Signal‐to‐noise ratio enhancement for Raman spectra based on optimized Raman spectrometer and convolutional denoising autoencoder
The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is generally compact at the expense of performance. In this work, we proposed a compact, signal‐to‐noise ratio (SNR) enhancement of the Raman spectrome...
Gespeichert in:
| Veröffentlicht in: | Journal of Raman spectroscopy Jg. 52; H. 4; S. 890 - 900 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bognor Regis
Wiley Subscription Services, Inc
01.04.2021
|
| Schlagworte: | |
| ISSN: | 0377-0486, 1097-4555 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is generally compact at the expense of performance. In this work, we proposed a compact, signal‐to‐noise ratio (SNR) enhancement of the Raman spectrometer by the optimization of optical structure and a noise reduction method. Concerning its optical structure, the Raman spectrometer is increasing the intensity by adding an off‐the‐shelf cylindrical lens. On the other side of the algorithm, a relevant automatic denoising method of convolutional denoising autoencoder (CDAE) is proposed to further advance the SNR in Raman spectra without manual intervention. The results indicate the performance of the compact Raman spectrometer could increase to a certain extent by testing with 785 nm laser and Ne/Ar source. Besides, by using CDAE to deal with contaminated Raman spectra, a higher SNR is obtained. The results demonstrate that the improvement of the hardware and algorithm is effective for removing the noisy Raman signal and achieving higher SNR. This result may be helpful in further improving the performance of integrated Raman spectrometers and research on miniaturized instruments.
In consideration of signal to noise ratio(SNR) is related to signal intensity and noise level, we hope to improve SNR through optic structure optimization and develop a denoising algorithm. A cylindrical lens has been used to enhance intensity. The convolutional denoising autoencoder (CDAE) algorithm is acquired for the reduction of the noise. |
|---|---|
| AbstractList | The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is generally compact at the expense of performance. In this work, we proposed a compact, signal‐to‐noise ratio (SNR) enhancement of the Raman spectrometer by the optimization of optical structure and a noise reduction method. Concerning its optical structure, the Raman spectrometer is increasing the intensity by adding an off‐the‐shelf cylindrical lens. On the other side of the algorithm, a relevant automatic denoising method of convolutional denoising autoencoder (CDAE) is proposed to further advance the SNR in Raman spectra without manual intervention. The results indicate the performance of the compact Raman spectrometer could increase to a certain extent by testing with 785 nm laser and Ne/Ar source. Besides, by using CDAE to deal with contaminated Raman spectra, a higher SNR is obtained. The results demonstrate that the improvement of the hardware and algorithm is effective for removing the noisy Raman signal and achieving higher SNR. This result may be helpful in further improving the performance of integrated Raman spectrometers and research on miniaturized instruments. The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is generally compact at the expense of performance. In this work, we proposed a compact, signal‐to‐noise ratio (SNR) enhancement of the Raman spectrometer by the optimization of optical structure and a noise reduction method. Concerning its optical structure, the Raman spectrometer is increasing the intensity by adding an off‐the‐shelf cylindrical lens. On the other side of the algorithm, a relevant automatic denoising method of convolutional denoising autoencoder (CDAE) is proposed to further advance the SNR in Raman spectra without manual intervention. The results indicate the performance of the compact Raman spectrometer could increase to a certain extent by testing with 785 nm laser and Ne/Ar source. Besides, by using CDAE to deal with contaminated Raman spectra, a higher SNR is obtained. The results demonstrate that the improvement of the hardware and algorithm is effective for removing the noisy Raman signal and achieving higher SNR. This result may be helpful in further improving the performance of integrated Raman spectrometers and research on miniaturized instruments. In consideration of signal to noise ratio(SNR) is related to signal intensity and noise level, we hope to improve SNR through optic structure optimization and develop a denoising algorithm. A cylindrical lens has been used to enhance intensity. The convolutional denoising autoencoder (CDAE) algorithm is acquired for the reduction of the noise. The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is generally compact at the expense of performance. In this work, we proposed a compact, signal‐to‐noise ratio (SNR) enhancement of the Raman spectrometer by the optimization of optical structure and a noise reduction method. Concerning its optical structure, the Raman spectrometer is increasing the intensity by adding an off‐the‐shelf cylindrical lens. On the other side of the algorithm, a relevant automatic denoising method of convolutional denoising autoencoder (CDAE) is proposed to further advance the SNR in Raman spectra without manual intervention. The results indicate the performance of the compact Raman spectrometer could increase to a certain extent by testing with 785 nm laser and Ne/Ar source. Besides, by using CDAE to deal with contaminated Raman spectra, a higher SNR is obtained. The results demonstrate that the improvement of the hardware and algorithm is effective for removing the noisy Raman signal and achieving higher SNR. This result may be helpful in further improving the performance of integrated Raman spectrometers and research on miniaturized instruments. In consideration of signal to noise ratio(SNR) is related to signal intensity and noise level, we hope to improve SNR through optic structure optimization and develop a denoising algorithm. A cylindrical lens has been used to enhance intensity. The convolutional denoising autoencoder (CDAE) algorithm is acquired for the reduction of the noise. image |
| Author | Xu, Ying‐jie Zhi, Yu‐Liang Zeng, Yingjie Fan, Xian‐guang Nie, Ting Wang, Xin |
| Author_xml | – sequence: 1 givenname: Xian‐guang surname: Fan fullname: Fan, Xian‐guang organization: Xiamen Key laboratory of Optoelectronic Transducer Technology – sequence: 2 givenname: Yingjie orcidid: 0000-0002-3961-3504 surname: Zeng fullname: Zeng, Yingjie organization: Xiamen University – sequence: 3 givenname: Yu‐Liang surname: Zhi fullname: Zhi, Yu‐Liang organization: Xiamen University – sequence: 4 givenname: Ting surname: Nie fullname: Nie, Ting organization: Xiamen University – sequence: 5 givenname: Ying‐jie surname: Xu fullname: Xu, Ying‐jie organization: Xiamen Key laboratory of Optoelectronic Transducer Technology – sequence: 6 givenname: Xin orcidid: 0000-0003-0551-3932 surname: Wang fullname: Wang, Xin email: xinwang@xmu.edu.cn organization: Xiamen Key laboratory of Optoelectronic Transducer Technology |
| BookMark | eNp1kMtKBDEQRYMoOD7ATwi4cdNj0pl0OksRnwiCj3WTTlc0Q3cyJhlFV27c-41-iRnHhYhuqig4dW_V3UCrzjtAaIeSMSWk3J-GOK5IxVfQiBIpignnfBWNCBOiIJO6WkcbMU4JIVJWdITeru2dU_3H63vyuThvI-CgkvUY3L1yGgZwCRsf8JUalMNxBjoFhVsVocPeYT9LdrAvefgJ-AESBKxch7V3j76fZ8lshDtYeFh3h9U8eXDadxC20JpRfYTt776Jbo-Pbg5Pi4vLk7PDg4tCM0Z4oUkNoqOyrAVrQfDKEMUnQjPgzBgpRStlTVtg-WnWmkprIaqSq1a02rTSsE20u9SdBf8wh5iaqZ-HfFZsSk5JWVMuRKbGS0oHH2MA02ibFpG4_LjtG0qaRdRNjrpZRJ0X9n4tzIIdVHj-Cy2W6JPt4flfrjm_uv7iPwGympS8 |
| CitedBy_id | crossref_primary_10_1016_j_chemolab_2024_105205 crossref_primary_10_1021_acsnano_4c16037 crossref_primary_10_3390_bios13020187 crossref_primary_10_1016_j_bios_2023_115235 crossref_primary_10_1016_j_chemolab_2023_104913 crossref_primary_10_1016_j_infrared_2024_105452 crossref_primary_10_1016_j_saa_2023_123086 crossref_primary_10_1016_j_est_2023_107092 crossref_primary_10_1177_21582440241245247 crossref_primary_10_1002_cmtd_202100058 crossref_primary_10_1080_1040841X_2025_2555937 crossref_primary_10_1002_aidi_202500030 crossref_primary_10_1016_j_trac_2024_117578 crossref_primary_10_1002_jrs_6266 crossref_primary_10_1002_jrs_6563 crossref_primary_10_1016_j_saa_2023_122668 crossref_primary_10_1021_acs_jchemed_5c00725 crossref_primary_10_1016_j_surfcoat_2021_127670 crossref_primary_10_1016_j_engappai_2025_110426 crossref_primary_10_1007_s11468_025_03209_8 crossref_primary_10_1088_1674_1056_ac1f06 crossref_primary_10_1109_ACCESS_2024_3441824 crossref_primary_10_1016_j_saa_2024_123931 crossref_primary_10_1002_jbio_202200097 crossref_primary_10_1016_j_microc_2025_112904 crossref_primary_10_1007_s00216_024_05676_0 crossref_primary_10_1021_acs_est_4c11888 crossref_primary_10_1016_j_compchemeng_2024_108785 crossref_primary_10_1002_jrs_6379 crossref_primary_10_3390_agronomy14102374 crossref_primary_10_1002_jrs_6317 crossref_primary_10_1016_j_scitotenv_2023_165031 crossref_primary_10_1109_TIM_2022_3232177 |
| Cites_doi | 10.1007/s10812-008-9000-2 10.1016/j.optlastec.2014.07.010 10.1364/OE.18.023378 10.1364/AO.48.003846 10.1142/S1793351X16500045 10.1002/anie.200460656 10.1021/ac0013756 10.1002/jrs.4853 10.1063/1.126546 10.1364/AO.41.004655 10.1364/AO.56.009069 10.1088/1748-0221/11/02/P02002 10.1016/j.carbon.2012.10.013 10.1016/j.optlaseng.2013.02.011 10.1109/TPAMI.2016.2644615 10.1002/jrs.5399 10.1364/BOE.6.002380 10.1016/j.optcom.2019.03.064 10.1063/1.3587614 10.1016/j.optcom.2014.07.028 10.1364/OE.22.012102 10.1002/jrs.4042 10.1038/nature18018 10.1016/j.postharvbio.2018.11.004 10.1126/science.1127647 10.1039/C8AN00282G 10.1016/j.carbpol.2008.12.015 10.1111/j.1365-246X.2009.04122.x 10.1016/j.optcom.2017.09.063 10.1145/1390156.1390294 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U9 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 RC3 |
| DOI | 10.1002/jrs.6065 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1097-4555 |
| EndPage | 900 |
| ExternalDocumentID | 10_1002_jrs_6065 JRS6065 |
| Genre | article |
| GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 21874113; 21974118 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCUC ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U9 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 RC3 |
| ID | FETCH-LOGICAL-c3305-c08e7d192873be756f0a547c3e53ff997b9981be34553bf6cc77625ab7bcfb9f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000610984500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-0486 |
| IngestDate | Fri Jul 25 10:33:08 EDT 2025 Tue Nov 18 22:13:40 EST 2025 Sat Nov 29 07:08:29 EST 2025 Wed Jan 22 16:29:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3305-c08e7d192873be756f0a547c3e53ff997b9981be34553bf6cc77625ab7bcfb9f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3961-3504 0000-0003-0551-3932 |
| PQID | 2510281577 |
| PQPubID | 1016368 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2510281577 crossref_citationtrail_10_1002_jrs_6065 crossref_primary_10_1002_jrs_6065 wiley_primary_10_1002_jrs_6065_JRS6065 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | Journal of Raman spectroscopy |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 143 2019; 9 2015; 6 2011 2010; 18 2008; 1096 2016; 10 2009; 177 2019; 149 2011; 98 2019; 444 2018; 407 2008; 75 2006; 313 2005; 44 2018; 49 2009; 48 2014; 22 2014; 333 2016; 11 2014; 5 2009; 76 2002; 41 2017; 39 2000; 76 2013; 51 2013; 53 2015; 65 2017; 56 2010; 111 2016; 534 2016; 47 2012; 43 2010; 30 2001; 73 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 Huang K. (e_1_2_6_33_1) 2019; 9 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 Zhao Z. G. (e_1_2_6_14_1) 2010; 30 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 Chen C. (e_1_2_6_13_1) 2014; 5 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 Duchi J. C. (e_1_2_6_34_1) 2011 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 407 start-page: 290 year: 2018 publication-title: Opt. Commun. – volume: 22 start-page: 12102 issue: 10 year: 2014 publication-title: Opt. Express – volume: 39 start-page: 2481 issue: 12 year: 2017 publication-title: IEEE T Pattern Anal – volume: 43 start-page: 1529 issue: 11 year: 2012 publication-title: J. Raman Spectrosc. – volume: 143 start-page: 3489 issue: 14 year: 2018 publication-title: Analyst – volume: 6 start-page: 2380 issue: 7 year: 2015 publication-title: Opt. Express – volume: 11 year: 2016 publication-title: J. Instrum – volume: 49 start-page: 1529 issue: 9 year: 2018 publication-title: J. Raman Spectrosc – volume: 9 issue: 1 year: 2019 publication-title: Sci. Rep. – start-page: 2121 year: 2011 publication-title: J. Mach. Learn. Res – volume: 10 start-page: 417 issue: 03 year: 2016 publication-title: Int J Semant Comput – volume: 98 issue: 18 year: 2011 publication-title: Appl. Phys. Lett. – volume: 56 start-page: 9069 issue: 32 year: 2017 publication-title: Appl. Opt. – volume: 76 start-page: 349 issue: 3 year: 2009 publication-title: Carbohydr. Polym. – volume: 177 start-page: 941 issue: 3 year: 2009 publication-title: Geophys. J. Int. – volume: 444 start-page: 81 year: 2019 publication-title: Opt. Commun. – volume: 53 start-page: 38 issue: 1 year: 2013 publication-title: Carbon – volume: 149 start-page: 101 year: 2019 publication-title: Postharvest Biol. Tec. – volume: 48 start-page: 3846 issue: 19 year: 2009 publication-title: Appl. Opt. – volume: 41 start-page: 4655 issue: 22 year: 2002 publication-title: Appl. Opt. – volume: 51 start-page: 961 issue: 8 year: 2013 publication-title: Opt. Laser Eng – volume: 47 start-page: 116 issue: 1 year: 2016 publication-title: J. Raman Spectrosc. – volume: 44 start-page: 139 issue: 1 year: 2005 publication-title: Angew. Chem. Int. Edit – volume: 30 start-page: 2146 issue: 8 year: 2010 publication-title: Spectrosc. Spectral Anal. – volume: 5 start-page: 5 year: 2014 publication-title: Nat. Commun. – volume: 333 start-page: 6 year: 2014 publication-title: Opt. Commun. – volume: 534 start-page: 241 issue: 7606 year: 2016 publication-title: Nature – volume: 1096 year: 2008 – volume: 75 start-page: 150 issue: 1 year: 2008 publication-title: J. Appl. Spectrosc. – volume: 73 start-page: 4364 issue: 17 year: 2001 publication-title: Anal. Chem. – volume: 18 start-page: 23378 issue: 22 year: 2010 publication-title: Opt. Express – volume: 111 year: 2010 – volume: 313 start-page: 504 issue: 5786 year: 2006 publication-title: Science – volume: 65 start-page: 88 year: 2015 publication-title: Opt. Laser Technol. – volume: 76 start-page: 3130 issue: 21 year: 2000 publication-title: Appl. Phys. Lett. – ident: e_1_2_6_16_1 doi: 10.1007/s10812-008-9000-2 – ident: e_1_2_6_17_1 doi: 10.1016/j.optlastec.2014.07.010 – start-page: 2121 year: 2011 ident: e_1_2_6_34_1 publication-title: J. Mach. Learn. Res – ident: e_1_2_6_15_1 doi: 10.1364/OE.18.023378 – ident: e_1_2_6_22_1 doi: 10.1364/AO.48.003846 – ident: e_1_2_6_31_1 – ident: e_1_2_6_30_1 doi: 10.1142/S1793351X16500045 – ident: e_1_2_6_12_1 doi: 10.1002/anie.200460656 – ident: e_1_2_6_26_1 doi: 10.1021/ac0013756 – ident: e_1_2_6_4_1 doi: 10.1002/jrs.4853 – ident: e_1_2_6_11_1 doi: 10.1063/1.126546 – ident: e_1_2_6_18_1 doi: 10.1364/AO.41.004655 – ident: e_1_2_6_19_1 doi: 10.1364/AO.56.009069 – volume: 9 issue: 1 year: 2019 ident: e_1_2_6_33_1 publication-title: Sci. Rep. – ident: e_1_2_6_23_1 doi: 10.1088/1748-0221/11/02/P02002 – ident: e_1_2_6_2_1 doi: 10.1016/j.carbon.2012.10.013 – ident: e_1_2_6_27_1 doi: 10.1016/j.optlaseng.2013.02.011 – ident: e_1_2_6_32_1 doi: 10.1109/TPAMI.2016.2644615 – volume: 30 start-page: 2146 issue: 8 year: 2010 ident: e_1_2_6_14_1 publication-title: Spectrosc. Spectral Anal. – ident: e_1_2_6_24_1 doi: 10.1002/jrs.5399 – ident: e_1_2_6_35_1 doi: 10.1364/BOE.6.002380 – ident: e_1_2_6_20_1 doi: 10.1016/j.optcom.2019.03.064 – ident: e_1_2_6_5_1 doi: 10.1063/1.3587614 – ident: e_1_2_6_21_1 doi: 10.1016/j.optcom.2014.07.028 – ident: e_1_2_6_36_1 doi: 10.1364/OE.22.012102 – volume: 5 start-page: 5 year: 2014 ident: e_1_2_6_13_1 publication-title: Nat. Commun. – ident: e_1_2_6_7_1 doi: 10.1002/jrs.4042 – ident: e_1_2_6_8_1 doi: 10.1038/nature18018 – ident: e_1_2_6_10_1 doi: 10.1016/j.postharvbio.2018.11.004 – ident: e_1_2_6_28_1 doi: 10.1126/science.1127647 – ident: e_1_2_6_9_1 doi: 10.1039/C8AN00282G – ident: e_1_2_6_3_1 doi: 10.1016/j.carbpol.2008.12.015 – ident: e_1_2_6_6_1 doi: 10.1111/j.1365-246X.2009.04122.x – ident: e_1_2_6_25_1 doi: 10.1016/j.optcom.2017.09.063 – ident: e_1_2_6_29_1 doi: 10.1145/1390156.1390294 |
| SSID | ssj0009961 |
| Score | 2.4828308 |
| Snippet | The signal‐noise ratio plays a key role in acquiring plentiful chemical structural information in the Raman spectrometer. The miniature spectrometer is... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 890 |
| SubjectTerms | Algorithms autoencoder convolutional neural network Czerny‐Turner denoising Noise Noise reduction Optimization Raman spectra Raman spectrometer Raman spectroscopy Spectrometers |
| Title | Signal‐to‐noise ratio enhancement for Raman spectra based on optimized Raman spectrometer and convolutional denoising autoencoder |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.6065 https://www.proquest.com/docview/2510281577 |
| Volume | 52 |
| WOSCitedRecordID | wos000610984500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-4555 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009961 issn: 0377-0486 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS9xAFH_UVbGX1k-61soIoqdoktnJJEdRlyIisip4CzOTiW7pJiVZe-ipF-_-jf4lvjebuBYqCF4yBN6QYd7XL8Ob3wPYNkFEfaYCT2QJ93o9Zb2E-9rjeRJrYUQoc9e15FSencXX18l5U1VJd2Em_BDPB27kGS5ek4MrXe9PSUN_VPUeom8xA7Mhmq3owOzRoH91OqXcTRxbqs-l9IhYrqWe9cP9du6_yWiKMF_iVJdo-p_fs8RF-NTAS3YwsYcl-GCLZVg4bLu6LcO8K_k09QrcXwxvUPbx78O4xEdRDmvLnD0wW9ySMdDBIUNQywZqpArmLmVWilHiy1hZsBLDzWj4B19eCpQjqrBhqsgYlbQ3po2LwgiH38BUydTduCQCzcxWq3DVP748_O41TRk8wzE2eMaPrcwQF8aSaytFlPtK9KThVvA8TxKp8Qcu0Jb3hOA6j4yRGG-F0lKbXCc5X4NOURb2CzAMJYRvJEIKx2qjEA1mUZwFoYmIM7ELu612UtMwllPjjJ_phGs5THGDU9rgLmw9S_6asHT8R2ajVXDa-GmdIrpDgBUIKbuw41T56vz0ZHBB4_pbBb_Cx5AKYFyZzwZ0xtWd_QZz5vd4WFebjbU-AaWS8eA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3x0Ype-kFBbEupkSp6CiRxHCfqqaJdQbusqgUkbpHtOO0iNqmSpYeeeum9v7G_pDPehAUJpEpcYkUaK5b9PPNijd8AvDFBTHWmAk_kKfeiSFkv5b72eJEmWhgRysJVLRnI4TA5O0u_LMC77i7MTB_i6sCNdobz17TB6UB6b64ael43u0i_xSIsR4gihPfyh1H_dDDX3E2dXKrPpfRIWa7TnvXDva7vzWg0p5jXiaqLNP0n9xrjU3jcEkz2foaIZ7Bgy1VY2e_quq3CQ5f0aZrn8Pt4_BVt__76M63wUVbjxjKHCGbLbwQHOjpkSGvZSE1Uydy1zFoxCn05q0pWocOZjH_iy3WDakI5NkyVOaOk9hbcOCj0cfgNDJZMXU4rktDMbb0Gp_2PJ_sHXluWwTMcvYNn_MTKHJlhIrm2UsSFr0QkDbeCF0WaSo2_cIG2PBKC6yI2RqLHFUpLbQqdFnwdlsqqtBvA0JkQw5FIKpyujUI-mMdJHoQmJtXEHrztliczrWY5lc64yGZqy2GGE5zRBPdg-8ry-0yn4xabzW6Fs3anNhnyO6RYgZCyBztuLe_sn30aHVP74n8NX8PKwcnRIBscDj-_hEchpcO4pJ9NWJrWl_YVPDA_puOm3mqh-w8UA_XQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRQuPEoRCwWMhOAUmsRxnIgTalnxWK2qLZV6i2zHbhexSZVsOXDi0nt_I7-EGW_SLRJISFxiRRorluf1xRp_A_DCRCn1mYoCUeY8SBJlg5yHOuAuz7QwIpbOdy0Zy8kkOzrK99fgTX8XZskPcXngRp7h4zU5uD0t3c6KNfRL075G-C2uwXpCPWQGsL43HR2OV5y7uadLDbmUATHL9dyzYbzTz_09G60g5lWg6jPN6M5_rfEu3O4AJnu7tIh7sGarTbi52_d124QbvujTtPfh_GB2jLI_f1wsanxU9ay1zFsEs9UJmQMdHTKEtWyq5qpi_lpmoxilvpLVFasx4Mxn3_HlqkA9pxobpqqSUVF7Z9y4KIxx-A1MlkydLWqi0CxtswWHo3efd98HXVuGwHCMDoEJMytLRIaZ5NpKkbpQiUQabgV3Ls-lxl-4SFueCMG1S42RGHGF0lIbp3PHH8Cgqiv7EBgGE0I4EkGF57VRiAfLNCuj2KTEmjiEV716CtNxllPrjK_Fkm05LnCDC9rgITy_lDxd8nT8QWa713DReWpbIL5DiBUJKYfw0uvyr_OLj9MDGh_9q-Az2NjfGxXjD5NPj-FWTNUwvuZnGwaL5sw-gevm22LWNk87y_0Fr_j1Sw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signal%E2%80%90to%E2%80%90noise+ratio+enhancement+for+Raman+spectra+based+on+optimized+Raman+spectrometer+and+convolutional+denoising+autoencoder&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Fan%2C+Xian%E2%80%90guang&rft.au=Zeng%2C+Yingjie&rft.au=Zhi%2C+Yu%E2%80%90Liang&rft.au=Nie%2C+Ting&rft.date=2021-04-01&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=52&rft.issue=4&rft.spage=890&rft.epage=900&rft_id=info:doi/10.1002%2Fjrs.6065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jrs_6065 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon |