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TEORI UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX AIQQE CITATION O8X 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c3307-4ea47c1fdb55be7a3932edf87cd8e9d935b93a6a26fd019068c693cd5bb24f1f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001390343100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6087 |
| IngestDate | Fri Jul 11 14:26:45 EDT 2025 Fri Jul 25 22:00:07 EDT 2025 Sat Nov 29 08:17:13 EST 2025 Tue Nov 18 21:43:21 EST 2025 Wed Aug 20 07:26:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3307-4ea47c1fdb55be7a3932edf87cd8e9d935b93a6a26fd019068c693cd5bb24f1f3 |
| Notes | The authors received no specific funding for this work. Funding ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0000-2599-5890 |
| PQID | 3160213903 |
| PQPubID | 2034139 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_3165869857 proquest_journals_3160213903 crossref_primary_10_1002_hyp_70037 crossref_citationtrail_10_1002_hyp_70037 wiley_primary_10_1002_hyp_70037_HYP70037 |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
| PublicationTitle | Hydrological processes |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2015; 35 2021; 8 2023; 10 2023; 14 2017; 4 2021; 22 2019; 5 2017; 2017 2023; 15 1995; 15 2022; 613, Part A 2017; 89 2024; 51 2008 2015; 526 2012; 16 2022; 22 2024 2010; 80 2019; 684 2017; 548 2017; 31 2011; 109 2019; 42 2004; 18 2021; 178 2021 2005; 9 1965 1958; 86 2014; 59 2019 2022; 13 2022; 36 2020; 139 2022; 59 2020; 24 2015 2014 2022; 10 2012; 26 2013 2011; 25 2010; 391 2007; 21 1998; 300 2018; 38 2014; 34 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_41_1 e_1_2_12_22_1 e_1_2_12_43_1 Abramowitz M. (e_1_2_12_2_1) 1965 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 Allen R. G. (e_1_2_12_3_1) 1998; 300 e_1_2_12_49_1 IPCC (e_1_2_12_20_1) 2021 Flato G. J. (e_1_2_12_14_1) 2013 e_1_2_12_31_1 e_1_2_12_52_1 Mohammed E. M. (e_1_2_12_28_1) 2015 e_1_2_12_33_1 e_1_2_12_35_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_50_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_16_1 Tsakiris G. (e_1_2_12_39_1) 2008 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 Stocker T. (e_1_2_12_37_1) 2013 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_32_1 e_1_2_12_34_1 e_1_2_12_36_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_7_1 Tsakiris G. (e_1_2_12_42_1) 2005; 9 e_1_2_12_51_1 e_1_2_12_9_1 |
| References_xml | – volume: 34 start-page: 2792 year: 2014 end-page: 2804 article-title: World Drought Frequency, Duration, and Severity for 1951‐2010 publication-title: International Journal of Climatology – volume: 178 start-page: 1387 issue: 4 year: 2021 end-page: 1403 article-title: Accuracy Assessment of the SPEI, RDI and SPI Drought Indices in Regions of Iran with Different Climate Conditions publication-title: Pure and Applied Geophysics – volume: 5 start-page: 1345 issue: 3 year: 2019 end-page: 1356 article-title: Comparison of Reconnaissance Drought Index (RDI) and Effective Reconnaissance Drought Index (eRDI) to Evaluate Drought Severity publication-title: Sustainable Water Resources Management – volume: 21 start-page: 821 issue: 5 year: 2007 end-page: 833 article-title: Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI) publication-title: Water Resources Management – volume: 10 start-page: 338 year: 2023 article-title: An Improved Global Vegetation Health Index Dataset in Detecting Vegetation Drought publication-title: Scientific Data – volume: 24 start-page: 4541 issue: 9 year: 2020 end-page: 4565 article-title: A Universal Standardized Precipitation Index Candidate Distribution Function for Observations and Simulations publication-title: Hydrology and Earth System Sciences – year: 2021 – start-page: 577 year: 2015 end-page: 602 – volume: 31 start-page: 5001 year: 2017 end-page: 5017 article-title: The Effect of Temperature Adjustment on Reference Evapotranspiration and Reconnaissance Drought Index (RDI) in Iran publication-title: Water Resources Management – volume: 391 start-page: 202 issue: 1–2 year: 2010 end-page: 216 article-title: A Review of Drought Concepts publication-title: Journal of Hydrology – year: 2019 article-title: Sensitivity of SPI to Distribution Functions and Correlation Between its Values at Different Time Scales in Central Africa publication-title: Earth Systems and Environment – volume: 109 start-page: 5 year: 2011 end-page: 31 article-title: The Representative Concentration Pathways: An Overview publication-title: Climatic Change – volume: 548 start-page: 322 year: 2017 end-page: 332 article-title: Evaluation of the Gridded CRU TS Precipitation Dataset with the Point Raingauge Records Over the Three‐River Headwaters Region publication-title: Journal of Hydrology – volume: 36 start-page: 5259 year: 2022 end-page: 5276 article-title: Past and Future Global Drought Assessment publication-title: Water Resources Management – volume: 13 start-page: 2737 issue: 1 year: 2022 end-page: 2776 article-title: Modelling Agricultural Drought: A Review of Latest Advances in Big Data Technologies publication-title: Geomatics, Natural Hazards and Risk – volume: 10 start-page: e2021EF002542 issue: 3 year: 2022 article-title: Impacts of Global Climate Warming on Meteorological and Hydrological Droughts and Their Propagations publication-title: Earth's Future – year: 1965 – volume: 34 start-page: 623 year: 2014 end-page: 642 article-title: Updated High‐Resolution Grids of Monthly Climatic Observations – The CRU TS3.10 Dataset publication-title: International Journal of Climatology – volume: 22 start-page: 1369 year: 2021 end-page: 1383 article-title: Uncertainty in SPI Calculation and Its Impact on Drought Assessment in Different Climate Regions over China publication-title: Journal of Hydrometeorology – volume: 14 start-page: 1292 year: 2023 article-title: Optimal Probability Distribution and Applicable Minimum Time‐Scale for Daily Standardized Precipitation Index Time Series in South Korea publication-title: Atmosphere – volume: 59 start-page: 1 issue: 1 year: 2014 end-page: 13 article-title: Climate Classification Revisited: From Köppen to Trewartha publication-title: Climate Research – volume: 26 start-page: 2453 year: 2012 end-page: 2473 article-title: Computation of Drought Index SPI with Alternative Distribution Functions publication-title: Water Resources Management – volume: 2017 year: 2017 article-title: Drought Trends in the Iberian Peninsula Over the 148 Last 112 Years publication-title: Advances in Meteorology – volume: 15 start-page: 5449 year: 2023 end-page: 5466 article-title: Global High‐Resolution Drought Indices for 1981–2022 publication-title: Earth System Science Data – volume: 51 year: 2024 article-title: How will Drought Evolve in Global Arid Zones Under Different Future Emission Scenarios? publication-title: Journal of Hydrology: Regional Studies – year: 2015 – volume: 16 start-page: 2143 year: 2012 end-page: 2157 article-title: Monitoring and Quantifying Future Climate Projections of Dryness and Wetness Extremes: SPI Bias publication-title: Hydrology and Earth System Sciences – start-page: 49 year: 2014 end-page: 61 – start-page: 741 year: 2013 end-page: 866 – volume: 15 start-page: 91 year: 1995 end-page: 100 article-title: Application of Vegetation Index and Brightness Temperature for Drought Detection publication-title: Advances in Space Research – volume: 4 start-page: 477 year: 2017 end-page: 507 article-title: An Assessment of Climate Change Impacts on Future Water Availability and Droughts in the Kentucky River Basin publication-title: Environmental Processes – volume: 613, Part A year: 2022 article-title: How Standard are Standardized Drought Indices? Uncertainty Components for the SPI & SPEI Case publication-title: Journal of Hydrology – volume: 89 start-page: 555 year: 2017 end-page: 583 article-title: The Applicability of Standardized Precipitation Index: Drought Characterization for Early Warning System and Weather Index Insurance in West Africa publication-title: Natural Hazards – volume: 9 start-page: 3 issue: 10 year: 2005 end-page: 11 article-title: Establishing a Drought Index Incorporating Evapotranspiration publication-title: European water – volume: 42 start-page: 117 year: 2019 end-page: 131 article-title: Adaptive Evaluation of SPI, RDI, and SPEI indices in Analyzing the Trend of Intensity, Duration, and Frequency of Drought in Arid and Semi‐Arid Regions of Iran publication-title: JISE – volume: 300 start-page: D05109 issue: 9 year: 1998 article-title: Crop Evapotranspiration‐Guidelines for Computing Crop Water Requirements‐FAO Irrigation and Drainage Paper 56 publication-title: Fao, Rome – volume: 18 start-page: 1 year: 2004 end-page: 12 article-title: Towards a Drought Watch System Based on Spatial SPI publication-title: Water resources manage – volume: 80 start-page: 1918 issue: 23–24 year: 2010 end-page: 1924 article-title: Model Selection Using Modified AIC and BIC in Joint Modeling of Paired Functional Data publication-title: Statistics & Probability Letters – volume: 22 start-page: 4373 issue: 4 year: 2022 end-page: 4386 article-title: Evaluation of the Climate Change Impact on the Intensity and Return Period for Drought Indices of SPI and SPEI (Study Area: Varamin Plain) publication-title: Water Supply – volume: 35 start-page: 4027 issue: 13 year: 2015 end-page: 4040 article-title: Candidate Distributions for Climatological Drought Indices (SPI and SPEI) publication-title: International Journal of Climatology – volume: 38 start-page: e418 year: 2018 end-page: e436 article-title: Using the Normality Assumption to Calculate Probability‐Based Standardized Drought Indices: Selection Criteria with Emphases on Typical Events publication-title: International Journal of Climatology – volume: 8 start-page: 1 issue: 1 year: 2021 end-page: 16 article-title: Analysis of Meteorological Droughts in the Lake's Region of Ethiopian Rift Valley using Reconnaissance Drought Index (RDI) publication-title: Geoenvironmental Disasters – start-page: 57 year: 2008 end-page: 62 – year: 2024 article-title: Assessment of Drought Characteristics using SPEI and VHI in Tanzania and Their Associated Climate Factors publication-title: Natural Hazards – volume: 86 start-page: 117 issue: 4 year: 1958 end-page: 122 article-title: A Note on the Gamma Distribution publication-title: Monthly weather review – volume: 139 start-page: 1363 year: 2020 end-page: 1377 article-title: Comparative Analysis of Probability Distributions for the Standardized Precipitation Index and Drought Evolution in China During 1961–2015 publication-title: Theoretical and Applied Climatology – volume: 526 start-page: 183 year: 2015 end-page: 195 article-title: Droughts in a Warming Climate: A Global Assessment of Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) publication-title: Journal of Hydrology – volume: 59 start-page: 1665 issue: 5‐6 year: 2022 end-page: 1685 article-title: Twenty‐First Century Drought Analysis Across China Under Climate Change publication-title: Climate Dynamics – volume: 25 start-page: 1737 issue: 6 year: 2011 end-page: 1757 article-title: Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones publication-title: Water Resources Management – volume: 684 start-page: 229 year: 2019 end-page: 246 article-title: The Contribution of Internal Climate Variability to Climate Change Impacts on Droughts publication-title: Science of the Total Environment – year: 2013 – ident: e_1_2_12_18_1 doi: 10.1080/19475705.2022.2131471 – ident: e_1_2_12_29_1 doi: 10.1186/s40677‐021‐00183‐1 – volume: 9 start-page: 3 issue: 10 year: 2005 ident: e_1_2_12_42_1 article-title: Establishing a Drought Index Incorporating Evapotranspiration publication-title: European water – ident: e_1_2_12_38_1 doi: 10.1175/1520‐0493(1958)086<0117:ANOTGD>2.0.CO;2 – ident: e_1_2_12_13_1 doi: 10.1016/j.ejrh.2024.101661 – volume-title: Handbook of Mathematical Functions year: 1965 ident: e_1_2_12_2_1 – volume-title: IPCC, 2013: Summary for Policymakers in Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_12_37_1 – ident: e_1_2_12_32_1 doi: 10.5194/hess‐24‐4541‐2020 – ident: e_1_2_12_30_1 doi: 10.1007/s11069-017-2980-6 – ident: e_1_2_12_45_1 doi: 10.1175/JHM‐D‐20‐0256.1 – ident: e_1_2_12_17_1 doi: 10.1007/s41748-019-00102-3 – ident: e_1_2_12_43_1 – ident: e_1_2_12_4_1 doi: 10.1007/s11269‐012‐0026‐0 – ident: e_1_2_12_23_1 doi: 10.1016/0273-1177(95)00079-T – ident: e_1_2_12_6_1 doi: 10.1016/j.jhydrol.2014.09.071 – volume: 300 start-page: D05109 issue: 9 year: 1998 ident: e_1_2_12_3_1 article-title: Crop Evapotranspiration‐Guidelines for Computing Crop Water Requirements‐FAO Irrigation and Drainage Paper 56 publication-title: Fao, Rome – ident: e_1_2_12_35_1 doi: 10.1002/joc.3875 – ident: e_1_2_12_24_1 doi: 10.1016/j.jhydrol.2022.128385 – ident: e_1_2_12_15_1 doi: 10.5194/essd-15-5449-2023 – ident: e_1_2_12_47_1 doi: 10.1029/2021EF002542 – ident: e_1_2_12_48_1 doi: 10.1007/s40899‐019‐00310‐9 – ident: e_1_2_12_26_1 doi: 10.1007/s11069‐024‐06894‐6 – ident: e_1_2_12_51_1 doi: 10.1007/s00382‐021‐06064‐5 – ident: e_1_2_12_34_1 doi: 10.5194/hess-16-2143-2012 – ident: e_1_2_12_50_1 doi: 10.1038/s41597-023-02255-3 – ident: e_1_2_12_33_1 doi: 10.1016/j.jhydrol.2017.03.017 – ident: e_1_2_12_12_1 doi: 10.1007/s40710‐017‐0259‐2 – start-page: 577 volume-title: Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology: Systems Biology: Algorithms and Software Tools year: 2015 ident: e_1_2_12_28_1 – ident: e_1_2_12_22_1 doi: 10.1007/s11269‐017‐1793‐4 – ident: e_1_2_12_52_1 doi: 10.1007/s00704-019-03050-0 – start-page: 57 volume-title: 1st International Conference “Drought Management: Scientific and Technological Innovations” year: 2008 ident: e_1_2_12_39_1 – ident: e_1_2_12_25_1 doi: 10.3390/atmos14081292 – ident: e_1_2_12_16_1 doi: 10.1016/j.scitotenv.2019.05.345 – ident: e_1_2_12_11_1 doi: 10.1016/B978-0-12-416008-8.00004-8 – volume-title: Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2021 ident: e_1_2_12_20_1 – ident: e_1_2_12_10_1 doi: 10.1002/joc.5381 – start-page: 741 volume-title: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_12_14_1 – ident: e_1_2_12_19_1 doi: 10.1002/joc.3711 – ident: e_1_2_12_8_1 doi: 10.22055/jise.2017.22113.1585 – ident: e_1_2_12_49_1 doi: 10.1007/s00024‐021‐02704‐3 – ident: e_1_2_12_31_1 doi: 10.1155/2017/4653126 – ident: e_1_2_12_44_1 doi: 10.1007/s10584‐011‐0148‐z – ident: e_1_2_12_7_1 doi: 10.2166/ws.2022.056 – ident: e_1_2_12_40_1 doi: 10.1007/s11269‐006‐9105‐4 – ident: e_1_2_12_36_1 doi: 10.1002/joc.4267 – ident: e_1_2_12_9_1 doi: 10.3354/cr01204 – ident: e_1_2_12_21_1 doi: 10.1007/s11269‐010‐9772‐z – ident: e_1_2_12_46_1 doi: 10.1016/j.spl.2010.08.020 – ident: e_1_2_12_27_1 doi: 10.1016/j.jhydrol.2010.07.012 – ident: e_1_2_12_41_1 doi: 10.1023/B:WARM.0000015410.47014.a4 – ident: e_1_2_12_5_1 doi: 10.1007/s11269‐022‐03304‐z |
| SSID | ssj0004080 |
| Score | 2.4557061 |
| Snippet | ABSTRACT
Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration... Drought is caused by an imbalance between precipitation and evapotranspiration. A prolonged lack of precipitation and/or excess evapotranspiration results in... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Assessments climate Climate change Climatic indexes CRU TS 4.03 database Distribution functions Drought Drought characteristics Drought index droughts Evapotranspiration GCMs Groundwater Groundwater runoff Hydrologic processes Performance evaluation Potential evapotranspiration Precipitation probability Probability distribution Probability distribution functions probability distributions RDI Regional development runoff Water management Water resources Water resources management |
| Title | Global Evaluation of Optimal Probability Distribution Functions for RDI Assessments |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.70037 https://www.proquest.com/docview/3160213903 https://www.proquest.com/docview/3165869857 |
| Volume | 39 |
| WOSCitedRecordID | wos001390343100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1099-1085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004080 issn: 0885-6087 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bSxwxFIcPugr60tYbrrUlig--jM4kkxt9kq6LBdHFC-jTkCsK7a7sqrD_fZPM7KxCC4W-DZMzF5JzkkNmzvcDOMAWU0xNnvmcyazkQmdaGZxFNBrTprCK6CQ2wS8uxN2dHCzAt1ktTM2HaDfcYmSk-ToGuNKT4zk09GH6dMQjPmURlnDw27IDS72r_u35vCwyT8JpIY5oxnLBZ2ChHB-3F79fjuY55ttMNS01_Y__9ZKf4EOTYaKT2iXWYMEN12GlETt_mG7Adc35R6ct6BuNPLoMc8evcHYwDo3pj9kp6kWqbiOIhfphBUxOikKei656P9BJS_WcbMJt__Tm-1nWaCtkhkQuZOlUyU3hraZUO65IyOOc9YIbK5y0klAtiWIKM29juTkThkliLNUal77wZAs6w9HQbQPynnPpOMFeRPxYqXhhTK4t5sLlTrAuHM66uDINeDzqX_ysamQyrkIvVamXurDfmj7VtI0_Ge3OxqlqAm5SkYKFbIXInHRhr20OoRK_f6ihG70kGyqYFDTc4jCN2t8fUp3dD9LBzr-bfoZVHNWB0wbNLnSexy_uCyyb1-fHyfhr452_AbfL6OA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bSxtBFIcPGgV9aatVGrXtVHzwZXV3ZucGfZHGEGlMgxewT8vODQuaSKKF_PfOzG42FloQ-rbsnL0wc87M4ezO9wM4wAZTTHWauJTJJOdCJarUOAloNKZ0ZkqiotgEHwzEzY0cLsHX-V6Yig_RFNxCZMT5OgR4KEgfL6iht7OHIx74Kcuwkns3oi1Y6Vx0r_uLfZFpVE7zgUQTlgo-Jwul-Li5-M_1aJFkvkxV41rTfft_b_kO3tQ5JjqpnGIDluxoE9ZqufPb2Xu4rEj_6LRBfaOxQz_87HHvzw4nvjH-MztDncDVrSWxUNevgdFNkc900UXnDJ00XM_pFlx3T6--9ZJaXSHRJJAhc1vmXGfOKEqV5SXxmZw1TnBthJVGEqokKVmJmTNhwzkTmkmiDVUK5y5zZBtao_HIfgDkHOfScoKdCACyvOSZ1qkymAubWsHacDjv40LX6PGggHFXVNBkXPheKmIvtWG_MX2oeBt_M9qbD1RRh9y0IBnz-QqRKWnDl6bZB0v4AlKO7Pgp2lDBpKD-Fodx2P79kKL3cxgPdl5v-hnWelfn_aJ_Nvi-C-s4aAXHcs0etB4nT_YjrOrfj7-mk0-1qz4Dqkzs0A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bS9xAFIcPXor6om2tuK2209IHX6LJTOYGvohrUCrbxVawTyFzw4LuLrsq7H_vzCSbbUFB8C1kTi6cmTPnMMl8P4Dv2GCKqU4TlzKZ5FyoRFUaJwGNxpTOTEVUFJvgvZ64upL9BTic7YWp-RDtgluIjDhfhwC3I-MO5tTQ6-lonwd-yiIs51QyH5bL3Yvi8ny-LzKNymk-kGjCUsFnZKEUH7QX_5-P5kXmv6VqzDXFxuve8i2sNzUmOqoHxTtYsIP3sNrInV9PN-FXTfpHJy3qGw0d-ulnj1t_tj_2jfGf2SnqBq5uI4mFCp8D4zBFvtJFF90zdNRyPScf4LI4-X18mjTqCokmgQyZ2yrnOnNGUaosr4iv5KxxgmsjrDSSUCVJxSrMnAkbzpnQTBJtqFI4d5kjW7A0GA7sNiDnOJeWE-xEAJDlFc-0TpXBXNjUCtaBvZmPS92gx4MCxk1ZQ5Nx6b1URi914FtrOqp5G08Z7cw6qmxCblKSjPl6hciUdOBr2-yDJXwBqQZ2eB9tqGBSUH-Lvdhtzz-kPP3TjwcfX276BVb63aI8P-v9-ARrOEgFx9WaHVi6G9_bXXijH-7-Tsafm5H6CFHh7Es |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Evaluation+of+Optimal+Probability+Distribution+Functions+for+RDI+Assessments&rft.jtitle=Hydrological+processes&rft.au=Mohammad+Amin+Asadi+Zarch&rft.au=Motraghi%2C+Fatemeh&rft.date=2025-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1099-1085&rft.volume=39&rft.issue=1&rft_id=info:doi/10.1002%2Fhyp.70037&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |