Blind Kalman Filtering for Short-Term Load Forecasting

In this work we address the problem of short-term load forecasting. We propose a generalization of the linear state-space model where the evolution of the state and the observation matrices is unknown. The proposed blind Kalman filter algorithm proceeds via alternating the estimation of these unknow...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on power systems Ročník 35; číslo 6; s. 4916 - 4919
Hlavní autoři: Sharma, Shalini, Majumdar, Angshul, Elvira, Victor, Chouzenoux, Emilie
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0885-8950, 1558-0679
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work we address the problem of short-term load forecasting. We propose a generalization of the linear state-space model where the evolution of the state and the observation matrices is unknown. The proposed blind Kalman filter algorithm proceeds via alternating the estimation of these unknown matrices and the inference of the state, within the framework of expectation-maximization. A mini-batch processing strategy is introduced to allow on-the-fly forecasting. The experimental results show that the proposed method outperforms the state-of-the-art techniques by a considerable margin, both on load profile estimation and peak load forecast problems.
AbstractList In this work we address the problem of short-term load forecasting. We propose a generalization of the linear state-space model where the evolution of the state and the observation matrices is unknown. The proposed blind Kalman filter algorithm proceeds via alternating the estimation of these unknown matrices and the inference of the state, within the framework of expectation-maximization. A mini-batch processing strategy is introduced to allow on-the-fly forecasting. The experimental results show that the proposed method outperforms the state-of-the-art techniques by a considerable margin, both on load profile estimation and peak load forecast problems.
Author Majumdar, Angshul
Chouzenoux, Emilie
Elvira, Victor
Sharma, Shalini
Author_xml – sequence: 1
  givenname: Shalini
  orcidid: 0000-0002-0787-2755
  surname: Sharma
  fullname: Sharma, Shalini
  email: shalinis@iiitd.ac.in
  organization: Indraprastha Institute of Information Technology, Delhi, India
– sequence: 2
  givenname: Angshul
  orcidid: 0000-0002-1065-3000
  surname: Majumdar
  fullname: Majumdar, Angshul
  email: angshul@iiitd.ac.in
  organization: Indraprastha Institute of Information Technology, Delhi, India
– sequence: 3
  givenname: Victor
  orcidid: 0000-0002-8967-4866
  surname: Elvira
  fullname: Elvira, Victor
  email: victor.elvira@ed.ac.uk
  organization: School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 4
  givenname: Emilie
  orcidid: 0000-0003-3631-6093
  surname: Chouzenoux
  fullname: Chouzenoux, Emilie
  email: emilie.chouzenoux@centralesupelec.fr
  organization: CVN, Inria Saclay, CentraleSupélec, Univ. Paris Saclay, Saint-Aubin, France
BackLink https://hal.science/hal-02921322$$DView record in HAL
BookMark eNp9kEFLAzEQhYNUsK3-Ab0sePKwdZJ0s8mxFmvFgmIrHkPcJDZlu6nZVPDfu-tKDx48Dbx5783wDVCv8pVB6BzDCGMQ16un1-fliACBEQXMGaFHqI-zjKfActFDfeA8S7nI4AQN6noDAKxZ9BG7KV2lkwdVblWVzFwZTXDVe2J9SJZrH2K6MmGbLLzSycwHU6g6NvtTdGxVWZuz3zlEL7Pb1XSeLh7v7qeTRVpQImJq7VgoorUFLShwVViRYaY0z81YmRy00pQVlDIwHBqZcQOZfbOGWpsXuaBDdNX1rlUpd8FtVfiSXjk5nyxkqwERBFNCPnHjvey8u-A_9qaOcuP3oWrek2ScsYzkjLUu0rmK4Os6GHuoxSBblvKHpWxZyl-WTYj_CRUuquh8FYNy5f_Riy7qjDGHWwLnlAmg3y1dgrU
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_egyr_2023_01_050
crossref_primary_10_1109_TPWRS_2024_3431880
crossref_primary_10_1049_gtd2_13273
crossref_primary_10_3390_en18051150
crossref_primary_10_1186_s13634_023_01068_1
crossref_primary_10_3390_electronics13010032
crossref_primary_10_1016_j_apenergy_2023_121052
crossref_primary_10_1016_j_egyr_2024_09_040
crossref_primary_10_1109_ACCESS_2021_3076313
crossref_primary_10_3390_pr13092986
crossref_primary_10_3390_electronics13142719
crossref_primary_10_3390_agronomy15092041
crossref_primary_10_3390_app15115912
crossref_primary_10_1016_j_energy_2025_137456
crossref_primary_10_1109_TIA_2022_3170385
crossref_primary_10_1007_s40031_021_00688_1
crossref_primary_10_1016_j_egyr_2025_01_067
crossref_primary_10_1109_TSP_2022_3209016
crossref_primary_10_7717_peerj_cs_1108
crossref_primary_10_32604_cmes_2023_043307
crossref_primary_10_1016_j_eswa_2023_122970
crossref_primary_10_1049_cth2_12129
crossref_primary_10_1109_TSG_2024_3368419
crossref_primary_10_1109_TVT_2023_3334192
crossref_primary_10_3390_en18133557
crossref_primary_10_1016_j_egyr_2022_09_068
crossref_primary_10_1109_TSTE_2023_3283525
crossref_primary_10_1016_j_engappai_2024_108007
crossref_primary_10_1016_j_apenergy_2022_118938
crossref_primary_10_1007_s40974_021_00224_3
crossref_primary_10_3390_a17100447
crossref_primary_10_1177_14727978251364415
crossref_primary_10_1016_j_ijepes_2023_109620
crossref_primary_10_3390_en15010147
crossref_primary_10_1016_j_apenergy_2022_119420
crossref_primary_10_1109_ACCESS_2023_3315591
crossref_primary_10_1109_TNNLS_2023_3259149
crossref_primary_10_48084_etasr_12043
crossref_primary_10_1007_s00202_025_03190_9
crossref_primary_10_1016_j_egyr_2024_08_078
crossref_primary_10_1109_JSYST_2023_3310548
crossref_primary_10_3390_en17112559
crossref_primary_10_1109_ACCESS_2022_3218374
crossref_primary_10_3390_electronics10202455
crossref_primary_10_3390_en16083497
crossref_primary_10_3390_en17010095
crossref_primary_10_7717_peerj_cs_1049
crossref_primary_10_1016_j_energy_2025_138411
crossref_primary_10_1016_j_ins_2022_10_129
crossref_primary_10_1109_TIA_2024_3375802
crossref_primary_10_1007_s42452_025_07681_z
crossref_primary_10_1080_21642583_2025_2486136
crossref_primary_10_3390_en16155825
crossref_primary_10_3390_en17205173
crossref_primary_10_1016_j_apenergy_2021_117992
crossref_primary_10_3390_biomimetics8080561
Cites_doi 10.1016/j.enbuild.2014.08.004
10.1109/TPWRS.2004.835679
10.1109/59.41700
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TBME.2007.894827
10.1109/TAES.2002.1008972
10.1016/j.energy.2017.07.150
10.1017/CBO9781139344203
10.1109/TSG.2018.2844307
10.1109/78.740104
10.1109/TSG.2017.2753802
10.1111/j.1467-9892.1982.tb00349.x
10.1109/TPWRS.2009.2030426
10.1115/1.3662552
10.1109/59.141695
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
1XC
VOOES
DOI 10.1109/TPWRS.2020.3018623
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-0679
EndPage 4919
ExternalDocumentID oai:HAL:hal-02921322v1
10_1109_TPWRS_2020_3018623
9173690
Genre orig-research
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR-17-CE40-0031-01; ANR-17-CE40-0004-01
  funderid: 10.13039/501100001665
– fundername: Infosys Center for Artificial Intelligence
– fundername: Indo-French
  grantid: DSTCNRS-2016-02 NextGenBP
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
1XC
VOOES
ID FETCH-LOGICAL-c329t-ff49a2ddf0d9308acf9516ad87e4ae70dad36c3360e80ad868e05fbfe3ff7c793
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583741500069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-8950
IngestDate Tue Oct 28 06:37:44 EDT 2025
Fri Jul 25 19:02:08 EDT 2025
Sat Nov 29 02:52:22 EST 2025
Tue Nov 18 22:34:45 EST 2025
Wed Aug 27 02:29:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords state-space model
Kalman filtering
expectation-minimization algorithm
load forecasting
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-ff49a2ddf0d9308acf9516ad87e4ae70dad36c3360e80ad868e05fbfe3ff7c793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0787-2755
0000-0003-3631-6093
0000-0002-8967-4866
0000-0002-1065-3000
OpenAccessLink https://hal.science/hal-02921322
PQID 2456527661
PQPubID 85441
PageCount 4
ParticipantIDs hal_primary_oai_HAL_hal_02921322v1
crossref_primary_10_1109_TPWRS_2020_3018623
proquest_journals_2456527661
crossref_citationtrail_10_1109_TPWRS_2020_3018623
ieee_primary_9173690
PublicationCentury 2000
PublicationDate 2020-Nov.
2020-11-00
20201101
2020-11
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref12
ref15
ref14
dempster (ref13) 1977; 39
ref11
ref10
launay (ref8) 2013; 154
ref2
ref1
ref16
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1016/j.enbuild.2014.08.004
– volume: 154
  start-page: 1
  year: 2013
  ident: ref8
  article-title: On particle filters applied to electricity load forecasting
  publication-title: Journal de la Société Française de Statistique
– ident: ref4
  doi: 10.1109/TPWRS.2004.835679
– ident: ref2
  doi: 10.1109/59.41700
– volume: 39
  start-page: 1
  year: 1977
  ident: ref13
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Royal Statistical Soc Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref15
  doi: 10.1109/TBME.2007.894827
– ident: ref16
  doi: 10.1109/TAES.2002.1008972
– ident: ref9
  doi: 10.1016/j.energy.2017.07.150
– ident: ref11
  doi: 10.1017/CBO9781139344203
– ident: ref5
  doi: 10.1109/TSG.2018.2844307
– ident: ref14
  doi: 10.1109/78.740104
– ident: ref6
  doi: 10.1109/TSG.2017.2753802
– ident: ref12
  doi: 10.1111/j.1467-9892.1982.tb00349.x
– ident: ref1
  doi: 10.1109/TPWRS.2009.2030426
– ident: ref7
  doi: 10.1115/1.3662552
– ident: ref3
  doi: 10.1109/59.141695
SSID ssj0006679
Score 2.6250472
Snippet In this work we address the problem of short-term load forecasting. We propose a generalization of the linear state-space model where the evolution of the...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4916
SubjectTerms Algorithms
Batch processing
Computer Science
Electric power
Engineering Sciences
expectation-minimization algorithm
Filtering algorithms
Forecasting
Kalman filtering
Kalman filters
Load forecasting
Load modeling
Machine Learning
Peak load
Signal and Image processing
State space models
State-space methods
state-space model
Title Blind Kalman Filtering for Short-Term Load Forecasting
URI https://ieeexplore.ieee.org/document/9173690
https://www.proquest.com/docview/2456527661
https://hal.science/hal-02921322
Volume 35
WOSCitedRecordID wos000583741500069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5a8aAH32J9sYg3jaabNY-jikWwiGhFb0s2D1qordjq73eS3S6KInhbshMIMzsz32zmAXColHHomC1BLXQkY54TrbQgiE1R5l5yTn0cNiFub-Xzs7prwHFdC-Oci8ln7iQ8xrt8Ozbv4VfZKYYWDKO5JjSFEGWtVm11OS_76kl5RqQ6o7MCGapOe3dP9w8YCqYYodI2Qnj2zQk1-yEFMs5W-WGQo5fpLP_vfCuwVKHJ5LwU_yo03GgNFr_0GFwHfoFA0iY3eviiR0lnEG7H8UWCYDV56CP4Jj00zkl3rG0S5nQaPQmZ0Bvw2LnqXV6TalgCMSxVU-J9pnRqradWMSq18YiduLZSuEw7Qa22jBvGOHWS4jKXDmVReMe8Fwa1dBPmRuOR24KksKkRwnpZ6IDXMs1422WF54LKIlO-Be0Z93JTdRIPAy2GeYwoqMojx_PA8bzieAuO6j2vZR-NP6kPUCg1YWiBfX3ezcMaTVUaIuiPdgvWgwhqqor7LdidyTCv9HGSx-vdVCAY2f591w4shAOUVYa7MDd9e3d7MG8-poPJ23781D4B3BHOwQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_UCtWH2taKZ7UupW82NbvZy8ejLR4nXg_RE30L2XygoHfinf79TrJ7i8Ui-LZkEwgzSeb3y2RmAH4oZT0aZkdwF3pSssCJUUYQxKao8yA5pyEVmxDDoby8VCcL8LONhfHep8dn_lf8TL58N7EP8apsH6kFQza3CO-6ZVnkdbRWe-5yXmfWk7JLpOrSeYgMVfujk4vTMySDBXJUmiOIZ_-YocWr-AgyVVd5cSQnO9Nbe9sMP8KHBk9mB_UC-AQLfvwZVp9lGVwH_huhpMuOzc2tGWe96-gfxx8ZwtXs7ArhNxnh8ZwNJsZlsVKnNdP4FvoLnPcOR3_6pCmXQCwr1IyEUCpTOBeoU4xKYwOiJ26cFL40XlBnHOOWMU69pNjMpUdtVMGzEITFfboBS-PJ2G9CVrnCCuGCrExEbKVhPPdlFbigsipV6EA-l562TS7xWNLiRidOQZVOEtdR4rqReAf22jF3dSaNV3t_R6W0HWMS7P7BQMc2WqgicujHvAPrUQVtr0b6Hdie61A3O3Kqk4O3EAhHtv4_ahfe90d_B3pwNDz-CitxMnXM4TYsze4f_A4s28fZ9fT-W1p2T8g90gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blind+Kalman+Filtering+for+Short-Term+Load+Forecasting&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Sharma%2C+Shalini&rft.au=Majumdar%2C+Angshul&rft.au=Victor%2C+Elvira&rft.au=Chouzenoux%2C+Emilie&rft.date=2020-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=35&rft.issue=6&rft.spage=4916&rft_id=info:doi/10.1109%2FTPWRS.2020.3018623&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon