Level set function–based immersed interface method and benchmark solutions for fluid flexible‐structure interaction

Summary Using a hybrid Lagrangian‐Eulerian approach, a level set function–based immersed interface method (LS‐IIM) is proposed for the interaction of a flexible body immersed in a fluid flow. The LS‐IIM involves finite volume method for the fluid solver, Galerkin finite element method for the struct...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal for numerical methods in fluids Ročník 91; číslo 3; s. 134 - 157
Hlavní autori: Thekkethil, Namshad, Sharma, Atul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bognor Regis Wiley Subscription Services, Inc 30.09.2019
Predmet:
ISSN:0271-2091, 1097-0363
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary Using a hybrid Lagrangian‐Eulerian approach, a level set function–based immersed interface method (LS‐IIM) is proposed for the interaction of a flexible body immersed in a fluid flow. The LS‐IIM involves finite volume method for the fluid solver, Galerkin finite element method for the structural solver, and a block‐iterative partitioned method–based fully implicit coupling between the two solvers. The novelty of the proposed method is a level set function–based direct implementation of fluid‐solid interface boundary conditions in both the solvers. Another novelty is the computation of the level set function from a geometric method instead of differential equations commonly used in level set methods—the novel geometric as compared to the traditional method is found to be more accurate and less time‐consuming. The LS‐IIM is demonstrated as second‐order accurate. Verification study is presented first separately for both the solvers and then together for four fluid‐structure interaction (FSI) problems, with different levels of complexity including lid‐driven flow, channel flow, and free‐stream flow. Benchmark solutions are presented for two class of FSI problems: first, easy to set up and less time‐consuming and, second, a reasonably challenging and complex FSI problem involving sharp edges and forced‐motion of the flexible structure. The benchmark solutions are proposed at steady state for the first problem, after a verification study with two open‐source solvers and, at periodic state, after a validation with published experimental results for the second problem. Our benchmark solutions may be useful for verification study in future. A geometric method–based computation of level set function and its usage for accurate implementation of fluid‐solid interface boundary conditions (BCs) in both the fluid and structural solvers are the novel feature of the proposed method for computational fluid‐structure interaction (CFSI). A simple and another complex FSI benchmark problems are proposed, and the steady and periodic solutions for the respective problems are presented for verification study in future.
AbstractList Using a hybrid Lagrangian‐Eulerian approach, a level set function–based immersed interface method (LS‐IIM) is proposed for the interaction of a flexible body immersed in a fluid flow. The LS‐IIM involves finite volume method for the fluid solver, Galerkin finite element method for the structural solver, and a block‐iterative partitioned method–based fully implicit coupling between the two solvers. The novelty of the proposed method is a level set function –based direct implementation of fluid‐solid interface boundary conditions in both the solvers. Another novelty is the computation of the level set function from a geometric method instead of differential equations commonly used in level set methods—the novel geometric as compared to the traditional method is found to be more accurate and less time‐consuming. The LS‐IIM is demonstrated as second‐order accurate. Verification study is presented first separately for both the solvers and then together for four fluid‐structure interaction (FSI) problems, with different levels of complexity including lid‐driven flow, channel flow, and free‐stream flow. Benchmark solutions are presented for two class of FSI problems: first, easy to set up and less time‐consuming and, second, a reasonably challenging and complex FSI problem involving sharp edges and forced‐motion of the flexible structure. The benchmark solutions are proposed at steady state for the first problem, after a verification study with two open‐source solvers and, at periodic state, after a validation with published experimental results for the second problem. Our benchmark solutions may be useful for verification study in future.
Summary Using a hybrid Lagrangian‐Eulerian approach, a level set function–based immersed interface method (LS‐IIM) is proposed for the interaction of a flexible body immersed in a fluid flow. The LS‐IIM involves finite volume method for the fluid solver, Galerkin finite element method for the structural solver, and a block‐iterative partitioned method–based fully implicit coupling between the two solvers. The novelty of the proposed method is a level set function–based direct implementation of fluid‐solid interface boundary conditions in both the solvers. Another novelty is the computation of the level set function from a geometric method instead of differential equations commonly used in level set methods—the novel geometric as compared to the traditional method is found to be more accurate and less time‐consuming. The LS‐IIM is demonstrated as second‐order accurate. Verification study is presented first separately for both the solvers and then together for four fluid‐structure interaction (FSI) problems, with different levels of complexity including lid‐driven flow, channel flow, and free‐stream flow. Benchmark solutions are presented for two class of FSI problems: first, easy to set up and less time‐consuming and, second, a reasonably challenging and complex FSI problem involving sharp edges and forced‐motion of the flexible structure. The benchmark solutions are proposed at steady state for the first problem, after a verification study with two open‐source solvers and, at periodic state, after a validation with published experimental results for the second problem. Our benchmark solutions may be useful for verification study in future. A geometric method–based computation of level set function and its usage for accurate implementation of fluid‐solid interface boundary conditions (BCs) in both the fluid and structural solvers are the novel feature of the proposed method for computational fluid‐structure interaction (CFSI). A simple and another complex FSI benchmark problems are proposed, and the steady and periodic solutions for the respective problems are presented for verification study in future.
Using a hybrid Lagrangian‐Eulerian approach, a level set function–based immersed interface method (LS‐IIM) is proposed for the interaction of a flexible body immersed in a fluid flow. The LS‐IIM involves finite volume method for the fluid solver, Galerkin finite element method for the structural solver, and a block‐iterative partitioned method–based fully implicit coupling between the two solvers. The novelty of the proposed method is a level set function–based direct implementation of fluid‐solid interface boundary conditions in both the solvers. Another novelty is the computation of the level set function from a geometric method instead of differential equations commonly used in level set methods—the novel geometric as compared to the traditional method is found to be more accurate and less time‐consuming. The LS‐IIM is demonstrated as second‐order accurate. Verification study is presented first separately for both the solvers and then together for four fluid‐structure interaction (FSI) problems, with different levels of complexity including lid‐driven flow, channel flow, and free‐stream flow. Benchmark solutions are presented for two class of FSI problems: first, easy to set up and less time‐consuming and, second, a reasonably challenging and complex FSI problem involving sharp edges and forced‐motion of the flexible structure. The benchmark solutions are proposed at steady state for the first problem, after a verification study with two open‐source solvers and, at periodic state, after a validation with published experimental results for the second problem. Our benchmark solutions may be useful for verification study in future.
Author Sharma, Atul
Thekkethil, Namshad
Author_xml – sequence: 1
  givenname: Namshad
  orcidid: 0000-0002-4939-5002
  surname: Thekkethil
  fullname: Thekkethil, Namshad
  organization: Indian Institute of Technology Bombay
– sequence: 2
  givenname: Atul
  orcidid: 0000-0001-6500-924X
  surname: Sharma
  fullname: Sharma, Atul
  email: atulsharma@iitb.ac.in
  organization: Indian Institute of Technology Bombay
BookMark eNp1kE1OwzAQhS1UJNqCxBEssWGTMk6CkyxRoYAUiQ2sI_-M1ZT8FNuhdNcjIHHDnoS0ZYVgMzOL773ReyMyaNoGCTlnMGEA4ZWp9CROYn5EhgyyJICIRwMyhDBhQQgZOyEj5xYAkIVpNCSrHN-xog49NV2jfNk2282XFA41Lesa7f5oPFojFNIa_bzVVDSaSmzUvBb2lbq26nZCR01rqam6UvcTP0pZ4Xbz6bztlO8sHnzE_skpOTaicnj2s8fkZXb3PH0I8qf7x-lNHqgoAh7oCEEaEAlDbRQmWkAmsiRO1bXKIkxBStYnVJlIOecCtJCxxFTwhCtmJI_G5OLgu7TtW4fOF4u2s03_sghDnqYx4yn01OWBUrZ1zqIplrbss60LBsWu1qKvtdjV2qOTX6gqvdhF8laU1V-C4CBYlRWu_zUuZvntnv8GqVqP7w
CitedBy_id crossref_primary_10_1016_j_jcp_2025_114119
crossref_primary_10_1007_s12046_023_02241_w
crossref_primary_10_1016_j_jcp_2023_112174
crossref_primary_10_1061__ASCE_EM_1943_7889_0001968
crossref_primary_10_1016_j_coastaleng_2023_104286
crossref_primary_10_1017_jfm_2025_10347
crossref_primary_10_1016_j_jfluidstructs_2020_102875
crossref_primary_10_1016_j_jfluidstructs_2022_103809
crossref_primary_10_1007_s41745_024_00425_9
crossref_primary_10_3390_jmse11101923
crossref_primary_10_1016_j_jcp_2021_110442
crossref_primary_10_1017_jfm_2022_406
crossref_primary_10_1016_j_cpc_2023_109054
crossref_primary_10_1017_jfm_2022_958
crossref_primary_10_1007_s00162_023_00646_1
crossref_primary_10_3390_fluids10050134
Cites_doi 10.1016/j.jcp.2006.04.011
10.1007/s00466-012-0710-1
10.1016/j.compstruc.2004.03.083
10.1063/1.5041358
10.1007/s00466-011-0571-z
10.1007/s40430-018-1212-7
10.1002/nme.4943
10.1002/fld.2556
10.1016/j.cma.2010.04.016
10.1016/j.cma.2009.03.008
10.1016/j.compfluid.2012.11.004
10.1007/s12046-014-0329-3
10.1002/(SICI)1097-0207(20000110/30)47:1/3<9::AID-NME793>3.0.CO;2-P
10.1080/10618560802208567
10.1080/10407790.2013.756258
10.1016/j.compstruc.2009.12.006
10.1016/j.jcp.2004.12.026
10.1007/3-540-34596-5_15
10.1006/jcph.2001.6813
10.1002/fld.525
10.1016/j.compfluid.2012.02.009
10.1016/j.jcp.2016.02.002
10.1142/S0218202506001212
10.1007/s00466-013-0866-3
10.2514/1.J051621
10.1007/s12046-017-0619-7
10.1002/(SICI)1097-0363(19990815)30:7<897::AID-FLD871>3.0.CO;2-U
10.1016/S0045-7825(00)00381-9
10.1016/j.jcp.2018.03.028
10.1016/0029-5493(74)90128-9
10.1017/jfm.2012.390
10.1016/j.jcp.2016.11.043
10.1016/0045-7825(82)90020-2
10.1146/annurev.fluid.37.061903.175743
10.1006/jcph.2001.6935
10.1017/S0962492902000077
10.1007/s10915-007-9176-2
10.1016/0029-5493(77)90062-0
10.1016/j.cma.2005.10.019
10.1016/0021-9991(74)90051-5
10.1016/0045-7825(82)90128-1
10.1145/2461912.2461916
10.1016/j.jcp.2008.01.028
10.1016/j.jcp.2010.10.032
10.1016/j.compfluid.2004.03.006
10.1016/j.jcp.2010.09.032
10.1016/j.compstruc.2008.11.013
10.1002/fld.2460
10.1016/j.jcp.2006.10.032
10.1115/1.3454291
10.2172/4621975
10.1016/j.jcp.2011.06.026
10.1002/nme.2740
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.4746
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 157
ExternalDocumentID 10_1002_fld_4746
FLD4746
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c3306-d3e0bf0a71edfce7da09a9748c5c93e80bb1036c9a8666a0dab4be8a676c1fb63
IEDL.DBID DRFUL
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000479056900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
IngestDate Sun Sep 07 09:40:54 EDT 2025
Sat Nov 29 03:27:55 EST 2025
Tue Nov 18 21:58:48 EST 2025
Wed Jan 22 16:41:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3306-d3e0bf0a71edfce7da09a9748c5c93e80bb1036c9a8666a0dab4be8a676c1fb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4939-5002
0000-0001-6500-924X
PQID 2268841680
PQPubID 996375
PageCount 24
ParticipantIDs proquest_journals_2268841680
crossref_primary_10_1002_fld_4746
crossref_citationtrail_10_1002_fld_4746
wiley_primary_10_1002_fld_4746_FLD4746
PublicationCentury 2000
PublicationDate 30 September 2019
PublicationDateYYYYMMDD 2019-09-30
PublicationDate_xml – month: 09
  year: 2019
  text: 30 September 2019
  day: 30
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 224
1974; 14
2017; 42
2006; 219
2009; 87
2015; 104
2018; 365
2002; 11
2013; 63
1976
2008; 36
2009; 198
2013; 71
2008; 227
1975; 97
2018; 40
2011; 230
2000
2001; 171
2015; 40
2013; 51
2013; 52
2010; 199
2011; 65
2018; 30
2008; 22
2011; 67
2016; 312
2005; 37
2012; 65
2003; 42
2005; 34
2002; 175
2006; 16
1982; 31
1982; 33
2006; 195
1977; 42
2007
1995
2006
2005; 83
2010; 81
2017; 331
1999
2012; 50
2010; 88
2001; 190
2013; 32
2005; 207
1963
2017
1999; 30
2011; 48
2012; 710
1974; 29
e_1_2_7_5_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Wall WA (e_1_2_7_9_1) 1999
Vázquez JGV (e_1_2_7_55_1) 2007
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
Sharma A (e_1_2_7_45_1) 2017
Namshad T (e_1_2_7_50_1) 2017; 42
e_1_2_7_59_1
e_1_2_7_38_1
Donea J (e_1_2_7_3_1) 1976
References_xml – volume: 65
  start-page: 150
  issue: 1‐3
  year: 2011
  end-page: 165
  article-title: An implicit full Eulerian method for the fluid–structure interaction problem
  publication-title: Int J Numer Methods Fluids
– volume: 230
  start-page: 1147
  issue: 4
  year: 2011
  end-page: 1170
  article-title: An implicit high‐order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations
  publication-title: J Comput Phys
– volume: 34
  start-page: 249
  issue: 2
  year: 2005
  end-page: 273
  article-title: Numerical simulation of fluid–structure interaction using the finite element method
  publication-title: Comput Fluids
– volume: 227
  start-page: 4825
  issue: 10
  year: 2008
  end-page: 4852
  article-title: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
  publication-title: J Comput Phys
– volume: 219
  start-page: 671
  issue: 2
  year: 2006
  end-page: 696
  article-title: Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes
  publication-title: J Comput Phys
– volume: 65
  start-page: 92
  year: 2012
  end-page: 98
  article-title: An Eulerian approach for fluid–structure interaction problems
  publication-title: Comput Fluids
– volume: 29
  start-page: 266
  issue: 2
  year: 1974
  end-page: 293
  article-title: NONSAP—a nonlinear structural analysis program
  publication-title: Nucl Eng Des
– volume: 40
  start-page: 627
  issue: 3
  year: 2015
  end-page: 652
  article-title: Level set method for computational multi‐fluid dynamics: a review on developments, applications and analysis
  publication-title: Sādhanā
– volume: 312
  start-page: 272
  year: 2016
  end-page: 306
  article-title: A stable partitioned FSI algorithm for incompressible flow and deforming beams
  publication-title: J Comput Phys
– volume: 22
  start-page: 411
  issue: 6
  year: 2008
  end-page: 427
  article-title: Fluid–structure interaction approaches on fixed grids based on two different domain decomposition ideas
  publication-title: Int J Comput Fluid Dyn
– volume: 224
  start-page: 757
  issue: 2
  year: 2007
  end-page: 784
  article-title: An immersed boundary method for complex incompressible flows
  publication-title: J Comput Phys
– volume: 199
  start-page: 2633
  issue: 41‐44
  year: 2010
  end-page: 2642
  article-title: Finite elements for fluid–structure interaction in ALE and fully Eulerian coordinates
  publication-title: Comput Methods Appl Mech Eng
– volume: 32
  start-page: 33
  issue: 4
  year: 2013
  article-title: Robust inside‐outside segmentation using generalized winding numbers
  publication-title: ACM Trans Graph
– volume: 710
  start-page: 659
  year: 2012
  end-page: 669
  article-title: Stabilizing effect of flexibility in the wake of a flapping foil
  publication-title: J Fluid Mech
– volume: 207
  start-page: 1
  issue: 1
  year: 2005
  end-page: 27
  article-title: A DLM/FD method for fluid/flexible‐body interactions
  publication-title: J Comput Phys
– volume: 40
  start-page: 288
  issue: 6
  year: 2018
  article-title: Assessment of two immersed boundary methods for flow over thin plates and sharp edges
  publication-title: J Braz Soc Mech Sci Eng
– volume: 42
  start-page: 69
  issue: 1
  year: 1977
  end-page: 74
  article-title: Application of a coupled Euler‐Lagrange computer program to the structural response of an LMFBR
  publication-title: Nucl Eng Des
– volume: 33
  start-page: 689
  issue: 1‐3
  year: 1982
  end-page: 723
  article-title: An arbitrary Lagrangian‐Eulerian finite element method for transient dynamic fluid‐structure interactions
  publication-title: Comput Methods Appl Mech Eng
– volume: 31
  start-page: 129
  issue: 2
  year: 1982
  end-page: 148
  article-title: Computer implementation aspects for fluid‐structure interaction problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 14
  start-page: 227
  issue: 3
  year: 1974
  end-page: 253
  article-title: An arbitrary Lagrangian‐Eulerian computing method for all flow speeds
  publication-title: J Comput Phys
– volume: 63
  start-page: 304
  issue: 4
  year: 2013
  end-page: 326
  article-title: A novel level set‐based immersed‐boundary method for CFD simulation of moving‐boundary problems
  publication-title: Numer Heat Transf B: Fundam
– year: 1976
– volume: 195
  start-page: 5754
  issue: 41‐43
  year: 2006
  end-page: 5779
  article-title: A computational framework for fluid–structure interaction: finite element formulation and applications
  publication-title: Comput Methods Appl Mech Eng
– volume: 51
  start-page: 129
  issue: 2
  year: 2013
  end-page: 150
  article-title: A three dimensional immersed smoothed finite element method (3D IS‐FEM) for fluid–structure interaction problems
  publication-title: Computational Mechanics
– volume: 331
  start-page: 312
  year: 2017
  end-page: 336
  article-title: Extended ALE method for fluid–structure interaction problems with large structural displacements
  publication-title: J Comput Phys
– volume: 30
  start-page: 897
  issue: 7
  year: 1999
  end-page: 919
  article-title: Analysis of fluid–structure interaction by an arbitrary Lagrangian–Eulerian finite element formulation
  publication-title: Int J Numer Methods Fluids
– year: 2007
– start-page: 371
  year: 2006
  end-page: 385
– year: 2000
– volume: 83
  start-page: 155
  issue: 2‐3
  year: 2005
  end-page: 165
  article-title: Fluid–structure interaction in blood flows on geometries based on medical imaging
  publication-title: Comput Struct
– volume: 87
  start-page: 793
  issue: 11‐12
  year: 2009
  end-page: 801
  article-title: Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction
  publication-title: Comput Struct
– volume: 190
  start-page: 3039
  issue: 24‐25
  year: 2001
  end-page: 3067
  article-title: Fluid structure interaction with large structural displacements
  publication-title: Comput Methods Appl Mech Eng
– volume: 67
  start-page: 1175
  issue: 9
  year: 2011
  end-page: 1206
  article-title: Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid–structure interaction problems
  publication-title: Int J Numer Methods Fluids
– volume: 365
  start-page: 74
  year: 2018
  end-page: 104
  article-title: A family of position‐and orientation‐independent embedded boundary methods for viscous flow and fluid–structure interaction problems
  publication-title: J Comput Phys
– volume: 30
  start-page: 077107
  issue: 7
  year: 2018
  article-title: Unified hydrodynamics study for various types of fishes‐like undulating rigid hydrofoil in a free stream flow
  publication-title: Phys Fluids
– volume: 198
  start-page: 2650
  issue: 33‐36
  year: 2009
  end-page: 2661
  article-title: An immersed boundary method for fluid–flexible structure interaction
  publication-title: Comput Methods Appl Mech Eng
– volume: 42
  start-page: 585
  issue: 4
  year: 2017
  end-page: 595
  article-title: Effect of wavelength of fish‐like undulation of a hydrofoil in a free‐stream flow
  publication-title: Sādhanā
– volume: 230
  start-page: 596
  issue: 3
  year: 2011
  end-page: 627
  article-title: A full Eulerian finite difference approach for solving fluid–structure coupling problems
  publication-title: J Comput Phys
– volume: 11
  start-page: 479
  year: 2002
  end-page: 517
  article-title: The immersed boundary method
  publication-title: Acta Numerica
– year: 1963
– volume: 48
  start-page: 247
  issue: 3
  year: 2011
  end-page: 267
  article-title: Multiscale space–time fluid–structure interaction techniques
  publication-title: Computational Mechanics
– volume: 16
  start-page: 415
  issue: 03
  year: 2006
  end-page: 438
  article-title: A level set method for fluid‐structure interactions with immersed surfaces
  publication-title: Math Models Methods Appl Sci
– volume: 42
  start-page: 493
  issue: 5
  year: 2003
  end-page: 526
  article-title: A numerical study of the propulsive efficiency of a flapping hydrofoil
  publication-title: Int J Numer Methods Fluids
– volume: 104
  start-page: 372
  issue: 5
  year: 2015
  end-page: 390
  article-title: A monolithic geometric multigrid solver for fluid‐structure interactions in ALE formulation
  publication-title: Int J Numer Methods Eng
– volume: 97
  start-page: 172
  issue: 3
  year: 1975
  end-page: 177
  article-title: Finite element study of pressure wave attenuation by reactor fuel subassemblies
  publication-title: J Press Vessel Technol
– volume: 171
  start-page: 822
  issue: 2
  year: 2001
  end-page: 842
  article-title: The immersed interface method for the Navier–Stokes equations with singular forces
  publication-title: J Comput Phys
– volume: 88
  start-page: 446
  issue: 7‐8
  year: 2010
  end-page: 457
  article-title: Performance of partitioned procedures in fluid–structure interaction
  publication-title: Comput Struct
– volume: 175
  start-page: 200
  issue: 1
  year: 2002
  end-page: 224
  article-title: Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method
  publication-title: J Comput Phys
– year: 1995
– volume: 52
  start-page: 1113
  issue: 5
  year: 2013
  end-page: 1124
  article-title: Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian methods for fluid‐structure interaction computations
  publication-title: Comput Mech
– volume: 50
  start-page: 1638
  issue: 7
  year: 2012
  end-page: 1642
  article-title: Benchmarking a coupled immersed‐boundary‐finite‐element solver for large‐scale flow‐induced deformation
  publication-title: AIAA Journal
– year: 2017
– volume: 36
  start-page: 45
  issue: 1
  year: 2008
  end-page: 68
  article-title: Numerical simulation of fluid‐structure interaction using modified ghost fluid method and Naviers equations
  publication-title: J Sci Comput
– volume: 81
  start-page: 1529
  issue: 12
  year: 2010
  end-page: 1557
  article-title: The fixed‐mesh ALE approach applied to solid mechanics and fluid–structure interaction problems
  publication-title: Int J Numer Methods Eng
– volume: 37
  start-page: 239
  year: 2005
  end-page: 261
  article-title: Immersed boundary methods
  publication-title: Annu Rev Fluid Mech
– volume: 71
  start-page: 306
  year: 2013
  end-page: 319
  article-title: Partitioned solver for strongly coupled fluid–structure interaction
  publication-title: Comput Fluids
– volume: 230
  start-page: 7706
  issue: 20
  year: 2011
  end-page: 7722
  article-title: Arbitrary Lagrangian Eulerian formulation for two‐dimensional flows using dynamic meshes with edge swapping
  publication-title: J Comput Phys
– year: 1999
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jcp.2006.04.011
– ident: e_1_2_7_34_1
  doi: 10.1007/s00466-012-0710-1
– ident: e_1_2_7_54_1
  doi: 10.1016/j.compstruc.2004.03.083
– ident: e_1_2_7_51_1
  doi: 10.1063/1.5041358
– ident: e_1_2_7_41_1
  doi: 10.1007/s00466-011-0571-z
– ident: e_1_2_7_59_1
  doi: 10.1007/s40430-018-1212-7
– ident: e_1_2_7_24_1
  doi: 10.1002/nme.4943
– ident: e_1_2_7_28_1
  doi: 10.1002/fld.2556
– ident: e_1_2_7_20_1
  doi: 10.1016/j.cma.2010.04.016
– ident: e_1_2_7_33_1
  doi: 10.1016/j.cma.2009.03.008
– ident: e_1_2_7_56_1
  doi: 10.1016/j.compfluid.2012.11.004
– ident: e_1_2_7_42_1
  doi: 10.1007/s12046-014-0329-3
– ident: e_1_2_7_47_1
  doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<9::AID-NME793>3.0.CO;2-P
– ident: e_1_2_7_48_1
  doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<9::AID-NME793>3.0.CO;2-P
– ident: e_1_2_7_16_1
  doi: 10.1080/10618560802208567
– ident: e_1_2_7_43_1
  doi: 10.1080/10407790.2013.756258
– ident: e_1_2_7_49_1
  doi: 10.1016/j.compstruc.2009.12.006
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jcp.2004.12.026
– ident: e_1_2_7_40_1
  doi: 10.1007/3-540-34596-5_15
– ident: e_1_2_7_27_1
  doi: 10.1006/jcph.2001.6813
– ident: e_1_2_7_52_1
  doi: 10.1002/fld.525
– ident: e_1_2_7_23_1
  doi: 10.1016/j.compfluid.2012.02.009
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jcp.2016.02.002
– ident: e_1_2_7_10_1
– ident: e_1_2_7_35_1
  doi: 10.1142/S0218202506001212
– ident: e_1_2_7_25_1
  doi: 10.1007/s00466-013-0866-3
– ident: e_1_2_7_57_1
  doi: 10.2514/1.J051621
– volume: 42
  start-page: 585
  issue: 4
  year: 2017
  ident: e_1_2_7_50_1
  article-title: Effect of wavelength of fish‐like undulation of a hydrofoil in a free‐stream flow
  publication-title: Sādhanā
  doi: 10.1007/s12046-017-0619-7
– volume-title: Fluid‐Struktur‐Interaktion Mit Stabilisierten Finiten Elementen
  year: 1999
  ident: e_1_2_7_9_1
– ident: e_1_2_7_11_1
  doi: 10.1002/(SICI)1097-0363(19990815)30:7<897::AID-FLD871>3.0.CO;2-U
– ident: e_1_2_7_12_1
  doi: 10.1016/S0045-7825(00)00381-9
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jcp.2018.03.028
– ident: e_1_2_7_53_1
  doi: 10.1016/0029-5493(74)90128-9
– ident: e_1_2_7_58_1
  doi: 10.1017/jfm.2012.390
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jcp.2016.11.043
– ident: e_1_2_7_8_1
  doi: 10.1016/0045-7825(82)90020-2
– ident: e_1_2_7_30_1
  doi: 10.1146/annurev.fluid.37.061903.175743
– ident: e_1_2_7_37_1
  doi: 10.1006/jcph.2001.6935
– volume-title: Nonlinear analysis of orthotropic membrane and shell structures including fluid‐structure interaction
  year: 2007
  ident: e_1_2_7_55_1
– ident: e_1_2_7_26_1
  doi: 10.1017/S0962492902000077
– ident: e_1_2_7_31_1
  doi: 10.1007/s10915-007-9176-2
– ident: e_1_2_7_6_1
  doi: 10.1016/0029-5493(77)90062-0
– ident: e_1_2_7_15_1
  doi: 10.1016/j.cma.2005.10.019
– ident: e_1_2_7_5_1
  doi: 10.1016/0021-9991(74)90051-5
– ident: e_1_2_7_7_1
  doi: 10.1016/0045-7825(82)90128-1
– ident: e_1_2_7_44_1
  doi: 10.1145/2461912.2461916
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jcp.2008.01.028
– ident: e_1_2_7_60_1
  doi: 10.1016/j.jcp.2010.10.032
– ident: e_1_2_7_13_1
  doi: 10.1016/j.compfluid.2004.03.006
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jcp.2010.09.032
– ident: e_1_2_7_38_1
  doi: 10.1016/j.compstruc.2008.11.013
– ident: e_1_2_7_22_1
  doi: 10.1002/fld.2460
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jcp.2006.10.032
– ident: e_1_2_7_2_1
  doi: 10.1115/1.3454291
– ident: e_1_2_7_4_1
  doi: 10.2172/4621975
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jcp.2011.06.026
– volume-title: Introduction to Computational Fluid Dynamics: Development, Application and Analysis
  year: 2017
  ident: e_1_2_7_45_1
– volume-title: Finite Element Solution of Transient Fluid‐Structure Problems in Lagrangian Coordinates
  year: 1976
  ident: e_1_2_7_3_1
– ident: e_1_2_7_17_1
  doi: 10.1002/nme.2740
SSID ssj0009283
Score 2.3966606
Snippet Summary Using a hybrid Lagrangian‐Eulerian approach, a level set function–based immersed interface method (LS‐IIM) is proposed for the interaction of a...
Using a hybrid Lagrangian‐Eulerian approach, a level set function–based immersed interface method (LS‐IIM) is proposed for the interaction of a flexible body...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms benchmark
Benchmarks
Boundary conditions
Channel flow
Complexity
Computation
Computational fluid dynamics
Differential equations
Differential geometry
Eulerian‐Lagrangian
finite element
Finite element method
finite volume
Finite volume method
Flexible bodies
Flexible structures
Fluid flow
fluid‐structure interaction
Galerkin method
Iterative methods
level set
Solvers
Stream discharge
Stream flow
Title Level set function–based immersed interface method and benchmark solutions for fluid flexible‐structure interaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.4746
https://www.proquest.com/docview/2268841680
Volume 91
WOSCitedRecordID wos000479056900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC5040EPiUbFTaK0IHoaM89-HMW4eFiCiIHchurualxcV9lJ1GN-guA_zC9J9fTsbgQFwcvMHLqboR5TX_VUfwXwrAiKw0gtM2kMZrVvKOPMtsly1LIJJEnp0DebUMfH-vTUvBuqKuNZmMQPsd5wi57Rf6-jg6PtDjekoWHuX9aqljdhq2SzrUewdfR-cjLdUO6WiYSzVAXbgilW1LN5ebia-3sw2iDM6zi1DzSTnf95xbuwPcBL8SrZwz24QYtd2BmgphgcuduFO9d4CO_D92ksHRIdnYkY56KuLi9-xQDnxazf2Y4PUQUBHYnUdVrgwgvL6338jMtPYm3DgmGwCPPzmecr_ZjZOV1e_Ew8tedLSuuk4xQP4GTy5sPrt9nQkSFzFecWma8otyFHVZAPjpTH3CBnJNo1zlSkc2sLDonOsKalxNyjrS1plEq6IlhZPYTR4suCHoGQpnGy4nytVKFWtsEKqWI0oyOnGSKO4cVKNa0b6Mpj14x5m4iWy5al20bpjuHpeuTXRNHxhzEHK-22g5N2LSNPHf-66nwMz3s9_nV-O5kexfvevw7ch9sMrUyqLDmAEQuZHsMt9-1s1i2fDKZ6Bfss8Wo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC7iRtAcjEYla6K2IHqaZJ79wJMYl4jjIpJAbkM_qnFxXWU3UY_5CYL_ML8k1dMzuxEUBC8zc6huhnpMfdXT_RXA08wLSiMlT7hSOildhQlVtlWSaskrjxyF9G2zCTEey5MT9X4NXvRnYSI_xHLBLURG-70OAR4WpPdXrKF-6vZKUfJrsF6SF1UDWD_4MDquV5y7eWThzEVGzqCynns2zff7sb9noxXEvApU20wz2vyvd7wNtzqAyV5Gj7gDazjbgs0ObLIulBdbsHGFifAufK_D5iG2wFMWMl2w1sX5r5DiHJu0a9vhIRjBa4ss9p1meuaYofk-ftbzT2zpxYyAMPPTs4mjK_6YmClenP-MTLVnc4zzxAMV9-B49Pro1WHS9WRIbEHVReIKTI1PtcjQeYvC6VRpqkmkrawqUKbGZJQUrSJbc65Tp01pUGouuM284cV9GMy-zHAbGFeV5QVVbLnwpTCVLjQWhGdkYDXTWg_heW-bxnaE5aFvxrSJVMt5Q9ptgnaH8GQp-TWSdPxBZrc3b9OF6aIh7CnDf1eZDuFZa8i_jm9G9UG4P_hXwcdw4_DoXd3Ub8Zvd-AmAS0V95nswoAUjg_huv12OlnMH3V-ewlfnPVa
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC5iIpIcjEbFNVFbED2NmWc_8CSug-KyBDGQ29CPalxcN2E3MR7zEwT_YX5JqqdndiMoCF5m5lDdDPWY-qqn-yuA55kXlEZKnnCldFK6ChOqbKsk1ZJXHjkK6dtmE2I8lkdH6mANXvdnYSI_xHLBLURG-70OAY4nzu-vWEP91L0qRclvwEZZKU5RuTH8VB-OVpy7eWThzEVGzqCynns2zff7sb9noxXEvA5U20xTb__XO96B2x3AZG-iR9yFNZztwHYHNlkXyosd2LrGRHgPzkdh8xBb4CkLmS5Y6_LiV0hxjk3ate3wEIzgtUUW-04zPXPM0Hxfvun5V7b0YkZAmPnp2cTRFX9MzBQvL35GptqzOcZ54oGK-3BYv_v89n3S9WRIbEHVReIKTI1PtcjQeYvC6VRpqkmkrawqUKbGZJQUrSJbc65Tp01pUGouuM284cUDWJ8dz_AhMK4qywuq2HLhS2EqXWgsCM_IwGqmtR7Ay942je0Iy0PfjGkTqZbzhrTbBO0O4NlS8iSSdPxBZq83b9OF6aIh7CnDf1eZDuBFa8i_jm_q0TDcH_2r4FO4dTCsm9GH8cdd2CScpeI2kz1YJ33jY7hpv59OFvMnndteAfyQ9NU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Level+set+function%E2%80%93based+immersed+interface+method+and+benchmark+solutions+for+fluid+flexible%E2%80%90structure+interaction&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Thekkethil%2C+Namshad&rft.au=Sharma%2C+Atul&rft.date=2019-09-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=91&rft.issue=3&rft.spage=134&rft.epage=157&rft_id=info:doi/10.1002%2Ffld.4746&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon