A consistent sharp interface fictitious domain method for moving boundary problems with arbitrarily polyhedral mesh

A consistent, sharp interface fully Eulerian fictitious domain method is proposed in this article for moving boundary problems. In this method, a collocated finite volume method is used for the continuous phase; a geometry intersection method is employed for numerical integrals over the solid domain...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids Vol. 93; no. 7; pp. 2065 - 2088
Main Authors: Chai, Guoliang, Wang, Le, Gu, Zhaolin, Yu, Chunlei, Zhang, Yigen, Shu, Qinglin, Su, Junwei
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.07.2021
Wiley Subscription Services, Inc
Subjects:
ISSN:0271-2091, 1097-0363
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A consistent, sharp interface fully Eulerian fictitious domain method is proposed in this article for moving boundary problems. In this method, a collocated finite volume method is used for the continuous phase; a geometry intersection method is employed for numerical integrals over the solid domain and transport of the body force; the pseudo body force defined at “solid centers” ensures the algorithm consists of the body force between the continuous form and its discretization counterpart; an explicit flux correction on cell faces and resulting mass source is introduced into the continuity equation to lower noncontinuity errors in the velocity correction step. This method is valid for stationary and moving boundary problems with arbitrarily polyhedral mesh. Several numerical tests are carried out to validate the proposed method. A second‐order spatial accuracy is found in the flow around a cylinder case, and the spurious force oscillation is well suppressed for the in‐line oscillation of a circular cylinder case. The performances on different meshes are tested, and structured mesh yields the best result, polyhedral next, and tetrahedral worst. A serial of tests is further performed on structured mesh to verify the effect of three different features (i.e., storing the body force at the solid centers, flux correction, and whether including the body force in the momentum equation) on the numerical predictions. Numerical results show that, in the in‐line oscillation of a circular cylinder, “flux correction” can eliminate the large spikes in the drag coefficient, and “including the body force in the momentum equation” helps suppress the small oscillations. For other tests, “storing the body force at the solid centers” has enormous impacts on the final results of moving boundary problems, “flux correction” has little effects and the necessity of “including the body force in the momentum equation” is case dependent. Arbitrarily polyhedral mesh can be used for the proposed fictitious domain method. The sharpness of the solid–fluid boundary is acquired directly on the Eulerian background mesh without any additional mesh manipulation. Subgrid information is used for the discretization of the body force term to maintain the consistence, and for face flux correction to suppress the spurious force oscillations.
AbstractList A consistent, sharp interface fully Eulerian fictitious domain method is proposed in this article for moving boundary problems. In this method, a collocated finite volume method is used for the continuous phase; a geometry intersection method is employed for numerical integrals over the solid domain and transport of the body force; the pseudo body force defined at “solid centers” ensures the algorithm consists of the body force between the continuous form and its discretization counterpart; an explicit flux correction on cell faces and resulting mass source is introduced into the continuity equation to lower noncontinuity errors in the velocity correction step. This method is valid for stationary and moving boundary problems with arbitrarily polyhedral mesh. Several numerical tests are carried out to validate the proposed method. A second‐order spatial accuracy is found in the flow around a cylinder case, and the spurious force oscillation is well suppressed for the in‐line oscillation of a circular cylinder case. The performances on different meshes are tested, and structured mesh yields the best result, polyhedral next, and tetrahedral worst. A serial of tests is further performed on structured mesh to verify the effect of three different features (i.e., storing the body force at the solid centers, flux correction, and whether including the body force in the momentum equation) on the numerical predictions. Numerical results show that, in the in‐line oscillation of a circular cylinder, “flux correction” can eliminate the large spikes in the drag coefficient, and “including the body force in the momentum equation” helps suppress the small oscillations. For other tests, “storing the body force at the solid centers” has enormous impacts on the final results of moving boundary problems, “flux correction” has little effects and the necessity of “including the body force in the momentum equation” is case dependent.
A consistent, sharp interface fully Eulerian fictitious domain method is proposed in this article for moving boundary problems. In this method, a collocated finite volume method is used for the continuous phase; a geometry intersection method is employed for numerical integrals over the solid domain and transport of the body force; the pseudo body force defined at “solid centers” ensures the algorithm consists of the body force between the continuous form and its discretization counterpart; an explicit flux correction on cell faces and resulting mass source is introduced into the continuity equation to lower noncontinuity errors in the velocity correction step. This method is valid for stationary and moving boundary problems with arbitrarily polyhedral mesh. Several numerical tests are carried out to validate the proposed method. A second‐order spatial accuracy is found in the flow around a cylinder case, and the spurious force oscillation is well suppressed for the in‐line oscillation of a circular cylinder case. The performances on different meshes are tested, and structured mesh yields the best result, polyhedral next, and tetrahedral worst. A serial of tests is further performed on structured mesh to verify the effect of three different features (i.e., storing the body force at the solid centers, flux correction, and whether including the body force in the momentum equation) on the numerical predictions. Numerical results show that, in the in‐line oscillation of a circular cylinder, “flux correction” can eliminate the large spikes in the drag coefficient, and “including the body force in the momentum equation” helps suppress the small oscillations. For other tests, “storing the body force at the solid centers” has enormous impacts on the final results of moving boundary problems, “flux correction” has little effects and the necessity of “including the body force in the momentum equation” is case dependent. Arbitrarily polyhedral mesh can be used for the proposed fictitious domain method. The sharpness of the solid–fluid boundary is acquired directly on the Eulerian background mesh without any additional mesh manipulation. Subgrid information is used for the discretization of the body force term to maintain the consistence, and for face flux correction to suppress the spurious force oscillations.
Author Shu, Qinglin
Su, Junwei
Zhang, Yigen
Chai, Guoliang
Wang, Le
Gu, Zhaolin
Yu, Chunlei
Author_xml – sequence: 1
  givenname: Guoliang
  orcidid: 0000-0002-1010-7018
  surname: Chai
  fullname: Chai, Guoliang
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Le
  surname: Wang
  fullname: Wang, Le
  organization: Xi'an Shiyou University
– sequence: 3
  givenname: Zhaolin
  orcidid: 0000-0002-1033-232X
  surname: Gu
  fullname: Gu, Zhaolin
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Chunlei
  surname: Yu
  fullname: Yu, Chunlei
  organization: Shengli Oilfield Company, Sinopec group
– sequence: 5
  givenname: Yigen
  surname: Zhang
  fullname: Zhang, Yigen
  organization: Shengli Oilfield Company, Sinopec group
– sequence: 6
  givenname: Qinglin
  surname: Shu
  fullname: Shu, Qinglin
  organization: Shengli Oilfield Company, Sinopec group
– sequence: 7
  givenname: Junwei
  surname: Su
  fullname: Su, Junwei
  email: sujunwei@mail.xjtu.edu.cn
  organization: Xi'an Jiaotong University
BookMark eNp1kLtOwzAUhi1UJNqCxCNYYmFJsZ3EScaqUECqxAJz5CtxldjFdqj69riUCcF0hvP95_LNwMQ6qwC4xmiBESJ3upeLoqHlGZhi1FQZymk-AVNEKpwR1OALMAthixBqSJ1PQVhC4WwwISobYeiY30Fjo_KaCQW1EdFE48YApRuYsXBQsXMSaufh4D6NfYfcjVYyf4A773ivhgD3JnaQeW6iZ970qeP6Q6ekZ33Kh-4SnGvWB3X1U-fgbf3wunrKNi-Pz6vlJhN5jsqMyrLWuKRI10WjsGa4IDVXuECC4qLhUnLKOBE1Y5SWjBLeUK2qhhdY1ErpfA5uTnPTZR-jCrHdutHbtLIlZU5rUqGyStTiRAnvQvBKt8JElp626XzTtxi1R7FtEtsexabA7a_AzpshGfgLzU7o3vTq8C_Xrjf33_wXNK2MEg
CitedBy_id crossref_primary_10_3390_en14248200
crossref_primary_10_1155_2023_2401884
crossref_primary_10_3390_ma16093555
Cites_doi 10.1016/j.jcp.2005.12.016
10.1016/j.jcp.2012.11.050
10.1002/nme.5609
10.1016/j.jcp.2012.04.012
10.1016/j.jcp.2006.06.002
10.1016/j.compfluid.2011.12.006
10.1016/S0021-9991(03)00214-6
10.1017/S002211209800860X
10.1016/j.amc.2015.03.042
10.1016/j.jcp.2017.07.017
10.1080/19942060.2019.1652209
10.1016/j.ijmultiphaseflow.2011.12.002
10.1016/j.ijheatmasstransfer.2013.05.020
10.1016/j.jcp.2005.03.017
10.1007/s11242-016-0729-4
10.1016/j.ces.2011.08.025
10.1017/S0022112072002927
10.1016/j.jnnfm.2006.03.015
10.1016/j.jcp.2007.03.005
10.1145/1015706.1015733
10.1016/j.jcp.2011.01.004
10.1016/j.jcp.2013.09.015
10.1016/j.cma.2017.01.023
10.1016/0021-9991(86)90099-9
10.1016/j.jcp.2015.03.059
10.4208/nmtma.2014.1306si
10.1002/1097-0363(20000830)33:8<1121::AID-FLD45>3.0.CO;2-H
10.1016/j.jcp.2007.01.026
10.1016/j.jcp.2008.10.038
10.1016/j.jcp.2009.07.010
10.1016/j.camwa.2016.01.024
10.1017/S0962492902000077
10.1016/S0045-7825(97)00116-3
10.1002/(SICI)1097-0363(19990830)30:8<1043::AID-FLD879>3.0.CO;2-Y
10.1016/j.jcp.2018.10.015
10.1006/jcph.2001.6778
10.1016/j.jcp.2004.11.012
10.1016/j.ijheatmasstransfer.2013.11.017
10.1016/j.ijmultiphaseflow.2009.10.001
10.1016/j.jcp.2015.07.010
10.1016/j.jcp.2006.10.028
10.1016/j.jcp.2011.06.003
10.1016/j.jcp.2007.07.027
10.1016/S0301-9322(98)00048-2
10.1016/j.jcp.2012.09.038
10.1016/j.mechmachtheory.2017.01.014
10.1155/2019/5450313
10.1016/j.jcp.2005.10.035
10.1016/j.ces.2019.01.033
10.1016/j.powtec.2013.12.009
10.1146/annurev.fl.28.010196.002401
10.1016/S0377-0257(00)00189-0
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.4965
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 2088
ExternalDocumentID 10_1002_fld_4965
FLD4965
Genre article
GrantInformation_xml – fundername: National Major Science and Technology Projects of China
  funderid: 2016ZX05011001
– fundername: National Natural Science Foundation of China
  funderid: 21306145
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~A~
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c3305-6d58f1560f849e1fa1428be140c6149bddb6ab2c8aa665a62b96fe79b41c8eef3
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000627888800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
IngestDate Fri Jul 25 10:32:59 EDT 2025
Tue Nov 18 22:14:54 EST 2025
Sat Nov 29 03:27:56 EST 2025
Wed Jan 22 16:29:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3305-6d58f1560f849e1fa1428be140c6149bddb6ab2c8aa665a62b96fe79b41c8eef3
Notes Funding information
National Major Science and Technology Projects of China, 2016ZX05011001; National Natural Science Foundation of China, 21306145
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1033-232X
0000-0002-1010-7018
PQID 2536827057
PQPubID 996375
PageCount 25
ParticipantIDs proquest_journals_2536827057
crossref_citationtrail_10_1002_fld_4965
crossref_primary_10_1002_fld_4965
wiley_primary_10_1002_fld_4965_FLD4965
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 317
2007; 224
2007; 225
2007; 222
2019; 2019
2014; 70
2007; 227
2019; 13
2013; 64
2004; 23
2002; 11
2016; 71
2014; 253
2006; 215
2017; 112
2012; 57
2006; 216
1998; 151
2006; 136
2014; 256
2011; 230
2015; 294
1996; 28
2001; 171
2015; 299
2013; 237
2013; 235
2011; 66
2016; 114
2014; 7
1972; 56
2019; 199
1998; 360
2001; 96
2016; 272
2010; 36
1999; 25
2016; 10
2012; 231
1986; 62
2021
2018; 113
2000; 33
2005; 205
2005; 209
1999; 30
2009; 228
2003; 189
2019; 376
2017; 348
2012; 40
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
Wang L (e_1_2_7_26_1) 2021
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Jafari R (e_1_2_7_3_1) 2016; 272
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
Yu Z (e_1_2_7_22_1) 2016; 10
e_1_2_7_38_1
References_xml – volume: 23
  start-page: 377
  issue: 3
  year: 2004
  end-page: 384
  article-title: Rigid fluid: animating the interplay between rigid bodies and fluid
  publication-title: ACM Trans Graph
– volume: 272
  start-page: 593
  year: 2016
  end-page: 603
  article-title: 3D numerical modeling of boiling in a microchannel by arbitrary Lagrangian–Eulerian (ALE) method
  publication-title: Appl Math Comput
– volume: 96
  start-page: 459
  issue: 3
  year: 2001
  end-page: 471
  article-title: Wall effects for motion of spheres in power‐law fluids
  publication-title: J Non‐Newtonian Fluid Mech
– volume: 199
  start-page: 613
  year: 2019
  end-page: 627
  article-title: Pore‐scale direct numerical simulation of particle transport in porous media
  publication-title: Chem Eng Sci
– volume: 215
  start-page: 12
  issue: 1
  year: 2006
  end-page: 40
  article-title: An embedded‐boundary formulation for large‐eddy simulation of turbulent flows interacting with moving boundaries
  publication-title: J Comput Phys
– volume: 10
  start-page: 160
  issue: 1
  year: 2016
  end-page: 170
  article-title: A parallel fictitious domain method for the interface‐resolved simulation of particle‐laden flows and its application to the turbulent channel flow
  publication-title: Eng Appl Comput Fluid Mech
– volume: 235
  start-page: 786
  year: 2013
  end-page: 809
  article-title: An accurate moving boundary formulation in cut‐cell methods
  publication-title: J Comput Phys
– volume: 360
  start-page: 249
  year: 1998
  end-page: 271
  article-title: Low‐Reynolds‐number flow around an oscillating circular cylinder at low Keulegan–carpenter numbers
  publication-title: J Fluid Mech
– volume: 256
  start-page: 367
  year: 2014
  end-page: 387
  article-title: A fictitious domain approach for the simulation of dense suspensions
  publication-title: J Comput Phys
– volume: 299
  start-page: 215
  year: 2015
  end-page: 228
  article-title: Fictitious domain method for fully resolved reacting gas–solid flow simulation
  publication-title: J Comput Phys
– volume: 113
  start-page: 208
  issue: 2
  year: 2018
  end-page: 229
  article-title: A fictitious domain method for the simulation of thermoelastic deformations in NC‐milling processes
  publication-title: Int J Numer Methods Eng
– volume: 136
  start-page: 126
  issue: 2–3
  year: 2006
  end-page: 139
  article-title: Numerical simulation of particle sedimentation in shear‐thinning fluids with a fictitious domain method
  publication-title: J Non‐Newtonian Fluid Mech
– volume: 40
  start-page: 38
  year: 2012
  end-page: 55
  article-title: On the application of immersed boundary, fictitious domain and body‐conformal mesh methods to many particle multiphase flows
  publication-title: Int J Multiphase Flow
– volume: 237
  start-page: 21
  year: 2013
  end-page: 45
  article-title: A new implicit fictitious domain method for the simulation of flow in complex geometries with heat transfer
  publication-title: J Comput Phys
– volume: 57
  start-page: 40
  year: 2012
  end-page: 51
  article-title: Boundary condition‐enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications
  publication-title: Comput Fluids
– volume: 225
  start-page: 1347
  issue: 2
  year: 2007
  end-page: 1387
  article-title: A general fictitious domain method with immersed jumps and multilevel nested structured meshes
  publication-title: J Comput Phys
– volume: 13
  start-page: 860
  issue: 1
  year: 2019
  end-page: 877
  article-title: Thin and sharp edges bodies‐fluid interaction simulation using cut‐cell immersed boundary method
  publication-title: Eng Appl Comput Fluid Mech
– volume: 228
  start-page: 7596
  issue: 20
  year: 2009
  end-page: 7613
  article-title: A fictitious domain, parallel numerical method for rigid particulate flows
  publication-title: J Comput Phys
– volume: 25
  start-page: 755
  issue: 5
  year: 1999
  end-page: 794
  article-title: A distributed Lagrange multiplier/fictitious domain method for particulate flows
  publication-title: Int J Multiphase Flow
– volume: 294
  start-page: 484
  year: 2015
  end-page: 502
  article-title: A diffuse‐interface immersed‐boundary method for two‐dimensional simulation of flows with moving contact lines on curved substrates
  publication-title: J Comput Phys
– volume: 225
  start-page: 2118
  issue: 2
  year: 2007
  end-page: 2137
  article-title: The immersed boundary method: a projection approach
  publication-title: J Comput Phys
– volume: 216
  start-page: 454
  issue: 2
  year: 2006
  end-page: 493
  article-title: An immersed interface method for simulating the interaction of a fluid with moving boundaries
  publication-title: J Comput Phys
– volume: 66
  start-page: 6069
  issue: 23
  year: 2011
  end-page: 6088
  article-title: Discrete element simulation of particle flow in arbitrarily complex geometries
  publication-title: Chem Eng Sci
– volume: 62
  start-page: 40
  issue: 1
  year: 1986
  end-page: 65
  article-title: Solution of the implicitly discretised fluid flow equations by operator‐splitting
  publication-title: J Comput Phys
– volume: 230
  start-page: 7347
  issue: 19
  year: 2011
  end-page: 7363
  article-title: A sharp‐interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations
  publication-title: J Comput Phys
– volume: 348
  start-page: 45
  year: 2017
  end-page: 65
  article-title: Fluid–structure interaction involving dynamic wetting: 2D modeling and simulations
  publication-title: J Comput Phys
– volume: 114
  start-page: 99
  issue: 1
  year: 2016
  end-page: 131
  article-title: An efficient RIGID algorithm and its application to the simulation of particle transport in porous medium
  publication-title: Transp Porous Media
– volume: 231
  start-page: 5029
  issue: 15
  year: 2012
  end-page: 5061
  article-title: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions
  publication-title: J Comput Phys
– volume: 317
  start-page: 1146
  year: 2017
  end-page: 1168
  article-title: A one‐field monolithic fictitious domain method for fluid–structure interactions
  publication-title: Comput Methods Appl Mech Eng
– volume: 70
  start-page: 409
  year: 2014
  end-page: 420
  article-title: A fully coupled numerical simulation of sessile droplet evaporation using arbitrary Lagrangian–Eulerian formulation
  publication-title: Int J Heat Mass Transf
– volume: 71
  start-page: 1089
  issue: 5
  year: 2016
  end-page: 1113
  article-title: An analysis and an affordable regularization technique for the spurious force oscillations in the context of direct‐forcing immersed boundary methods
  publication-title: Comput Math Appl
– volume: 36
  start-page: 127
  issue: 2
  year: 2010
  end-page: 134
  article-title: Direct numerical simulation of particulate flows with a fictitious domain method
  publication-title: Int J Multiphase Flow
– volume: 112
  start-page: 1
  year: 2017
  end-page: 21
  article-title: An arbitrary Lagrangian–Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics
  publication-title: Mech Mach Theory
– volume: 253
  start-page: 393
  year: 2014
  end-page: 405
  article-title: An improved version of RIGID for discrete element simulation of particle flows with arbitrarily complex geometries
  publication-title: Powder Technol
– volume: 33
  start-page: 1121
  issue: 8
  year: 2000
  end-page: 1151
  article-title: Calculation of compressible flows about complex moving geometries using a three‐dimensional Cartesian cut cell method
  publication-title: Int J Numer Methods Fluids
– volume: 171
  start-page: 132
  issue: 1
  year: 2001
  end-page: 150
  article-title: An immersed‐boundary finite‐volume method for simulations of flow in complex geometries
  publication-title: J Comput Phys
– volume: 64
  start-page: 694
  year: 2013
  end-page: 705
  article-title: An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions
  publication-title: Int J Heat Mass Transf
– volume: 56
  start-page: 375
  issue: 2
  year: 1972
  end-page: 400
  article-title: The hydrodynamic interaction of two small freely‐moving spheres in a linear flow field
  publication-title: J Fluid Mech
– volume: 7
  start-page: 512
  issue: 4
  year: 2014
  end-page: 523
  article-title: Modeling the sedimentation of red blood cells in flow under strong external magnetic body force using a lattice Boltzmann fictitious domain method
  publication-title: Numer Math Theory Methods Appl
– volume: 227
  start-page: 292
  issue: 1
  year: 2007
  end-page: 314
  article-title: A direct‐forcing fictitious domain method for particulate flows
  publication-title: J Comput Phys
– year: 2021
  article-title: Numerical study on flow field and pollutant dispersion in an ideal street canyon within a real tree model at different wind velocities
  publication-title: Comput Math Appl
– volume: 28
  start-page: 477
  issue: 1
  year: 1996
  end-page: 539
  article-title: Vortex dynamics in the cylinder wake
  publication-title: Annu Rev Fluid Mech
– volume: 11
  start-page: 479
  year: 2002
  end-page: 517
  article-title: The immersed boundary method
  publication-title: Acta Numerica
– volume: 230
  start-page: 2677
  issue: 7
  year: 2011
  end-page: 2695
  article-title: Sources of spurious force oscillations from an immersed boundary method for moving‐body problems
  publication-title: J Comput Phys
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 18
  article-title: Improving the accuracy of fictitious domain method using indicator function from volume intersection
  publication-title: Adv Math Phys
– volume: 189
  start-page: 351
  issue: 2
  year: 2003
  end-page: 370
  article-title: Numerical simulation of two‐dimensional flows over a circular cylinder using the immersed boundary method
  publication-title: J Comput Phys
– volume: 222
  start-page: 28
  issue: 1
  year: 2007
  end-page: 56
  article-title: Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows
  publication-title: J Comput Phys
– volume: 228
  start-page: 1504
  issue: 5
  year: 2009
  end-page: 1520
  article-title: Immersed boundary method for the simulation of 2D viscous flow based on vorticity–velocity formulations
  publication-title: J Comput Phys
– volume: 224
  start-page: 867
  issue: 2
  year: 2007
  end-page: 879
  article-title: A fictitious domain formulation for flows with rigid particles: a non‐Lagrange multiplier version
  publication-title: J Comput Phys
– volume: 209
  start-page: 448
  issue: 2
  year: 2005
  end-page: 476
  article-title: An immersed boundary method with direct forcing for the simulation of particulate flows
  publication-title: J Comput Phys
– volume: 30
  start-page: 1043
  issue: 8
  year: 1999
  end-page: 1066
  article-title: A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application to particulate flow
  publication-title: Int J Numer Methods Fluids
– volume: 151
  start-page: 181
  issue: 1–2
  year: 1998
  end-page: 194
  article-title: Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies
  publication-title: Comput Methods Appl Mech Eng
– volume: 376
  start-page: 1138
  year: 2019
  end-page: 1155
  article-title: A fluid–structure interaction study of soft robotic swimmer using a fictitious domain/active‐strain method
  publication-title: J Comput Phys
– volume: 205
  start-page: 439
  issue: 2
  year: 2005
  end-page: 457
  article-title: A fast computation technique for the direct numerical simulation of rigid particulate flows
  publication-title: J Comput Phys
– ident: e_1_2_7_49_1
  doi: 10.1016/j.jcp.2005.12.016
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jcp.2012.11.050
– ident: e_1_2_7_24_1
  doi: 10.1002/nme.5609
– volume: 10
  start-page: 160
  issue: 1
  year: 2016
  ident: e_1_2_7_22_1
  article-title: A parallel fictitious domain method for the interface‐resolved simulation of particle‐laden flows and its application to the turbulent channel flow
  publication-title: Eng Appl Comput Fluid Mech
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jcp.2012.04.012
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jcp.2006.06.002
– ident: e_1_2_7_37_1
  doi: 10.1016/j.compfluid.2011.12.006
– ident: e_1_2_7_48_1
  doi: 10.1016/S0021-9991(03)00214-6
– ident: e_1_2_7_31_1
  doi: 10.1017/S002211209800860X
– volume: 272
  start-page: 593
  year: 2016
  ident: e_1_2_7_3_1
  article-title: 3D numerical modeling of boiling in a microchannel by arbitrary Lagrangian–Eulerian (ALE) method
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2015.03.042
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jcp.2017.07.017
– ident: e_1_2_7_30_1
  doi: 10.1080/19942060.2019.1652209
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ijmultiphaseflow.2011.12.002
– ident: e_1_2_7_52_1
– ident: e_1_2_7_35_1
  doi: 10.1016/j.ijheatmasstransfer.2013.05.020
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jcp.2005.03.017
– ident: e_1_2_7_43_1
  doi: 10.1007/s11242-016-0729-4
– ident: e_1_2_7_41_1
  doi: 10.1016/j.ces.2011.08.025
– ident: e_1_2_7_56_1
  doi: 10.1017/S0022112072002927
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jnnfm.2006.03.015
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jcp.2007.03.005
– ident: e_1_2_7_40_1
  doi: 10.1145/1015706.1015733
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jcp.2011.01.004
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jcp.2013.09.015
– ident: e_1_2_7_23_1
  doi: 10.1016/j.cma.2017.01.023
– ident: e_1_2_7_44_1
  doi: 10.1016/0021-9991(86)90099-9
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jcp.2015.03.059
– ident: e_1_2_7_21_1
  doi: 10.4208/nmtma.2014.1306si
– ident: e_1_2_7_27_1
  doi: 10.1002/1097-0363(20000830)33:8<1121::AID-FLD45>3.0.CO;2-H
– ident: e_1_2_7_54_1
  doi: 10.1016/j.jcp.2007.01.026
– ident: e_1_2_7_50_1
  doi: 10.1016/j.jcp.2008.10.038
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jcp.2009.07.010
– year: 2021
  ident: e_1_2_7_26_1
  article-title: Numerical study on flow field and pollutant dispersion in an ideal street canyon within a real tree model at different wind velocities
  publication-title: Comput Math Appl
– ident: e_1_2_7_34_1
  doi: 10.1016/j.camwa.2016.01.024
– ident: e_1_2_7_7_1
  doi: 10.1017/S0962492902000077
– ident: e_1_2_7_8_1
  doi: 10.1016/S0045-7825(97)00116-3
– ident: e_1_2_7_10_1
  doi: 10.1002/(SICI)1097-0363(19990830)30:8<1043::AID-FLD879>3.0.CO;2-Y
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jcp.2018.10.015
– ident: e_1_2_7_32_1
  doi: 10.1006/jcph.2001.6778
– ident: e_1_2_7_38_1
  doi: 10.1016/j.jcp.2004.11.012
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ijheatmasstransfer.2013.11.017
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ijmultiphaseflow.2009.10.001
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jcp.2015.07.010
– ident: e_1_2_7_55_1
  doi: 10.1016/j.jcp.2006.10.028
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jcp.2011.06.003
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jcp.2007.07.027
– ident: e_1_2_7_9_1
  doi: 10.1016/S0301-9322(98)00048-2
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jcp.2012.09.038
– ident: e_1_2_7_2_1
  doi: 10.1016/j.mechmachtheory.2017.01.014
– ident: e_1_2_7_15_1
  doi: 10.1155/2019/5450313
– ident: e_1_2_7_51_1
  doi: 10.1016/j.jcp.2005.10.035
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ces.2019.01.033
– ident: e_1_2_7_42_1
  doi: 10.1016/j.powtec.2013.12.009
– ident: e_1_2_7_47_1
  doi: 10.1146/annurev.fl.28.010196.002401
– ident: e_1_2_7_53_1
  doi: 10.1016/S0377-0257(00)00189-0
SSID ssj0009283
Score 2.3399909
Snippet A consistent, sharp interface fully Eulerian fictitious domain method is proposed in this article for moving boundary problems. In this method, a collocated...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2065
SubjectTerms Algorithms
Circular cylinders
Collocation methods
Continuity equation
Cylinders
Domains
Drag coefficient
Drag coefficients
fictitious domain method
Finite volume method
Fluctuations
Flux
Magnetism
Mathematical analysis
Momentum
Momentum equation
moving boundary problems
Numerical prediction
OpenFOAM
Oscillations
polyhedral mesh
sharp interface
spurious force oscillations
Tests
Title A consistent sharp interface fictitious domain method for moving boundary problems with arbitrarily polyhedral mesh
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.4965
https://www.proquest.com/docview/2536827057
Volume 93
WOSCitedRecordID wos000627888800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfunnQg_Mnzl9EED1V27Rpm6Oow8MQEYXdSpImrLB10kxh_71Jm20KCoKnHppAyHsv-TZ9-TyA80SwMEqJ9FSUEC-SWHhc-r4XBZykOEnC3Bd1sYnk8TEdDOiTy6q0d2EaPsTiwM1GRr1e2wBnXF8voaFqlF9Z2PkqtLFx26gF7bvn3mt_idzFDYQTJ4HxBRrM0bM-vp73_b4ZLRXmV51abzS9zn-GuAWbTl6im8YftmFFljvQcVITuUDWO7DxhUO4C_oGCZsoayxeTpEesuoNWY5EpZiQSBUN0ehdo3wyZkWJmrLTyOhdNK5PJBCvqzNVM-QK1GhkD3gRq3hh7_UXI_NmMpoNZV6Z4Y2lHu7Ba-_-5fbBc9UYPBGaRcGLc5Iqe-9apRGVgWKW1cal-UATZounPM95zDgWKWNxTFiMOY2VTCiPApFKqcJ9aJWTUh4AUiEPqCJM2d96RFCacJ8Z6aly4zWYsC5czs2SCYcqtxUzRlkDWcaZmdnMzmwXzhYt3xo8xw9tjueWzVyA6gyTMDa-aNRqFy5qG_7aP-v17-zz8K8Nj2Ad28yXOqn3GFrT6l2ewJr4mBa6OnVu-glae-5X
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOgX1wXnFeY0g-lRt06Zt8EnUMXEOkQm-lSRNWGHrpJ2C396kl01BQfCpD00g5JyT_Hua_A7ASSCY64VEWsoLiOVJLCwubdvyHE5CHARubIui2ETQ64UvL_RxDi7ruzAlH2KacDORUazXJsBNQvpiRg1Vw_jc0M7nYcHTXkQasHDz1H7uzpi7uKRw4sDRzkCdmj1r44u67_fdaCYxvwrVYqdpN_81xjVYrQQmuio9Yh3mZLoBzUpsoiqU8w1Y-UIi3IT8CglzVFbbPJ2gfMCyV2RIEpliQiKVlEyjtxzF4xFLUlQWnkZa8aJRkZNAvKjPlH2gqkRNjkyKF7GMJ-ZmfzLUb8bDj4GMMz28kcwHW_Dcvu1fd6yqHoMlXL0sWH5MQmVuXqvQo9JRzNDauNSfaEJv8pTHMfcZxyJkzPcJ8zGnvpIB5Z4jQimVuw2NdJzKHUDK5Q5VhCnzY48ISgNuMy0-Vaz9BhPWgrPaLpGoYOWmZsYwKjHLONIzG5mZbcHxtOVrCej4oc1-bdqoCtE8wsT1tTdqvdqC08KIv_aP2t0b89z9a8MjWOr0H7pR9653vwfL2JyDKY747kNjkr3JA1gU75Mkzw4rn_0EltbyRw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ba9swFIcPXVNG-7CsN5ou2zQY65NbW7Zsiz6FZaZlIZTSQN-MrsSQOMFOC_3vK_mStNDCYE9-sARC5xzpZ_noOwA_I8H8ICbK0UFEnEBh4XDluk7gcRLjKPKlK6piE9F4HN_f05stuGzvwtR8iPWBm42Mar22Aa6WUl9sqKF6Js8t7fwDdAJCQxOVneFtMhltmLu4pnDiyDPOQL2WPevii7bv691oIzFfCtVqp0m6_zXGz_CpEZhoUHvEPmyp_AC6jdhETSiXB7D3gkR4COUACZsqa2yer1A5ZcUSWZJEoZlQSGc10-ihRHIxZ1mO6sLTyCheNK_OJBCv6jMVT6gpUVMie8SLWMEze7M_m5k3i9nTVMnCDG-uyukRTJI_d7-vnKYegyN8syw4oSSxtjevdRxQ5WlmaW1cmU80YTZ5yqXkIeNYxIyFIWEh5jTUKqI88ESslPaPYTtf5OoEkPa5RzVh2v7YI4LSiLvMiE8tjd9gwnpw1tolFQ2s3NbMmKU1ZhmnZmZTO7M9-LFuuawBHW-06bemTZsQLVNM_NB4o9GrPfhVGfHd_mkyGtrn6b82_A4fb4ZJOroe__0Cu9imwVQZvn3YXhUP6ivsiMdVVhbfGpd9BjeF8cI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+consistent+sharp+interface+fictitious+domain+method+for+moving+boundary+problems+with+arbitrarily+polyhedral+mesh&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Chai%2C+Guoliang&rft.au=Wang%2C+Le&rft.au=Gu%2C+Zhaolin&rft.au=Yu%2C+Chunlei&rft.date=2021-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=93&rft.issue=7&rft.spage=2065&rft.epage=2088&rft_id=info:doi/10.1002%2Ffld.4965&rft.externalDBID=10.1002%252Ffld.4965&rft.externalDocID=FLD4965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon