Efficient Groebner walk conversion for implicitization of geometric objects

In this paper, the author uses recent theoretical results from the method of Groebner bases to improve the efficiency of algorithms for implicitization. The method of Groebner bases has some important advantages, namely it is reliable and it can solve the implicitization problem in full generality....

Full description

Saved in:
Bibliographic Details
Published in:Computer aided geometric design Vol. 21; no. 9; pp. 837 - 857
Main Author: Tran, Quoc-Nam
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2004
Subjects:
ISSN:0167-8396, 1879-2332
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, the author uses recent theoretical results from the method of Groebner bases to improve the efficiency of algorithms for implicitization. The method of Groebner bases has some important advantages, namely it is reliable and it can solve the implicitization problem in full generality. The main result of this paper is that we can significantly improve the efficiency of implicitization algorithms using the deterministic Groebner walk conversion while maintaining the reliability of the algorithms. More precisely, the calculation of the implicit equations will be partitioned into several smaller computations following a path in the Groebner fan of the ideal generated by the system of equations. This method works with ideals of zero-dimension as well as positive dimension. The author uses a deterministic method to vary the weight vectors in order to ensure that the computation involves polynomials with just a few terms. A new concept of ideal-specified term orders for elimination is introduced to further improve the efficiency. As the result, the improved algorithms overcome the bottle-neck of the traditional implicitization algorithms by avoiding unnecessary zero-reductions and coefficient swell. Furthermore, the improved algorithms are able to avoid many unnecessary walking steps during the calculation of the implicit equations. Several test-suites such as the Newell's teapot are used to test the new approach. The average performance is many times faster than traditional Groebner basis based algorithms for implicitization.
AbstractList In this paper, the author uses recent theoretical results from the method of Groebner bases to improve the efficiency of algorithms for implicitization. The method of Groebner bases has some important advantages, namely it is reliable and it can solve the implicitization problem in full generality. The main result of this paper is that we can significantly improve the efficiency of implicitization algorithms using the deterministic Groebner walk conversion while maintaining the reliability of the algorithms. More precisely, the calculation of the implicit equations will be partitioned into several smaller computations following a path in the Groebner fan of the ideal generated by the system of equations. This method works with ideals of zero-dimension as well as positive dimension. The author uses a deterministic method to vary the weight vectors in order to ensure that the computation involves polynomials with just a few terms. A new concept of ideal-specified term orders for elimination is introduced to further improve the efficiency. As the result, the improved algorithms overcome the bottle-neck of the traditional implicitization algorithms by avoiding unnecessary zero-reductions and coefficient swell. Furthermore, the improved algorithms are able to avoid many unnecessary walking steps during the calculation of the implicit equations. Several test-suites such as the Newell's teapot are used to test the new approach. The average performance is many times faster than traditional Groebner basis based algorithms for implicitization.
In this paper, the author uses recent theoretical results from the method of Groebner bases to improve the efficiency of algorithms for implicitization. The method of Groebner bases has some important advantages, namely it is reliable and it can solve the implicitization problem in full generality. The main result of this paper is that we can significantly improve the efficiency of implicitization algorithms using the deterministic Groebner walk conversion while maintaining the reliability of the algorithms. More precisely, the calculation of the implicit equations will be partitioned into several smaller computations following a path in the Groebner fan of the ideal generated by the system of equations. This method works with ideals of zero-dimension as well as positive dimension. The author uses a deterministic method to vary the weight vectors in order to ensure that the computation involves polynomials with just a few terms. A new concept of ideal-specified term orders for elimination is introduced to further improve the efficiency. As the result, the improved algorithms overcome the bottle-neck of the traditional implicitization algorithms by avoiding unnecessary zero-reductions and coefficient swell. Furthermore, the improved algorithms are able to avoid many unnecessary walking steps during the calculation of the implicit equations. Several test-suites such as the Newell's teapot are used to test the new approach. The average performance is many times faster than traditional Groebner basis based algorithms for implicitization.
Author Tran, Quoc-Nam
Author_xml – sequence: 1
  givenname: Quoc-Nam
  surname: Tran
  fullname: Tran, Quoc-Nam
  email: tranqn@hal.lamar.edu
  organization: Department of Computer Science, Lamar University, USA
BookMark eNp9kD1PwzAQhi1UJNrCH2DKxJbgjzSOJRZUlYKoxAKz5VzOlUsaFzstgl9PQpkYOp10ep_Tvc-EjFrfIiHXjGaMsuJ2k4FZ1xmnNM-ozChlZ2TMSqlSLgQfkXEfkmkpVHFBJjFuKKWcqWJMnhfWOnDYdskyeKxaDMmnad4T8O0BQ3S-TawPidvumj7XuW_TDTtvkzX6LXbBQeKrDUIXL8m5NU3Eq785JW8Pi9f5Y7p6WT7N71cpCK661BhAYyXF3CpgtlIVr4ScSVuKnFdolLBGQg3G5mCKArioAUtZUTsDYCWIKbk53t0F_7HH2Omti4BNY1r0-6h5yQql1KwPlscgBB9jQKv7Br__d8G4RjOqB3t6owd7erCnqdS9vR7l_9BdcFsTvk5Dd0cI-_YHh0HHQS1g7UIvSNfencJ_AIG1jds
CitedBy_id crossref_primary_10_1016_j_tcs_2007_10_003
crossref_primary_10_1016_j_amc_2012_08_039
crossref_primary_10_1016_j_jsc_2013_04_003
crossref_primary_10_3390_sym15091738
Cites_doi 10.1016/0167-8396(92)90051-P
10.1006/jsco.1996.0015
10.1016/S0747-7171(88)80042-7
10.1109/38.180121
10.1016/S0167-8396(98)00014-4
10.1016/S0747-7171(03)00064-6
10.1016/0734-189X(84)90140-3
10.1006/jsco.1996.0145
10.1109/MCG.1987.277023
10.1016/0166-218X(91)90105-6
10.1006/jsco.1996.0056
10.1006/jsco.1999.0416
10.1137/0219053
10.1016/S0167-8396(01)00012-7
ContentType Journal Article
Copyright 2004 Elsevier B.V.
Copyright_xml – notice: 2004 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cagd.2004.07.001
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1879-2332
EndPage 857
ExternalDocumentID 10_1016_j_cagd_2004_07_001
S0167839604000755
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c329t-aaceaf70e4f9c1fb9b2b3757f8342bea93fa7cdcaf4ca66c23dce87b0f5cc18c3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000225013700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8396
IngestDate Sat Sep 27 17:07:57 EDT 2025
Sat Nov 29 03:38:41 EST 2025
Tue Nov 18 21:33:56 EST 2025
Fri Feb 23 02:29:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Groebner bases
Implicitization
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-aaceaf70e4f9c1fb9b2b3757f8342bea93fa7cdcaf4ca66c23dce87b0f5cc18c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28169995
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_28169995
crossref_citationtrail_10_1016_j_cagd_2004_07_001
crossref_primary_10_1016_j_cagd_2004_07_001
elsevier_sciencedirect_doi_10_1016_j_cagd_2004_07_001
PublicationCentury 2000
PublicationDate 2004-11-01
PublicationDateYYYYMMDD 2004-11-01
PublicationDate_xml – month: 11
  year: 2004
  text: 2004-11-01
  day: 01
PublicationDecade 2000
PublicationTitle Computer aided geometric design
PublicationYear 2004
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fix, Hsu, Luo (bib014) 1996; 21
Mora, Robbiano (bib019) 1988; 6
van der Waerden (bib025) 1940
Caniglia, Galligo, Heintz (bib005) 1991; 33
Sederberg, Chen (bib021) 1995
Collart, Kalkbrener, Mall (bib008) 1997; 24
Crow (bib011) 1987; 7
Chen, Zheng, Sederberg (bib007) 2001
Hoffmann (bib016) 1989
Arnon, Sederberg (bib001) 1984
Tran (bib023) 2000; 30
Buchberger (bib003) 1985
Hoffmann (bib015) 1993; 13
Dubé (bib012) 1990; 19
Kalkbrener (bib017) 1990; vol. 508
Traverso (bib024) 1996; 22
Buchberger B., June 1986. What can Groebner bases do for computational geometry and robotics, In: Proc. Workshop on Geometric Reasoning, Oxford, England
Chen, Wang (bib006) 2003; 36
Eisenbud (bib013) 1995; vol. 150
Sederberg, Anderson (bib022) 1984; 28
Robbiano (bib020) 1985; vol. 204
Cox, Sederberg, Chen (bib010) 1998
Manocha, Canny (bib018) 1992; 9
Cox, Little, O'Shea (bib009) 1996
Buchberger, B., 1965. An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal. Ph.D. Thesis, Institute of Mathematics, Univ. Innsbruck, Innsbruck, Austria (in German)
Robbiano (10.1016/j.cagd.2004.07.001_bib020) 1985; vol. 204
Sederberg (10.1016/j.cagd.2004.07.001_bib021) 1995
Eisenbud (10.1016/j.cagd.2004.07.001_bib013) 1995; vol. 150
10.1016/j.cagd.2004.07.001_bib002
Hoffmann (10.1016/j.cagd.2004.07.001_bib015) 1993; 13
10.1016/j.cagd.2004.07.001_bib004
Chen (10.1016/j.cagd.2004.07.001_bib007) 2001
Sederberg (10.1016/j.cagd.2004.07.001_bib022) 1984; 28
Crow (10.1016/j.cagd.2004.07.001_bib011) 1987; 7
Traverso (10.1016/j.cagd.2004.07.001_bib024) 1996; 22
Arnon (10.1016/j.cagd.2004.07.001_bib001) 1984
Chen (10.1016/j.cagd.2004.07.001_bib006) 2003; 36
van der Waerden (10.1016/j.cagd.2004.07.001_bib025) 1940
Cox (10.1016/j.cagd.2004.07.001_bib010) 1998
Collart (10.1016/j.cagd.2004.07.001_bib008) 1997; 24
Dubé (10.1016/j.cagd.2004.07.001_bib012) 1990; 19
Mora (10.1016/j.cagd.2004.07.001_bib019) 1988; 6
Kalkbrener (10.1016/j.cagd.2004.07.001_bib017) 1990; vol. 508
Manocha (10.1016/j.cagd.2004.07.001_bib018) 1992; 9
Hoffmann (10.1016/j.cagd.2004.07.001_bib016) 1989
Buchberger (10.1016/j.cagd.2004.07.001_bib003) 1985
Tran (10.1016/j.cagd.2004.07.001_bib023) 2000; 30
Fix (10.1016/j.cagd.2004.07.001_bib014) 1996; 21
Cox (10.1016/j.cagd.2004.07.001_bib009) 1996
Caniglia (10.1016/j.cagd.2004.07.001_bib005) 1991; 33
References_xml – year: 1995
  ident: bib021
  article-title: Implicitization using moving curves and surfaces
  publication-title: Proc. Siggraph. ACM
– volume: 28
  start-page: 72
  year: 1984
  end-page: 84
  ident: bib022
  article-title: Implicit representation of parametric curves and surfaces
  publication-title: Computer Vison, Graphics and Image Processing
– volume: 22
  start-page: 355
  year: 1996
  end-page: 376
  ident: bib024
  article-title: Hilbert functions and the Buchberger algorithm
  publication-title: J. Symbolic Comput.
– volume: 33
  start-page: 11
  year: 1991
  end-page: 23
  ident: bib005
  article-title: Equations for the projective closure and effective nullstellensatz
  publication-title: Discrete Appl. Math.
– volume: 9
  start-page: 25
  year: 1992
  end-page: 51
  ident: bib018
  article-title: Algorithm for implicitizing rational parametric surfaces
  publication-title: Comput. Aided Geom. Design
– start-page: 184
  year: 1985
  end-page: 232
  ident: bib003
  article-title: Groebner Bases: An algorithmic method in polynomial ideal theory
  publication-title: Multidimensional Systems Theory
– year: 1940
  ident: bib025
  article-title: Moderne Algebra, vol. 2
– year: 1998
  ident: bib010
  article-title: The moving line ideal basis of planar rational curves
  publication-title: Comput. Aided Geom. Design
– volume: 21
  start-page: 329
  year: 1996
  end-page: 336
  ident: bib014
  article-title: Implicitization of rational parametric surfaces
  publication-title: J. Symbolic Comput.
– volume: 19
  start-page: 750
  year: 1990
  end-page: 773
  ident: bib012
  article-title: The structure of polynomial ideals and Groebner bases
  publication-title: SIAM J. Comput.
– volume: 6
  start-page: 183
  year: 1988
  end-page: 208
  ident: bib019
  article-title: The Groebner fan of an ideal
  publication-title: J. Symbolic Comput.
– start-page: 431
  year: 1984
  end-page: 436
  ident: bib001
  article-title: Implicit equation for a parametric surface by Groebner basis
  publication-title: Proc. 1984 MACSYMA User's Conf. Schenectady, New York, USA
– volume: vol. 204
  start-page: 513
  year: 1985
  end-page: 517
  ident: bib020
  article-title: Term orderings on the polynomial ring
  publication-title: Proceedings of EUROCAL '85
– volume: 36
  start-page: 699
  year: 2003
  end-page: 716
  ident: bib006
  article-title: Revisiting the
  publication-title: J. Symbolic Comput.
– volume: vol. 150
  year: 1995
  ident: bib013
  article-title: Commutative Algebra with a View Towards Algebraic Geometry
  publication-title: Graduate Texts in Math.
– volume: 7
  start-page: 8
  year: 1987
  end-page: 19
  ident: bib011
  article-title: The origins of the teapot
  publication-title: IEEE Comput. Graphics Appl.
– year: 2001
  ident: bib007
  article-title: The mu-basis of a rational ruled surface
  publication-title: Comput. Aided Geom. Design
– volume: 24
  start-page: 465
  year: 1997
  end-page: 469
  ident: bib008
  article-title: Converting bases with the Groebner walk
  publication-title: J. Symbolic Comput.
– year: 1996
  ident: bib009
  article-title: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
  publication-title: Undergraduate Texts in Mathematics
– volume: 13
  start-page: 79
  year: 1993
  end-page: 88
  ident: bib015
  article-title: Implicit curves and surfaces in CAGD
  publication-title: IEEE Comput. Graph. Appl.
– volume: vol. 508
  year: 1990
  ident: bib017
  article-title: Implicitization of rational curves and surfaces
  publication-title: AAECC-8, Tokyo, Japan
– year: 1989
  ident: bib016
  article-title: Geometric and Solid Modeling—An Introduction
– reference: Buchberger B., June 1986. What can Groebner bases do for computational geometry and robotics, In: Proc. Workshop on Geometric Reasoning, Oxford, England
– volume: 30
  start-page: 451
  year: 2000
  end-page: 468
  ident: bib023
  article-title: A fast algorithm for Groebner basis conversion and its applications
  publication-title: J. Symbolic Comput.
– reference: Buchberger, B., 1965. An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal. Ph.D. Thesis, Institute of Mathematics, Univ. Innsbruck, Innsbruck, Austria (in German)
– volume: 9
  start-page: 25
  issue: 1
  year: 1992
  ident: 10.1016/j.cagd.2004.07.001_bib018
  article-title: Algorithm for implicitizing rational parametric surfaces
  publication-title: Comput. Aided Geom. Design
  doi: 10.1016/0167-8396(92)90051-P
– year: 1940
  ident: 10.1016/j.cagd.2004.07.001_bib025
– volume: 21
  start-page: 329
  year: 1996
  ident: 10.1016/j.cagd.2004.07.001_bib014
  article-title: Implicitization of rational parametric surfaces
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.1996.0015
– volume: 6
  start-page: 183
  year: 1988
  ident: 10.1016/j.cagd.2004.07.001_bib019
  article-title: The Groebner fan of an ideal
  publication-title: J. Symbolic Comput.
  doi: 10.1016/S0747-7171(88)80042-7
– volume: 13
  start-page: 79
  year: 1993
  ident: 10.1016/j.cagd.2004.07.001_bib015
  article-title: Implicit curves and surfaces in CAGD
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/38.180121
– year: 1998
  ident: 10.1016/j.cagd.2004.07.001_bib010
  article-title: The moving line ideal basis of planar rational curves
  publication-title: Comput. Aided Geom. Design
  doi: 10.1016/S0167-8396(98)00014-4
– ident: 10.1016/j.cagd.2004.07.001_bib002
– volume: 36
  start-page: 699
  year: 2003
  ident: 10.1016/j.cagd.2004.07.001_bib006
  article-title: Revisiting the μ-basis of a rational ruled surface
  publication-title: J. Symbolic Comput.
  doi: 10.1016/S0747-7171(03)00064-6
– ident: 10.1016/j.cagd.2004.07.001_bib004
– volume: 28
  start-page: 72
  year: 1984
  ident: 10.1016/j.cagd.2004.07.001_bib022
  article-title: Implicit representation of parametric curves and surfaces
  publication-title: Computer Vison, Graphics and Image Processing
  doi: 10.1016/0734-189X(84)90140-3
– volume: vol. 150
  year: 1995
  ident: 10.1016/j.cagd.2004.07.001_bib013
  article-title: Commutative Algebra with a View Towards Algebraic Geometry
– volume: 24
  start-page: 465
  issue: 3/4
  year: 1997
  ident: 10.1016/j.cagd.2004.07.001_bib008
  article-title: Converting bases with the Groebner walk
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.1996.0145
– year: 1989
  ident: 10.1016/j.cagd.2004.07.001_bib016
– volume: 7
  start-page: 8
  issue: 1
  year: 1987
  ident: 10.1016/j.cagd.2004.07.001_bib011
  article-title: The origins of the teapot
  publication-title: IEEE Comput. Graphics Appl.
  doi: 10.1109/MCG.1987.277023
– volume: 33
  start-page: 11
  year: 1991
  ident: 10.1016/j.cagd.2004.07.001_bib005
  article-title: Equations for the projective closure and effective nullstellensatz
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(91)90105-6
– start-page: 184
  year: 1985
  ident: 10.1016/j.cagd.2004.07.001_bib003
  article-title: Groebner Bases: An algorithmic method in polynomial ideal theory
– volume: 22
  start-page: 355
  year: 1996
  ident: 10.1016/j.cagd.2004.07.001_bib024
  article-title: Hilbert functions and the Buchberger algorithm
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.1996.0056
– year: 1996
  ident: 10.1016/j.cagd.2004.07.001_bib009
  article-title: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
– volume: vol. 508
  year: 1990
  ident: 10.1016/j.cagd.2004.07.001_bib017
  article-title: Implicitization of rational curves and surfaces
– volume: 30
  start-page: 451
  year: 2000
  ident: 10.1016/j.cagd.2004.07.001_bib023
  article-title: A fast algorithm for Groebner basis conversion and its applications
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.1999.0416
– volume: 19
  start-page: 750
  issue: 4
  year: 1990
  ident: 10.1016/j.cagd.2004.07.001_bib012
  article-title: The structure of polynomial ideals and Groebner bases
  publication-title: SIAM J. Comput.
  doi: 10.1137/0219053
– year: 2001
  ident: 10.1016/j.cagd.2004.07.001_bib007
  article-title: The mu-basis of a rational ruled surface
  publication-title: Comput. Aided Geom. Design
  doi: 10.1016/S0167-8396(01)00012-7
– start-page: 431
  year: 1984
  ident: 10.1016/j.cagd.2004.07.001_bib001
  article-title: Implicit equation for a parametric surface by Groebner basis
– year: 1995
  ident: 10.1016/j.cagd.2004.07.001_bib021
  article-title: Implicitization using moving curves and surfaces
– volume: vol. 204
  start-page: 513
  year: 1985
  ident: 10.1016/j.cagd.2004.07.001_bib020
  article-title: Term orderings on the polynomial ring
SSID ssj0002196
Score 1.7121271
Snippet In this paper, the author uses recent theoretical results from the method of Groebner bases to improve the efficiency of algorithms for implicitization. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 837
SubjectTerms Groebner bases
Implicitization
Title Efficient Groebner walk conversion for implicitization of geometric objects
URI https://dx.doi.org/10.1016/j.cagd.2004.07.001
https://www.proquest.com/docview/28169995
Volume 21
WOSCitedRecordID wos000225013700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2332
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002196
  issn: 0167-8396
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9Rnj5wW0VKYiexj1W1QHmsQBS0t8ixnWrLNqn20fbnMxPb6e5WVIDExUqiOLHyjcfjycw3hLxRSJOmYx2BLVDDBsWoCJYhAY01MdeSyy5A9senYjwWk4n8MhgchlyY81nRNOLyUp79V6jhGoCNqbN_AXf_ULgAxwA6tAA7tH8E_KgjhcBf_O_mra0aOx9eqNlPF1_eOce60MJpF0o-Xfo8TDQaj217igW29LCt0D2zWLdcQ_mHIXJKmrV7zUYMCK59CNvXVaujsTrd8Cpwn17Xu7qupbs47yNoVbCoPHe105iikFHK2IZKdUnPXnTkmn4UjuElLLWOm_qaFncOhRPYoR93ZK6841f1w9tkx_6GY8IhoTIC8ye7RXbTIpOgo3f3D0eTD_2yDKo5D0Tv2MFnULlgv-03_c5K2VqvOyPk6D6553cPdN-h_oAMbPOQ3F3jlISzzz0R7-IR-dhLAw3SQFEa6JU0UJAGuiUNtK1pjzD10vCYfH87Ojp4H_n6GZFmqVxGSmmr6iK2vJY6qStZpRUrYE4KxtPKKslqVWijVc21ynOdMqOtKKq4zrSGGcyekJ2mbexTQqVlmqecmVxxbkwuDNjNiRRYD6EqdLZHkvC9Su3J5bHGyawMUYQnJX5jrHrKyxhjHpI9Muz7nDlqlRvvzgIMpTcOndFXgtTc2O91wKwEzYm_w1Rj29WiTEWSw_Yoe_aPT35O7lzNnBdkZzlf2Zfktj5fThfzV178fgE-H5Xq
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Groebner+walk+conversion+for+implicitization+of+geometric+objects&rft.jtitle=Computer+aided+geometric+design&rft.au=Tran%2C+Quoc-Nam&rft.date=2004-11-01&rft.pub=Elsevier+B.V&rft.issn=0167-8396&rft.eissn=1879-2332&rft.volume=21&rft.issue=9&rft.spage=837&rft.epage=857&rft_id=info:doi/10.1016%2Fj.cagd.2004.07.001&rft.externalDocID=S0167839604000755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8396&client=summon