Signal‐to‐noise ratio enhancement for Raman spectra based on optimized Raman spectrometer and convolutional denoising autoencoder

The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is generally compact at the expense of performance. In this work, we proposed a compact, signal‐to‐noise ratio (SNR) enhancement of the Raman spectrome...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Raman spectroscopy Ročník 52; číslo 4; s. 890 - 900
Hlavní autoři: Fan, Xian‐guang, Zeng, Yingjie, Zhi, Yu‐Liang, Nie, Ting, Xu, Ying‐jie, Wang, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley Subscription Services, Inc 01.04.2021
Témata:
ISSN:0377-0486, 1097-4555
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is generally compact at the expense of performance. In this work, we proposed a compact, signal‐to‐noise ratio (SNR) enhancement of the Raman spectrometer by the optimization of optical structure and a noise reduction method. Concerning its optical structure, the Raman spectrometer is increasing the intensity by adding an off‐the‐shelf cylindrical lens. On the other side of the algorithm, a relevant automatic denoising method of convolutional denoising autoencoder (CDAE) is proposed to further advance the SNR in Raman spectra without manual intervention. The results indicate the performance of the compact Raman spectrometer could increase to a certain extent by testing with 785 nm laser and Ne/Ar source. Besides, by using CDAE to deal with contaminated Raman spectra, a higher SNR is obtained. The results demonstrate that the improvement of the hardware and algorithm is effective for removing the noisy Raman signal and achieving higher SNR. This result may be helpful in further improving the performance of integrated Raman spectrometers and research on miniaturized instruments. In consideration of signal to noise ratio(SNR) is related to signal intensity and noise level, we hope to improve SNR through optic structure optimization and develop a denoising algorithm. A cylindrical lens has been used to enhance intensity. The convolutional denoising autoencoder (CDAE) algorithm is acquired for the reduction of the noise.
AbstractList The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is generally compact at the expense of performance. In this work, we proposed a compact, signal‐to‐noise ratio (SNR) enhancement of the Raman spectrometer by the optimization of optical structure and a noise reduction method. Concerning its optical structure, the Raman spectrometer is increasing the intensity by adding an off‐the‐shelf cylindrical lens. On the other side of the algorithm, a relevant automatic denoising method of convolutional denoising autoencoder (CDAE) is proposed to further advance the SNR in Raman spectra without manual intervention. The results indicate the performance of the compact Raman spectrometer could increase to a certain extent by testing with 785 nm laser and Ne/Ar source. Besides, by using CDAE to deal with contaminated Raman spectra, a higher SNR is obtained. The results demonstrate that the improvement of the hardware and algorithm is effective for removing the noisy Raman signal and achieving higher SNR. This result may be helpful in further improving the performance of integrated Raman spectrometers and research on miniaturized instruments.
The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is generally compact at the expense of performance. In this work, we proposed a compact, signal‐to‐noise ratio (SNR) enhancement of the Raman spectrometer by the optimization of optical structure and a noise reduction method. Concerning its optical structure, the Raman spectrometer is increasing the intensity by adding an off‐the‐shelf cylindrical lens. On the other side of the algorithm, a relevant automatic denoising method of convolutional denoising autoencoder (CDAE) is proposed to further advance the SNR in Raman spectra without manual intervention. The results indicate the performance of the compact Raman spectrometer could increase to a certain extent by testing with 785 nm laser and Ne/Ar source. Besides, by using CDAE to deal with contaminated Raman spectra, a higher SNR is obtained. The results demonstrate that the improvement of the hardware and algorithm is effective for removing the noisy Raman signal and achieving higher SNR. This result may be helpful in further improving the performance of integrated Raman spectrometers and research on miniaturized instruments. In consideration of signal to noise ratio(SNR) is related to signal intensity and noise level, we hope to improve SNR through optic structure optimization and develop a denoising algorithm. A cylindrical lens has been used to enhance intensity. The convolutional denoising autoencoder (CDAE) algorithm is acquired for the reduction of the noise. image
The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is generally compact at the expense of performance. In this work, we proposed a compact, signal‐to‐noise ratio (SNR) enhancement of the Raman spectrometer by the optimization of optical structure and a noise reduction method. Concerning its optical structure, the Raman spectrometer is increasing the intensity by adding an off‐the‐shelf cylindrical lens. On the other side of the algorithm, a relevant automatic denoising method of convolutional denoising autoencoder (CDAE) is proposed to further advance the SNR in Raman spectra without manual intervention. The results indicate the performance of the compact Raman spectrometer could increase to a certain extent by testing with 785 nm laser and Ne/Ar source. Besides, by using CDAE to deal with contaminated Raman spectra, a higher SNR is obtained. The results demonstrate that the improvement of the hardware and algorithm is effective for removing the noisy Raman signal and achieving higher SNR. This result may be helpful in further improving the performance of integrated Raman spectrometers and research on miniaturized instruments. In consideration of signal to noise ratio(SNR) is related to signal intensity and noise level, we hope to improve SNR through optic structure optimization and develop a denoising algorithm. A cylindrical lens has been used to enhance intensity. The convolutional denoising autoencoder (CDAE) algorithm is acquired for the reduction of the noise.
Author Xu, Ying‐jie
Zhi, Yu‐Liang
Zeng, Yingjie
Fan, Xian‐guang
Nie, Ting
Wang, Xin
Author_xml – sequence: 1
  givenname: Xian‐guang
  surname: Fan
  fullname: Fan, Xian‐guang
  organization: Xiamen Key laboratory of Optoelectronic Transducer Technology
– sequence: 2
  givenname: Yingjie
  orcidid: 0000-0002-3961-3504
  surname: Zeng
  fullname: Zeng, Yingjie
  organization: Xiamen University
– sequence: 3
  givenname: Yu‐Liang
  surname: Zhi
  fullname: Zhi, Yu‐Liang
  organization: Xiamen University
– sequence: 4
  givenname: Ting
  surname: Nie
  fullname: Nie, Ting
  organization: Xiamen University
– sequence: 5
  givenname: Ying‐jie
  surname: Xu
  fullname: Xu, Ying‐jie
  organization: Xiamen Key laboratory of Optoelectronic Transducer Technology
– sequence: 6
  givenname: Xin
  orcidid: 0000-0003-0551-3932
  surname: Wang
  fullname: Wang, Xin
  email: xinwang@xmu.edu.cn
  organization: Xiamen Key laboratory of Optoelectronic Transducer Technology
BookMark eNp1kMtKBDEQRYMoOD7ATwi4cdNj0pl0OksRnwiCj3WTTlc0Q3cyJhlFV27c-41-iRnHhYhuqig4dW_V3UCrzjtAaIeSMSWk3J-GOK5IxVfQiBIpignnfBWNCBOiIJO6WkcbMU4JIVJWdITeru2dU_3H63vyuThvI-CgkvUY3L1yGgZwCRsf8JUalMNxBjoFhVsVocPeYT9LdrAvefgJ-AESBKxch7V3j76fZ8lshDtYeFh3h9U8eXDadxC20JpRfYTt776Jbo-Pbg5Pi4vLk7PDg4tCM0Z4oUkNoqOyrAVrQfDKEMUnQjPgzBgpRStlTVtg-WnWmkprIaqSq1a02rTSsE20u9SdBf8wh5iaqZ-HfFZsSk5JWVMuRKbGS0oHH2MA02ibFpG4_LjtG0qaRdRNjrpZRJ0X9n4tzIIdVHj-Cy2W6JPt4flfrjm_uv7iPwGympS8
CitedBy_id crossref_primary_10_1016_j_chemolab_2024_105205
crossref_primary_10_1021_acsnano_4c16037
crossref_primary_10_3390_bios13020187
crossref_primary_10_1016_j_bios_2023_115235
crossref_primary_10_1016_j_chemolab_2023_104913
crossref_primary_10_1016_j_infrared_2024_105452
crossref_primary_10_1016_j_saa_2023_123086
crossref_primary_10_1016_j_est_2023_107092
crossref_primary_10_1177_21582440241245247
crossref_primary_10_1002_cmtd_202100058
crossref_primary_10_1080_1040841X_2025_2555937
crossref_primary_10_1002_aidi_202500030
crossref_primary_10_1016_j_trac_2024_117578
crossref_primary_10_1002_jrs_6266
crossref_primary_10_1002_jrs_6563
crossref_primary_10_1016_j_saa_2023_122668
crossref_primary_10_1021_acs_jchemed_5c00725
crossref_primary_10_1016_j_surfcoat_2021_127670
crossref_primary_10_1016_j_engappai_2025_110426
crossref_primary_10_1007_s11468_025_03209_8
crossref_primary_10_1088_1674_1056_ac1f06
crossref_primary_10_1109_ACCESS_2024_3441824
crossref_primary_10_1016_j_saa_2024_123931
crossref_primary_10_1002_jbio_202200097
crossref_primary_10_1016_j_microc_2025_112904
crossref_primary_10_1007_s00216_024_05676_0
crossref_primary_10_1021_acs_est_4c11888
crossref_primary_10_1016_j_compchemeng_2024_108785
crossref_primary_10_1002_jrs_6379
crossref_primary_10_3390_agronomy14102374
crossref_primary_10_1002_jrs_6317
crossref_primary_10_1016_j_scitotenv_2023_165031
crossref_primary_10_1109_TIM_2022_3232177
Cites_doi 10.1007/s10812-008-9000-2
10.1016/j.optlastec.2014.07.010
10.1364/OE.18.023378
10.1364/AO.48.003846
10.1142/S1793351X16500045
10.1002/anie.200460656
10.1021/ac0013756
10.1002/jrs.4853
10.1063/1.126546
10.1364/AO.41.004655
10.1364/AO.56.009069
10.1088/1748-0221/11/02/P02002
10.1016/j.carbon.2012.10.013
10.1016/j.optlaseng.2013.02.011
10.1109/TPAMI.2016.2644615
10.1002/jrs.5399
10.1364/BOE.6.002380
10.1016/j.optcom.2019.03.064
10.1063/1.3587614
10.1016/j.optcom.2014.07.028
10.1364/OE.22.012102
10.1002/jrs.4042
10.1038/nature18018
10.1016/j.postharvbio.2018.11.004
10.1126/science.1127647
10.1039/C8AN00282G
10.1016/j.carbpol.2008.12.015
10.1111/j.1365-246X.2009.04122.x
10.1016/j.optcom.2017.09.063
10.1145/1390156.1390294
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
DOI 10.1002/jrs.6065
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1097-4555
EndPage 900
ExternalDocumentID 10_1002_jrs_6065
JRS6065
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 21874113; 21974118
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
ID FETCH-LOGICAL-c3305-c08e7d192873be756f0a547c3e53ff997b9981be34553bf6cc77625ab7bcfb9f3
IEDL.DBID DRFUL
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000610984500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0486
IngestDate Fri Jul 25 10:33:08 EDT 2025
Tue Nov 18 22:13:40 EST 2025
Sat Nov 29 07:08:29 EST 2025
Wed Jan 22 16:29:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3305-c08e7d192873be756f0a547c3e53ff997b9981be34553bf6cc77625ab7bcfb9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3961-3504
0000-0003-0551-3932
PQID 2510281577
PQPubID 1016368
PageCount 11
ParticipantIDs proquest_journals_2510281577
crossref_citationtrail_10_1002_jrs_6065
crossref_primary_10_1002_jrs_6065
wiley_primary_10_1002_jrs_6065_JRS6065
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Journal of Raman spectroscopy
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 143
2019; 9
2015; 6
2011
2010; 18
2008; 1096
2016; 10
2009; 177
2019; 149
2011; 98
2019; 444
2018; 407
2008; 75
2006; 313
2005; 44
2018; 49
2009; 48
2014; 22
2014; 333
2016; 11
2014; 5
2009; 76
2002; 41
2017; 39
2000; 76
2013; 51
2013; 53
2015; 65
2017; 56
2010; 111
2016; 534
2016; 47
2012; 43
2010; 30
2001; 73
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
Huang K. (e_1_2_6_33_1) 2019; 9
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
Zhao Z. G. (e_1_2_6_14_1) 2010; 30
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
Chen C. (e_1_2_6_13_1) 2014; 5
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
Duchi J. C. (e_1_2_6_34_1) 2011
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 407
  start-page: 290
  year: 2018
  publication-title: Opt. Commun.
– volume: 22
  start-page: 12102
  issue: 10
  year: 2014
  publication-title: Opt. Express
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  publication-title: IEEE T Pattern Anal
– volume: 43
  start-page: 1529
  issue: 11
  year: 2012
  publication-title: J. Raman Spectrosc.
– volume: 143
  start-page: 3489
  issue: 14
  year: 2018
  publication-title: Analyst
– volume: 6
  start-page: 2380
  issue: 7
  year: 2015
  publication-title: Opt. Express
– volume: 11
  year: 2016
  publication-title: J. Instrum
– volume: 49
  start-page: 1529
  issue: 9
  year: 2018
  publication-title: J. Raman Spectrosc
– volume: 9
  issue: 1
  year: 2019
  publication-title: Sci. Rep.
– start-page: 2121
  year: 2011
  publication-title: J. Mach. Learn. Res
– volume: 10
  start-page: 417
  issue: 03
  year: 2016
  publication-title: Int J Semant Comput
– volume: 98
  issue: 18
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 56
  start-page: 9069
  issue: 32
  year: 2017
  publication-title: Appl. Opt.
– volume: 76
  start-page: 349
  issue: 3
  year: 2009
  publication-title: Carbohydr. Polym.
– volume: 177
  start-page: 941
  issue: 3
  year: 2009
  publication-title: Geophys. J. Int.
– volume: 444
  start-page: 81
  year: 2019
  publication-title: Opt. Commun.
– volume: 53
  start-page: 38
  issue: 1
  year: 2013
  publication-title: Carbon
– volume: 149
  start-page: 101
  year: 2019
  publication-title: Postharvest Biol. Tec.
– volume: 48
  start-page: 3846
  issue: 19
  year: 2009
  publication-title: Appl. Opt.
– volume: 41
  start-page: 4655
  issue: 22
  year: 2002
  publication-title: Appl. Opt.
– volume: 51
  start-page: 961
  issue: 8
  year: 2013
  publication-title: Opt. Laser Eng
– volume: 47
  start-page: 116
  issue: 1
  year: 2016
  publication-title: J. Raman Spectrosc.
– volume: 44
  start-page: 139
  issue: 1
  year: 2005
  publication-title: Angew. Chem. Int. Edit
– volume: 30
  start-page: 2146
  issue: 8
  year: 2010
  publication-title: Spectrosc. Spectral Anal.
– volume: 5
  start-page: 5
  year: 2014
  publication-title: Nat. Commun.
– volume: 333
  start-page: 6
  year: 2014
  publication-title: Opt. Commun.
– volume: 534
  start-page: 241
  issue: 7606
  year: 2016
  publication-title: Nature
– volume: 1096
  year: 2008
– volume: 75
  start-page: 150
  issue: 1
  year: 2008
  publication-title: J. Appl. Spectrosc.
– volume: 73
  start-page: 4364
  issue: 17
  year: 2001
  publication-title: Anal. Chem.
– volume: 18
  start-page: 23378
  issue: 22
  year: 2010
  publication-title: Opt. Express
– volume: 111
  year: 2010
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  publication-title: Science
– volume: 65
  start-page: 88
  year: 2015
  publication-title: Opt. Laser Technol.
– volume: 76
  start-page: 3130
  issue: 21
  year: 2000
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_6_16_1
  doi: 10.1007/s10812-008-9000-2
– ident: e_1_2_6_17_1
  doi: 10.1016/j.optlastec.2014.07.010
– start-page: 2121
  year: 2011
  ident: e_1_2_6_34_1
  publication-title: J. Mach. Learn. Res
– ident: e_1_2_6_15_1
  doi: 10.1364/OE.18.023378
– ident: e_1_2_6_22_1
  doi: 10.1364/AO.48.003846
– ident: e_1_2_6_31_1
– ident: e_1_2_6_30_1
  doi: 10.1142/S1793351X16500045
– ident: e_1_2_6_12_1
  doi: 10.1002/anie.200460656
– ident: e_1_2_6_26_1
  doi: 10.1021/ac0013756
– ident: e_1_2_6_4_1
  doi: 10.1002/jrs.4853
– ident: e_1_2_6_11_1
  doi: 10.1063/1.126546
– ident: e_1_2_6_18_1
  doi: 10.1364/AO.41.004655
– ident: e_1_2_6_19_1
  doi: 10.1364/AO.56.009069
– volume: 9
  issue: 1
  year: 2019
  ident: e_1_2_6_33_1
  publication-title: Sci. Rep.
– ident: e_1_2_6_23_1
  doi: 10.1088/1748-0221/11/02/P02002
– ident: e_1_2_6_2_1
  doi: 10.1016/j.carbon.2012.10.013
– ident: e_1_2_6_27_1
  doi: 10.1016/j.optlaseng.2013.02.011
– ident: e_1_2_6_32_1
  doi: 10.1109/TPAMI.2016.2644615
– volume: 30
  start-page: 2146
  issue: 8
  year: 2010
  ident: e_1_2_6_14_1
  publication-title: Spectrosc. Spectral Anal.
– ident: e_1_2_6_24_1
  doi: 10.1002/jrs.5399
– ident: e_1_2_6_35_1
  doi: 10.1364/BOE.6.002380
– ident: e_1_2_6_20_1
  doi: 10.1016/j.optcom.2019.03.064
– ident: e_1_2_6_5_1
  doi: 10.1063/1.3587614
– ident: e_1_2_6_21_1
  doi: 10.1016/j.optcom.2014.07.028
– ident: e_1_2_6_36_1
  doi: 10.1364/OE.22.012102
– volume: 5
  start-page: 5
  year: 2014
  ident: e_1_2_6_13_1
  publication-title: Nat. Commun.
– ident: e_1_2_6_7_1
  doi: 10.1002/jrs.4042
– ident: e_1_2_6_8_1
  doi: 10.1038/nature18018
– ident: e_1_2_6_10_1
  doi: 10.1016/j.postharvbio.2018.11.004
– ident: e_1_2_6_28_1
  doi: 10.1126/science.1127647
– ident: e_1_2_6_9_1
  doi: 10.1039/C8AN00282G
– ident: e_1_2_6_3_1
  doi: 10.1016/j.carbpol.2008.12.015
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1365-246X.2009.04122.x
– ident: e_1_2_6_25_1
  doi: 10.1016/j.optcom.2017.09.063
– ident: e_1_2_6_29_1
  doi: 10.1145/1390156.1390294
SSID ssj0009961
Score 2.4828308
Snippet The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 890
SubjectTerms Algorithms
autoencoder
convolutional neural network
Czerny‐Turner
denoising
Noise
Noise reduction
Optimization
Raman spectra
Raman spectrometer
Raman spectroscopy
Spectrometers
Title Signal‐to‐noise ratio enhancement for Raman spectra based on optimized Raman spectrometer and convolutional denoising autoencoder
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.6065
https://www.proquest.com/docview/2510281577
Volume 52
WOSCitedRecordID wos000610984500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-4555
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009961
  issn: 0377-0486
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB10VfTit7h-EUH0VLfbmGZ7FHUREZFVwVtJ0kRX3Fba1YMnL979jf4SJ9nWVVAQvLQUJjQkLzMvYfIGYEvrFm4aAuOFhnN3WuUJE3EvRM_HEi6sArgrNsHPzlrX19F5mVVp78IM9CE-D9zsynD-2i5wIYvGUDT0Li92kX2zURgLELasBmOHnfbV6VByN3JqqT7FTlhhuUp61g8aVdvvwWjIML_yVBdo2jP_6eIsTJf0kuwP8DAHIzqdh8mDqqrbPEy4lE9VLMDrRfcGbd9f3voZPtKsW2ji8EB0emvBYA8OCZJa0hE9kRJ3KTMXxAa-hGQpydDd9LrP-PHVIOvZDBsi0oTYlPYS2tgp9HD4DwyVRDz2Myugmeh8Ea7aR5cHx15ZlMFTFH2Dp_yW5gnywhanUnMWGl-wPa6oZtSYKOISN3BNqekeY1SaUCmO_pYJyaUyMjJ0CWppluplIAFSJ1-ERtpNmfYpokOGItKG6ia6ElaHnWp2YlUqltvCGffxQGs5iHGAYzvAddj8tHwYqHT8YLNWTXBcrtMiRnaHBKvJOK_DtpvKX9vHJ50L-175q-EqTAU2Acal-axBrZ8_6nUYV0_9bpFvlGj9AB908lA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xFFx4r7Y8Fq-EllMgjeu4EScEVCx0K1RA4hbZjg1dbROUFA6cuHDnN_JLGLsJZaVdCYlLokhjxbI_jz-Pxt8AbGndxENDYLzQcO6iVZ4wEfdC9Hws4cIqgLtiE7zTaV5dRWdjsFfdhRnqQ7wF3OzKcP7aLnAbkN4dqYb-zosdpN9sHCYbiCKE9-Rht3XZHmnuRk4u1afYC6ssV2nP-sFu1fbv3WhEMd8TVbfTtOY_1ccFmCsJJtkfImIRxnS6BDMHVV23JZh2SZ-qWIan89412r48Pg8yfKRZr9DEIYLo9MbCwYYOCdJa0hV9kRJ3LTMXxG59CclSkqHD6fce8OO9Qda3OTZEpAmxSe0luLFT6OPwH7hZEnE3yKyEZqLzFbhsHV0cHHtlWQZPUfQOnvKbmifIDJucSs1ZaHzBGlxRzagxUcQlHuHqUtMGY1SaUCmOHpcJyaUyMjL0C0ykWaq_AgmQPPkiNNIey7RPER8yFJE2VNfRmbAabFfTE6tSs9yWzvgTD9WWgxgHOLYDXIPvb5a3Q52Of9isVzMclyu1iJHfIcWqM85r8MPN5X_bxyfdc_te_ajhJswcX_xqx-2fndM1mA1sOoxL-lmHiUF-pzdgSt0PekX-rYTuK5Iu9kA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7qWrZx4ccYolDAkyY4haVxHTfihFoqNqaqaqm0W2Q79tZpTaak3YETF-78jfwlPLtJOySQJu2SKNKzYtnP3_tsPX8P4FDrLm4aAuOFhnN3WuUJE3EvRORjCRdWAdwVm-DDYffsLBrV4GN1F2alD7E-cLMrw-G1XeD6OjFHG9XQy7z4gPSbbUGjY2vI1KHRHw-mpxvN3cjJpfoUe2GV5SrtWT84qtr-HY02FPM2UXWRZvD4Xn18Ao9Kgkk-rTziKdR0uge7vaqu2x5su6RPVTyDn5PZOdr-_vFrkeEjzWaFJs4jiE4vrDvYo0OCtJaMxVykxF3LzAWxoS8hWUoyBJz57Dt-3DbI5jbHhog0ITapvXRu7BRiHP4DgyURy0VmJTQTne_DdPD5W--LV5Zl8BRFdPCU39U8QWbY5VRqzkLjC9bhimpGjYkiLnEL15aadhij0oRKcURcJiSXysjI0OdQT7NUvwASIHnyRWik3ZZpn6J_yFBE2lDdRjBhTXhfTU-sSs1yWzrjKl6pLQcxDnBsB7gJB2vL65VOxz9sWtUMx-VKLWLkd0ix2ozzJrxzc_nf9vHJeGLfL-9q-BZ2Rv1BfHo8_PoKHgY2G8bl_LSgvsiX-jU8UDeLWZG_KT33Dy3C9bs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signal%E2%80%90to%E2%80%90noise+ratio+enhancement+for+Raman+spectra+based+on+optimized+Raman+spectrometer+and+convolutional+denoising+autoencoder&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Xian%E2%80%90guang+Fan&rft.au=Zeng%2C+Yingjie&rft.au=Yu%E2%80%90Liang+Zhi&rft.au=Nie%2C+Ting&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=52&rft.issue=4&rft.spage=890&rft.epage=900&rft_id=info:doi/10.1002%2Fjrs.6065&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon