A class of graphs with large rankwidth
We describe several graphs with arbitrarily large rankwidth (or equivalently with arbitrarily large cliquewidth). Korpelainen, Lozin, and Mayhill [Split permutation graphs, Graphs and Combinatorics, 30(3):633–646, 2014] proved that there exist split graphs with Dilworth number 2 with arbitrarily lar...
Uloženo v:
| Vydáno v: | Discrete mathematics Ročník 347; číslo 1; s. 113699 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2024
Elsevier |
| Témata: | |
| ISSN: | 0012-365X, 1872-681X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We describe several graphs with arbitrarily large rankwidth (or equivalently with arbitrarily large cliquewidth). Korpelainen, Lozin, and Mayhill [Split permutation graphs, Graphs and Combinatorics, 30(3):633–646, 2014] proved that there exist split graphs with Dilworth number 2 with arbitrarily large rankwidth, but without explicitly constructing them. We provide an explicit construction. Maffray, Penev, and Vušković [Coloring rings, Journal of Graph Theory 96(4):642-683, 2021] proved that graphs that they call rings on n sets can be colored in polynomial time. We show that for every fixed integer n≥3, there exist rings on n sets with arbitrarily large rankwidth. When n≥5 and n is odd, this provides a new construction of even-hole-free graphs with arbitrarily large rankwidth. |
|---|---|
| ISSN: | 0012-365X 1872-681X |
| DOI: | 10.1016/j.disc.2023.113699 |