Exact and heuristic algorithms for parallel-machine scheduling with DeJong’s learning effect

We consider a parallel-machine scheduling problem with a learning effect and the makespan objective. The impact of the learning effect on job processing times is modelled by the general DeJong’s learning curve. For this NP -hard problem we propose two exact algorithms: a sequential branch-and-bound...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & industrial engineering Ročník 59; číslo 2; s. 272 - 279
Hlavní autori: Okołowski, Dariusz, Gawiejnowicz, Stanisław
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.09.2010
Predmet:
ISSN:0360-8352
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider a parallel-machine scheduling problem with a learning effect and the makespan objective. The impact of the learning effect on job processing times is modelled by the general DeJong’s learning curve. For this NP -hard problem we propose two exact algorithms: a sequential branch-and-bound algorithm and a parallel branch-and-bound algorithm. We also present the results of experimental evaluation of these algorithms on a computational cluster. Finally, we use the exact algorithms to estimate the performance of two greedy heuristic scheduling algorithms for the problem.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0360-8352
DOI:10.1016/j.cie.2010.04.008