A comprehensive evaluation of multicentric reliability of single-subject cortical morphological networks on traveling subjects
Despite the prevalence of research on single-subject cerebral morphological networks in recent years, whether they can offer a reliable way for multicentric studies remains largely unknown. Using two multicentric datasets of traveling subjects, this work systematically examined the inter-site test-r...
Uložené v:
| Vydané v: | Cerebral cortex (New York, N.Y. 1991) Ročník 33; číslo 14; s. 9003 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
05.07.2023
|
| Predmet: | |
| ISSN: | 1460-2199, 1460-2199 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Despite the prevalence of research on single-subject cerebral morphological networks in recent years, whether they can offer a reliable way for multicentric studies remains largely unknown. Using two multicentric datasets of traveling subjects, this work systematically examined the inter-site test-retest (TRT) reliabilities of single-subject cerebral morphological networks, and further evaluated the effects of several key factors. We found that most graph-based network measures exhibited fair to excellent reliabilities regardless of different analytical pipelines. Nevertheless, the reliabilities were affected by choices of morphological index (fractal dimension > sulcal depth > gyrification index > cortical thickness), brain parcellation (high-resolution > low-resolution), thresholding method (proportional > absolute), and network type (binarized > weighted). For the factor of similarity measure, its effects depended on the thresholding method used (absolute: Kullback-Leibler divergence > Jensen-Shannon divergence; proportional: Jensen-Shannon divergence > Kullback-Leibler divergence). Furthermore, longer data acquisition intervals and different scanner software versions significantly reduced the reliabilities. Finally, we showed that inter-site reliabilities were significantly lower than intra-site reliabilities for single-subject cerebral morphological networks. Altogether, our findings propose single-subject cerebral morphological networks as a promising approach for multicentric human connectome studies, and offer recommendations on how to determine analytical pipelines and scanning protocols for obtaining reliable results. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1460-2199 1460-2199 |
| DOI: | 10.1093/cercor/bhad178 |