Efficient Groebner walk conversion for implicitization of geometric objects
In this paper, the author uses recent theoretical results from the method of Groebner bases to improve the efficiency of algorithms for implicitization. The method of Groebner bases has some important advantages, namely it is reliable and it can solve the implicitization problem in full generality....
Saved in:
| Published in: | Computer aided geometric design Vol. 21; no. 9; pp. 837 - 857 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.11.2004
|
| Subjects: | |
| ISSN: | 0167-8396, 1879-2332 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, the author uses recent theoretical results from the method of Groebner bases to improve the efficiency of algorithms for implicitization. The method of Groebner bases has some important advantages, namely it is reliable and it can solve the implicitization problem in full generality.
The main result of this paper is that we can significantly improve the efficiency of implicitization algorithms using the deterministic Groebner walk conversion while maintaining the reliability of the algorithms. More precisely, the calculation of the implicit equations will be partitioned into several smaller computations following a path in the Groebner fan of the ideal generated by the system of equations. This method works with ideals of zero-dimension as well as positive dimension. The author uses a deterministic method to vary the weight vectors in order to ensure that the computation involves polynomials with just a few terms. A new concept of
ideal-specified term orders for elimination is introduced to further improve the efficiency. As the result, the improved algorithms overcome the bottle-neck of the traditional implicitization algorithms by avoiding unnecessary zero-reductions and coefficient swell. Furthermore, the improved algorithms are able to avoid many unnecessary walking steps during the calculation of the implicit equations.
Several test-suites such as the Newell's teapot are used to test the new approach. The average performance is many times faster than traditional Groebner basis based algorithms for implicitization. |
|---|---|
| AbstractList | In this paper, the author uses recent theoretical results from the method of Groebner bases to improve the efficiency of algorithms for implicitization. The method of Groebner bases has some important advantages, namely it is reliable and it can solve the implicitization problem in full generality.
The main result of this paper is that we can significantly improve the efficiency of implicitization algorithms using the deterministic Groebner walk conversion while maintaining the reliability of the algorithms. More precisely, the calculation of the implicit equations will be partitioned into several smaller computations following a path in the Groebner fan of the ideal generated by the system of equations. This method works with ideals of zero-dimension as well as positive dimension. The author uses a deterministic method to vary the weight vectors in order to ensure that the computation involves polynomials with just a few terms. A new concept of
ideal-specified term orders for elimination is introduced to further improve the efficiency. As the result, the improved algorithms overcome the bottle-neck of the traditional implicitization algorithms by avoiding unnecessary zero-reductions and coefficient swell. Furthermore, the improved algorithms are able to avoid many unnecessary walking steps during the calculation of the implicit equations.
Several test-suites such as the Newell's teapot are used to test the new approach. The average performance is many times faster than traditional Groebner basis based algorithms for implicitization. In this paper, the author uses recent theoretical results from the method of Groebner bases to improve the efficiency of algorithms for implicitization. The method of Groebner bases has some important advantages, namely it is reliable and it can solve the implicitization problem in full generality. The main result of this paper is that we can significantly improve the efficiency of implicitization algorithms using the deterministic Groebner walk conversion while maintaining the reliability of the algorithms. More precisely, the calculation of the implicit equations will be partitioned into several smaller computations following a path in the Groebner fan of the ideal generated by the system of equations. This method works with ideals of zero-dimension as well as positive dimension. The author uses a deterministic method to vary the weight vectors in order to ensure that the computation involves polynomials with just a few terms. A new concept of ideal-specified term orders for elimination is introduced to further improve the efficiency. As the result, the improved algorithms overcome the bottle-neck of the traditional implicitization algorithms by avoiding unnecessary zero-reductions and coefficient swell. Furthermore, the improved algorithms are able to avoid many unnecessary walking steps during the calculation of the implicit equations. Several test-suites such as the Newell's teapot are used to test the new approach. The average performance is many times faster than traditional Groebner basis based algorithms for implicitization. |
| Author | Tran, Quoc-Nam |
| Author_xml | – sequence: 1 givenname: Quoc-Nam surname: Tran fullname: Tran, Quoc-Nam email: tranqn@hal.lamar.edu organization: Department of Computer Science, Lamar University, USA |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2DKxJbgjzSOJRZUlYKoxAKz5VzOlUsaFzstgl9PQpkYOp10ep_Tvc-EjFrfIiHXjGaMsuJ2k4FZ1xmnNM-ozChlZ2TMSqlSLgQfkXEfkmkpVHFBJjFuKKWcqWJMnhfWOnDYdskyeKxaDMmnad4T8O0BQ3S-TawPidvumj7XuW_TDTtvkzX6LXbBQeKrDUIXL8m5NU3Eq785JW8Pi9f5Y7p6WT7N71cpCK661BhAYyXF3CpgtlIVr4ScSVuKnFdolLBGQg3G5mCKArioAUtZUTsDYCWIKbk53t0F_7HH2Omti4BNY1r0-6h5yQql1KwPlscgBB9jQKv7Br__d8G4RjOqB3t6owd7erCnqdS9vR7l_9BdcFsTvk5Dd0cI-_YHh0HHQS1g7UIvSNfencJ_AIG1jds |
| CitedBy_id | crossref_primary_10_1016_j_tcs_2007_10_003 crossref_primary_10_1016_j_amc_2012_08_039 crossref_primary_10_1016_j_jsc_2013_04_003 crossref_primary_10_3390_sym15091738 |
| Cites_doi | 10.1016/0167-8396(92)90051-P 10.1006/jsco.1996.0015 10.1016/S0747-7171(88)80042-7 10.1109/38.180121 10.1016/S0167-8396(98)00014-4 10.1016/S0747-7171(03)00064-6 10.1016/0734-189X(84)90140-3 10.1006/jsco.1996.0145 10.1109/MCG.1987.277023 10.1016/0166-218X(91)90105-6 10.1006/jsco.1996.0056 10.1006/jsco.1999.0416 10.1137/0219053 10.1016/S0167-8396(01)00012-7 |
| ContentType | Journal Article |
| Copyright | 2004 Elsevier B.V. |
| Copyright_xml | – notice: 2004 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cagd.2004.07.001 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1879-2332 |
| EndPage | 857 |
| ExternalDocumentID | 10_1016_j_cagd_2004_07_001 S0167839604000755 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6OB 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMJ HVGLF HZ~ IHE J1W K-O KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SME SPC SPCBC SSV SSW SSZ T5K TN5 UHS WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c329t-aaceaf70e4f9c1fb9b2b3757f8342bea93fa7cdcaf4ca66c23dce87b0f5cc18c3 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000225013700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-8396 |
| IngestDate | Sat Sep 27 17:07:57 EDT 2025 Sat Nov 29 03:38:41 EST 2025 Tue Nov 18 21:33:56 EST 2025 Fri Feb 23 02:29:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Groebner bases Implicitization |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c329t-aaceaf70e4f9c1fb9b2b3757f8342bea93fa7cdcaf4ca66c23dce87b0f5cc18c3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 28169995 |
| PQPubID | 23500 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_28169995 crossref_citationtrail_10_1016_j_cagd_2004_07_001 crossref_primary_10_1016_j_cagd_2004_07_001 elsevier_sciencedirect_doi_10_1016_j_cagd_2004_07_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2004-11-01 |
| PublicationDateYYYYMMDD | 2004-11-01 |
| PublicationDate_xml | – month: 11 year: 2004 text: 2004-11-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Computer aided geometric design |
| PublicationYear | 2004 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Fix, Hsu, Luo (bib014) 1996; 21 Mora, Robbiano (bib019) 1988; 6 van der Waerden (bib025) 1940 Caniglia, Galligo, Heintz (bib005) 1991; 33 Sederberg, Chen (bib021) 1995 Collart, Kalkbrener, Mall (bib008) 1997; 24 Crow (bib011) 1987; 7 Chen, Zheng, Sederberg (bib007) 2001 Hoffmann (bib016) 1989 Arnon, Sederberg (bib001) 1984 Tran (bib023) 2000; 30 Buchberger (bib003) 1985 Hoffmann (bib015) 1993; 13 Dubé (bib012) 1990; 19 Kalkbrener (bib017) 1990; vol. 508 Traverso (bib024) 1996; 22 Buchberger B., June 1986. What can Groebner bases do for computational geometry and robotics, In: Proc. Workshop on Geometric Reasoning, Oxford, England Chen, Wang (bib006) 2003; 36 Eisenbud (bib013) 1995; vol. 150 Sederberg, Anderson (bib022) 1984; 28 Robbiano (bib020) 1985; vol. 204 Cox, Sederberg, Chen (bib010) 1998 Manocha, Canny (bib018) 1992; 9 Cox, Little, O'Shea (bib009) 1996 Buchberger, B., 1965. An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal. Ph.D. Thesis, Institute of Mathematics, Univ. Innsbruck, Innsbruck, Austria (in German) Robbiano (10.1016/j.cagd.2004.07.001_bib020) 1985; vol. 204 Sederberg (10.1016/j.cagd.2004.07.001_bib021) 1995 Eisenbud (10.1016/j.cagd.2004.07.001_bib013) 1995; vol. 150 10.1016/j.cagd.2004.07.001_bib002 Hoffmann (10.1016/j.cagd.2004.07.001_bib015) 1993; 13 10.1016/j.cagd.2004.07.001_bib004 Chen (10.1016/j.cagd.2004.07.001_bib007) 2001 Sederberg (10.1016/j.cagd.2004.07.001_bib022) 1984; 28 Crow (10.1016/j.cagd.2004.07.001_bib011) 1987; 7 Traverso (10.1016/j.cagd.2004.07.001_bib024) 1996; 22 Arnon (10.1016/j.cagd.2004.07.001_bib001) 1984 Chen (10.1016/j.cagd.2004.07.001_bib006) 2003; 36 van der Waerden (10.1016/j.cagd.2004.07.001_bib025) 1940 Cox (10.1016/j.cagd.2004.07.001_bib010) 1998 Collart (10.1016/j.cagd.2004.07.001_bib008) 1997; 24 Dubé (10.1016/j.cagd.2004.07.001_bib012) 1990; 19 Mora (10.1016/j.cagd.2004.07.001_bib019) 1988; 6 Kalkbrener (10.1016/j.cagd.2004.07.001_bib017) 1990; vol. 508 Manocha (10.1016/j.cagd.2004.07.001_bib018) 1992; 9 Hoffmann (10.1016/j.cagd.2004.07.001_bib016) 1989 Buchberger (10.1016/j.cagd.2004.07.001_bib003) 1985 Tran (10.1016/j.cagd.2004.07.001_bib023) 2000; 30 Fix (10.1016/j.cagd.2004.07.001_bib014) 1996; 21 Cox (10.1016/j.cagd.2004.07.001_bib009) 1996 Caniglia (10.1016/j.cagd.2004.07.001_bib005) 1991; 33 |
| References_xml | – year: 1995 ident: bib021 article-title: Implicitization using moving curves and surfaces publication-title: Proc. Siggraph. ACM – volume: 28 start-page: 72 year: 1984 end-page: 84 ident: bib022 article-title: Implicit representation of parametric curves and surfaces publication-title: Computer Vison, Graphics and Image Processing – volume: 22 start-page: 355 year: 1996 end-page: 376 ident: bib024 article-title: Hilbert functions and the Buchberger algorithm publication-title: J. Symbolic Comput. – volume: 33 start-page: 11 year: 1991 end-page: 23 ident: bib005 article-title: Equations for the projective closure and effective nullstellensatz publication-title: Discrete Appl. Math. – volume: 9 start-page: 25 year: 1992 end-page: 51 ident: bib018 article-title: Algorithm for implicitizing rational parametric surfaces publication-title: Comput. Aided Geom. Design – start-page: 184 year: 1985 end-page: 232 ident: bib003 article-title: Groebner Bases: An algorithmic method in polynomial ideal theory publication-title: Multidimensional Systems Theory – year: 1940 ident: bib025 article-title: Moderne Algebra, vol. 2 – year: 1998 ident: bib010 article-title: The moving line ideal basis of planar rational curves publication-title: Comput. Aided Geom. Design – volume: 21 start-page: 329 year: 1996 end-page: 336 ident: bib014 article-title: Implicitization of rational parametric surfaces publication-title: J. Symbolic Comput. – volume: 19 start-page: 750 year: 1990 end-page: 773 ident: bib012 article-title: The structure of polynomial ideals and Groebner bases publication-title: SIAM J. Comput. – volume: 6 start-page: 183 year: 1988 end-page: 208 ident: bib019 article-title: The Groebner fan of an ideal publication-title: J. Symbolic Comput. – start-page: 431 year: 1984 end-page: 436 ident: bib001 article-title: Implicit equation for a parametric surface by Groebner basis publication-title: Proc. 1984 MACSYMA User's Conf. Schenectady, New York, USA – volume: vol. 204 start-page: 513 year: 1985 end-page: 517 ident: bib020 article-title: Term orderings on the polynomial ring publication-title: Proceedings of EUROCAL '85 – volume: 36 start-page: 699 year: 2003 end-page: 716 ident: bib006 article-title: Revisiting the publication-title: J. Symbolic Comput. – volume: vol. 150 year: 1995 ident: bib013 article-title: Commutative Algebra with a View Towards Algebraic Geometry publication-title: Graduate Texts in Math. – volume: 7 start-page: 8 year: 1987 end-page: 19 ident: bib011 article-title: The origins of the teapot publication-title: IEEE Comput. Graphics Appl. – year: 2001 ident: bib007 article-title: The mu-basis of a rational ruled surface publication-title: Comput. Aided Geom. Design – volume: 24 start-page: 465 year: 1997 end-page: 469 ident: bib008 article-title: Converting bases with the Groebner walk publication-title: J. Symbolic Comput. – year: 1996 ident: bib009 article-title: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra publication-title: Undergraduate Texts in Mathematics – volume: 13 start-page: 79 year: 1993 end-page: 88 ident: bib015 article-title: Implicit curves and surfaces in CAGD publication-title: IEEE Comput. Graph. Appl. – volume: vol. 508 year: 1990 ident: bib017 article-title: Implicitization of rational curves and surfaces publication-title: AAECC-8, Tokyo, Japan – year: 1989 ident: bib016 article-title: Geometric and Solid Modeling—An Introduction – reference: Buchberger B., June 1986. What can Groebner bases do for computational geometry and robotics, In: Proc. Workshop on Geometric Reasoning, Oxford, England – volume: 30 start-page: 451 year: 2000 end-page: 468 ident: bib023 article-title: A fast algorithm for Groebner basis conversion and its applications publication-title: J. Symbolic Comput. – reference: Buchberger, B., 1965. An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal. Ph.D. Thesis, Institute of Mathematics, Univ. Innsbruck, Innsbruck, Austria (in German) – volume: 9 start-page: 25 issue: 1 year: 1992 ident: 10.1016/j.cagd.2004.07.001_bib018 article-title: Algorithm for implicitizing rational parametric surfaces publication-title: Comput. Aided Geom. Design doi: 10.1016/0167-8396(92)90051-P – year: 1940 ident: 10.1016/j.cagd.2004.07.001_bib025 – volume: 21 start-page: 329 year: 1996 ident: 10.1016/j.cagd.2004.07.001_bib014 article-title: Implicitization of rational parametric surfaces publication-title: J. Symbolic Comput. doi: 10.1006/jsco.1996.0015 – volume: 6 start-page: 183 year: 1988 ident: 10.1016/j.cagd.2004.07.001_bib019 article-title: The Groebner fan of an ideal publication-title: J. Symbolic Comput. doi: 10.1016/S0747-7171(88)80042-7 – volume: 13 start-page: 79 year: 1993 ident: 10.1016/j.cagd.2004.07.001_bib015 article-title: Implicit curves and surfaces in CAGD publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/38.180121 – year: 1998 ident: 10.1016/j.cagd.2004.07.001_bib010 article-title: The moving line ideal basis of planar rational curves publication-title: Comput. Aided Geom. Design doi: 10.1016/S0167-8396(98)00014-4 – ident: 10.1016/j.cagd.2004.07.001_bib002 – volume: 36 start-page: 699 year: 2003 ident: 10.1016/j.cagd.2004.07.001_bib006 article-title: Revisiting the μ-basis of a rational ruled surface publication-title: J. Symbolic Comput. doi: 10.1016/S0747-7171(03)00064-6 – ident: 10.1016/j.cagd.2004.07.001_bib004 – volume: 28 start-page: 72 year: 1984 ident: 10.1016/j.cagd.2004.07.001_bib022 article-title: Implicit representation of parametric curves and surfaces publication-title: Computer Vison, Graphics and Image Processing doi: 10.1016/0734-189X(84)90140-3 – volume: vol. 150 year: 1995 ident: 10.1016/j.cagd.2004.07.001_bib013 article-title: Commutative Algebra with a View Towards Algebraic Geometry – volume: 24 start-page: 465 issue: 3/4 year: 1997 ident: 10.1016/j.cagd.2004.07.001_bib008 article-title: Converting bases with the Groebner walk publication-title: J. Symbolic Comput. doi: 10.1006/jsco.1996.0145 – year: 1989 ident: 10.1016/j.cagd.2004.07.001_bib016 – volume: 7 start-page: 8 issue: 1 year: 1987 ident: 10.1016/j.cagd.2004.07.001_bib011 article-title: The origins of the teapot publication-title: IEEE Comput. Graphics Appl. doi: 10.1109/MCG.1987.277023 – volume: 33 start-page: 11 year: 1991 ident: 10.1016/j.cagd.2004.07.001_bib005 article-title: Equations for the projective closure and effective nullstellensatz publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(91)90105-6 – start-page: 184 year: 1985 ident: 10.1016/j.cagd.2004.07.001_bib003 article-title: Groebner Bases: An algorithmic method in polynomial ideal theory – volume: 22 start-page: 355 year: 1996 ident: 10.1016/j.cagd.2004.07.001_bib024 article-title: Hilbert functions and the Buchberger algorithm publication-title: J. Symbolic Comput. doi: 10.1006/jsco.1996.0056 – year: 1996 ident: 10.1016/j.cagd.2004.07.001_bib009 article-title: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra – volume: vol. 508 year: 1990 ident: 10.1016/j.cagd.2004.07.001_bib017 article-title: Implicitization of rational curves and surfaces – volume: 30 start-page: 451 year: 2000 ident: 10.1016/j.cagd.2004.07.001_bib023 article-title: A fast algorithm for Groebner basis conversion and its applications publication-title: J. Symbolic Comput. doi: 10.1006/jsco.1999.0416 – volume: 19 start-page: 750 issue: 4 year: 1990 ident: 10.1016/j.cagd.2004.07.001_bib012 article-title: The structure of polynomial ideals and Groebner bases publication-title: SIAM J. Comput. doi: 10.1137/0219053 – year: 2001 ident: 10.1016/j.cagd.2004.07.001_bib007 article-title: The mu-basis of a rational ruled surface publication-title: Comput. Aided Geom. Design doi: 10.1016/S0167-8396(01)00012-7 – start-page: 431 year: 1984 ident: 10.1016/j.cagd.2004.07.001_bib001 article-title: Implicit equation for a parametric surface by Groebner basis – year: 1995 ident: 10.1016/j.cagd.2004.07.001_bib021 article-title: Implicitization using moving curves and surfaces – volume: vol. 204 start-page: 513 year: 1985 ident: 10.1016/j.cagd.2004.07.001_bib020 article-title: Term orderings on the polynomial ring |
| SSID | ssj0002196 |
| Score | 1.7121271 |
| Snippet | In this paper, the author uses recent theoretical results from the method of Groebner bases to improve the efficiency of algorithms for implicitization. The... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 837 |
| SubjectTerms | Groebner bases Implicitization |
| Title | Efficient Groebner walk conversion for implicitization of geometric objects |
| URI | https://dx.doi.org/10.1016/j.cagd.2004.07.001 https://www.proquest.com/docview/28169995 |
| Volume | 21 |
| WOSCitedRecordID | wos000225013700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2332 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002196 issn: 0167-8396 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9Rnj5wW0VKYiexj1W1QHmsQBS0t8ixnWrLNqn20fbnMxPb6e5WVIDExUqiOLHyjcfjycw3hLxRSJOmYx2BLVDDBsWoCJYhAY01MdeSyy5A9senYjwWk4n8MhgchlyY81nRNOLyUp79V6jhGoCNqbN_AXf_ULgAxwA6tAA7tH8E_KgjhcBf_O_mra0aOx9eqNlPF1_eOce60MJpF0o-Xfo8TDQaj217igW29LCt0D2zWLdcQ_mHIXJKmrV7zUYMCK59CNvXVaujsTrd8Cpwn17Xu7qupbs47yNoVbCoPHe105iikFHK2IZKdUnPXnTkmn4UjuElLLWOm_qaFncOhRPYoR93ZK6841f1w9tkx_6GY8IhoTIC8ye7RXbTIpOgo3f3D0eTD_2yDKo5D0Tv2MFnULlgv-03_c5K2VqvOyPk6D6553cPdN-h_oAMbPOQ3F3jlISzzz0R7-IR-dhLAw3SQFEa6JU0UJAGuiUNtK1pjzD10vCYfH87Ojp4H_n6GZFmqVxGSmmr6iK2vJY6qStZpRUrYE4KxtPKKslqVWijVc21ynOdMqOtKKq4zrSGGcyekJ2mbexTQqVlmqecmVxxbkwuDNjNiRRYD6EqdLZHkvC9Su3J5bHGyawMUYQnJX5jrHrKyxhjHpI9Muz7nDlqlRvvzgIMpTcOndFXgtTc2O91wKwEzYm_w1Rj29WiTEWSw_Yoe_aPT35O7lzNnBdkZzlf2Zfktj5fThfzV178fgE-H5Xq |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Groebner+walk+conversion+for+implicitization+of+geometric+objects&rft.jtitle=Computer+aided+geometric+design&rft.au=Tran%2C+Quoc-Nam&rft.date=2004-11-01&rft.pub=Elsevier+B.V&rft.issn=0167-8396&rft.eissn=1879-2332&rft.volume=21&rft.issue=9&rft.spage=837&rft.epage=857&rft_id=info:doi/10.1016%2Fj.cagd.2004.07.001&rft.externalDocID=S0167839604000755 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8396&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8396&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8396&client=summon |