Distributed Optimization With Coupling Constraints

In this article, we investigate distributed convex optimization with both inequality and equality constraints, where the objective function can be a general nonsmooth convex function and all the constraints can be both sparsely and densely coupling. By strategically integrating ideas from primal-dua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 68; H. 3; S. 1847 - 1854
Hauptverfasser: Wu, Xuyang, Wang, He, Lu, Jie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9286, 1558-2523, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we investigate distributed convex optimization with both inequality and equality constraints, where the objective function can be a general nonsmooth convex function and all the constraints can be both sparsely and densely coupling. By strategically integrating ideas from primal-dual, proximal, and virtual-queue optimization methods, we develop a novel distributed algorithm, referred to as IPLUX, to address the problem over a connected, undirected graph. We show that IPLUX achieves an <inline-formula><tex-math notation="LaTeX">O(1/k)</tex-math></inline-formula> rate of convergence in terms of optimality and feasibility, which is stronger than the convergence results of the alternative methods and eliminates the standard assumption on the compactness of the feasible region. Finally, IPLUX exhibits faster convergence and higher efficiency than several state-of-the-art methods in the simulation.
AbstractList In this article, we investigate distributed convex optimization with both inequality and equality constraints, where the objective function can be a general nonsmooth convex function and all the constraints can be both sparsely and densely coupling. By strategically integrating ideas from primal-dual, proximal, and virtual-queue optimization methods, we develop a novel distributed algorithm, referred to as IPLUX, to address the problem over a connected, undirected graph. We show that IPLUX achieves an <inline-formula><tex-math notation="LaTeX">O(1/k)</tex-math></inline-formula> rate of convergence in terms of optimality and feasibility, which is stronger than the convergence results of the alternative methods and eliminates the standard assumption on the compactness of the feasible region. Finally, IPLUX exhibits faster convergence and higher efficiency than several state-of-the-art methods in the simulation.
In this paper, we investigate distributed convex optimization with both inequality and equality constraints, where the objective function can be a general nonsmooth convex function and all the constraints can be both sparsely and densely coupling. By strategically integrating ideas from primal-dual, proximal, and virtual-queue optimization methods, we develop a novel distributed algorithm, referred to as IPLUX, to address the problem over a connected, undirected graph. We show that IPLUX achieves an &lt;formula&gt;&lt;tex&gt;$O(1/k)$&lt;/tex&gt;&lt;/formula&gt; rate of convergence in terms of optimality and feasibility, which is stronger than the convergence results of the alternative methods and eliminates the standard assumption on the compactness of the feasible region. Finally, IPLUX exhibits faster convergence and higher efficiency than several state-of-the-art methods in the simulation. 
In this article, we investigate distributed convex optimization with both inequality and equality constraints, where the objective function can be a general nonsmooth convex function and all the constraints can be both sparsely and densely coupling. By strategically integrating ideas from primal-dual, proximal, and virtual-queue optimization methods, we develop a novel distributed algorithm, referred to as IPLUX, to address the problem over a connected, undirected graph. We show that IPLUX achieves an [Formula Omitted] rate of convergence in terms of optimality and feasibility, which is stronger than the convergence results of the alternative methods and eliminates the standard assumption on the compactness of the feasible region. Finally, IPLUX exhibits faster convergence and higher efficiency than several state-of-the-art methods in the simulation.
Author Lu, Jie
Wu, Xuyang
Wang, He
Author_xml – sequence: 1
  givenname: Xuyang
  orcidid: 0000-0001-7409-9611
  surname: Wu
  fullname: Wu, Xuyang
  email: xuyangw@kth.se
  organization: Division of Decision and Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 2
  givenname: He
  orcidid: 0000-0002-3816-5746
  surname: Wang
  fullname: Wang, He
  email: wanghe@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0002-4362-6543
  surname: Lu
  fullname: Lu, Jie
  email: lujie@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323805$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp9kDtPwzAUhS1UJNrCjsRSiTnFj9ixxyrlJVXqUmC0nMRpXdo42I4Q_HpcUhgYmO690neuzjkjMGhsowG4RHCKEBQ3q1k-xRDjKUFMCEpPwBBRyhNMMRmAIYSIJwJzdgZG3m_jydIUDQGeGx-cKbqgq8myDWZvPlUwtpm8mLCZ5LZrd6ZZx6WJnDJN8OfgtFY7ry-Ocwye7m5X-UOyWN4_5rNFUhIsQqJEUbGUo4JlNWU6y1BKigKmTKeiVLwWHPFME0QFIbDQohJKwLrCmVYVr8qSjEHS__Xvuu0K2TqzV-5DWmXk3DzPpHVr-Ro2kmDCIY38dc-3zr512ge5tZ1rokWJMw4FFwynkWI9VTrrvdO1LE34TnyIt5MIykOfMvYpD33KY59RCP8Ifwz9I7nqJUZr_YuLjGFKBPkCLiyB5Q
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_TSIPN_2024_3375597
crossref_primary_10_1109_TSMC_2025_3572363
crossref_primary_10_1109_TVT_2024_3363034
crossref_primary_10_1007_s10287_023_00492_w
crossref_primary_10_1109_TAC_2024_3524119
crossref_primary_10_1109_TSMC_2025_3570640
crossref_primary_10_1007_s10957_024_02393_7
crossref_primary_10_1109_TAC_2022_3169955
crossref_primary_10_1109_LCSYS_2023_3345694
crossref_primary_10_1109_TVT_2024_3408165
crossref_primary_10_1109_TAC_2025_3533424
crossref_primary_10_1109_TAC_2022_3221856
crossref_primary_10_1016_j_ifacol_2023_10_1499
crossref_primary_10_1109_TII_2024_3390567
crossref_primary_10_1109_TAC_2024_3384341
crossref_primary_10_1109_TASE_2025_3550740
Cites_doi 10.1137/090770102
10.1016/j.automatica.2017.07.003
10.1109/TAC.2022.3169955
10.1016/j.automatica.2020.108962
10.1109/TAC.2014.2308612
10.1137/16M1059011
10.1561/2200000016
10.1109/TAC.2014.2364096
10.1109/TIE.2016.2617832
10.1109/TAC.2020.2989282
10.1109/TCNS.2019.2925267
10.1109/TCYB.2019.2933003
10.1109/TAC.2019.2912494
10.1109/TSP.2015.2461520
10.1109/CDC42340.2020.9303937
10.1016/j.automatica.2013.01.009
10.1109/TSP.2016.2544743
10.1109/CDC.2018.8619322
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
DOI 10.1109/TAC.2022.3169955
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 1854
ExternalDocumentID oai_DiVA_org_kth_323805
10_1109_TAC_2022_3169955
9762539
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61603254
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c329t-a9bd6481b67f56e77143bb046e49ca8f98187e3159330be9d9a90fd27ead8dcc3
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000966034800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
1558-2523
IngestDate Thu Nov 27 02:50:58 EST 2025
Mon Jun 30 10:11:34 EDT 2025
Tue Nov 18 21:53:43 EST 2025
Sat Nov 29 05:41:05 EST 2025
Wed Aug 27 02:14:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-a9bd6481b67f56e77143bb046e49ca8f98187e3159330be9d9a90fd27ead8dcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7409-9611
0000-0002-3816-5746
0000-0002-4362-6543
PQID 2780989624
PQPubID 85475
PageCount 8
ParticipantIDs ieee_primary_9762539
proquest_journals_2780989624
swepub_primary_oai_DiVA_org_kth_323805
crossref_primary_10_1109_TAC_2022_3169955
crossref_citationtrail_10_1109_TAC_2022_3169955
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref18
ref8
ref7
ref9
ref4
ref3
ref6
Diamond (ref19) 2016; 17
ref5
References_xml – ident: ref5
  doi: 10.1137/090770102
– ident: ref8
  doi: 10.1016/j.automatica.2017.07.003
– ident: ref18
  doi: 10.1109/TAC.2022.3169955
– ident: ref13
  doi: 10.1016/j.automatica.2020.108962
– ident: ref7
  doi: 10.1109/TAC.2014.2308612
– ident: ref16
  doi: 10.1137/16M1059011
– volume: 17
  start-page: 1
  issue: 83
  year: 2016
  ident: ref19
  article-title: CVXPY: A python-embedded modeling language for convex optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref15
  doi: 10.1561/2200000016
– ident: ref1
  doi: 10.1109/TAC.2014.2364096
– ident: ref3
  doi: 10.1109/TIE.2016.2617832
– ident: ref12
  doi: 10.1109/TAC.2020.2989282
– ident: ref9
  doi: 10.1109/TCNS.2019.2925267
– ident: ref11
  doi: 10.1109/TCYB.2019.2933003
– ident: ref10
  doi: 10.1109/TAC.2019.2912494
– ident: ref4
  doi: 10.1109/TSP.2015.2461520
– ident: ref17
  doi: 10.1109/CDC42340.2020.9303937
– ident: ref2
  doi: 10.1016/j.automatica.2013.01.009
– ident: ref14
  doi: 10.1109/TSP.2016.2544743
– ident: ref6
  doi: 10.1109/CDC.2018.8619322
SSID ssj0016441
Score 2.5420358
Snippet In this article, we investigate distributed convex optimization with both inequality and equality constraints, where the objective function can be a general...
In this paper, we investigate distributed convex optimization with both inequality and equality constraints, where the objective function can be a general...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1847
SubjectTerms Algorithms
Computational geometry
Constrained optimization
Convergence
Convex functions
Convex optimisation
Convex optimization
Convexity
Coupling
Coupling constraints
Couplings
Distributed algorithms
Distributed optimization
Feasibility
Inequality constraint
Linear programming
Mathematical transformations
Optimisations
Optimization
primal-dual method
Primal-dual methods
proximal algorithm
Transforms
Undirected graphs
Virtual addresses
Title Distributed Optimization With Coupling Constraints
URI https://ieeexplore.ieee.org/document/9762539
https://www.proquest.com/docview/2780989624
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323805
Volume 68
WOSCitedRecordID wos000966034800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 1558-2523
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BikN7oLwqlkKVA0JCarrBTuLMcbUU9VABB143y48JuwJ2EZvl93ecZKOtVFXqLYrsyJqx_c3Enu8DOM7IJrZ0FDP4UpxmlMbWyrPYMDZYXk7G1QSmd7_U5WXx8IDXa_Ctq4UhovryGX0Pj_VZvp-5RfhVNmDoFJnEdVhXKm9qtboTg4Drza7LC1gU3ZFkgoOb4YgTQSE4P80RQ1HfCgTVmip_hperlKE1zFx8-r8BbsFmG05Gw8b_27BG0x34uEIyuAviPHDjBlkr8tEV7xAvbelldD-pxtFotghFuY9RkO6sBSOq-R7cXvy4Gf2MW6WE2EmBVWzQ-jzlCDRXZZaTCqLm1nLqSyk6U5TIsKxIcugiZWIJPRpMSi8Uz6PCOyc_Q286m9I-RCZLU3L8mmOLtJTGqhxzb9C74izzRvZhsDSedi2NeBjcs67TiQQ1m1sHc-vW3H047Xq8NhQa_2i7G6zatWsN2ofDpX90u8bmWqgiwQJzkfbhpPFZ1y-QZp9P7oaa3aOfqrGWHJok2cHfP_8FPgQV-eZq2SH0qrcFHcGGe68m87ev9Tz7DZXd0QA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VUgl64FUQgQA-ICQk3Di7fs0xSqiKSNMeQuhttY8xiVqSqnH6-ztrO1aQEBI3y9q1VjO7-814d74P4GNCJjKFpZDBl8I4oTg0RvZDzdhgeDlpWxGYzsbZZJJfXuLFHnxpa2GIqLp8Rsf-sTrLdyu78b_KegydIpH4AB4mcSyiulqrPTPwyF7vu7yERd4eSkbYmw6GnAoKwRlqiujL-nZAqFJV-TPA3CUNrYDm5On_DfEZPGkCymBQz4DnsEfLF3C4QzN4BGLk2XG9sBW54Jz3iN9N8WXwc1HOg-Fq48tyfwVevLOSjCjXL-HHydfp8DRstBJCKwWWoUbj0phj0DQrkpQyL2tuDCe_FKPVeYEMzBlJDl6kjAyhQ41R4UTGMyl31spXsL9cLek1BJqNS5Zfc3QRF1KbLMXUaXQ27ydOyw70tsZTtiES94O7VlVCEaFicytvbtWYuwOf2x43NYnGP9oeeau27RqDdqC79Y9qVtlaiSyPMMdUxB34VPus7edps0eL2UCxe9RVOVeSg5MoefP3z3-AR6fTs7Eaf5t8fwuPvaZ8fdGsC_vl7YbewYG9Kxfr2_fVnLsHnoTURw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Optimization+With+Coupling+Constraints&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Wu%2C+Xuyang&rft.au=Wang%2C+He&rft.au=Lu%2C+Jie&rft.date=2023-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=68&rft.issue=3&rft.spage=1847&rft_id=info:doi/10.1109%2FTAC.2022.3169955&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon