DEXTRA: A Fast Algorithm for Optimization Over Directed Graphs
This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Exis...
Uložené v:
| Vydané v: | IEEE transactions on automatic control Ročník 62; číslo 10; s. 4980 - 4993 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2017
|
| Predmet: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Existing algorithms solve the problem restricted to directed graphs with convergence √ rates of O(ln k/ √k) for general convex objective functions and O(ln k/k) when the objective functions are strongly convex, where k is the number of iterations. We show that, with the appropriate step-size, DEXTRA converges at a linear rate O(τ k ) for 0 <; τ <; 1, given that the objective functions are restricted strongly convex. The implementation of DEXTRA requires each agent to know its local out-degree. Simulation examples further illustrate our findings. |
|---|---|
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2017.2672698 |