Adaptive Graph Signal Processing: Algorithms and Optimal Sampling Strategies

The goal of this paper is to propose novel strategies for adaptive learning of signals defined over graphs, which are observed over a (randomly) time-varying subset of vertices. We recast two classical adaptive algorithms in the graph signal processing framework, namely the least mean squares (LMS)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 66; H. 13; S. 3584 - 3598
Hauptverfasser: Di Lorenzo, Paolo, Banelli, Paolo, Isufi, Elvin, Barbarossa, Sergio, Leus, Geert
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2018
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The goal of this paper is to propose novel strategies for adaptive learning of signals defined over graphs, which are observed over a (randomly) time-varying subset of vertices. We recast two classical adaptive algorithms in the graph signal processing framework, namely the least mean squares (LMS) and the recursive least squares (RLS) adaptive estimation strategies. For both methods, a detailed mean-square analysis illustrates the effect of random sampling on the adaptive reconstruction capability and the steady-state performance. Then, several probabilistic sampling strategies are proposed to design the sampling probability at each node in the graph, with the aim of optimizing the tradeoff between steady-state performance, graph sampling rate, and convergence rate of the adaptive algorithms. Finally, a distributed RLS strategy is derived and shown to be convergent to its centralized counterpart. Numerical simulations carried out over both synthetic and real data illustrate the good performance of the proposed sampling and recovery strategies for (distributed) adaptive learning of signals defined over graphs.
AbstractList The goal of this paper is to propose novel strategies for adaptive learning of signals defined over graphs, which are observed over a (randomly) time-varying subset of vertices. We recast two classical adaptive algorithms in the graph signal processing framework, namely the least mean squares (LMS) and the recursive least squares (RLS) adaptive estimation strategies. For both methods, a detailed mean-square analysis illustrates the effect of random sampling on the adaptive reconstruction capability and the steady-state performance. Then, several probabilistic sampling strategies are proposed to design the sampling probability at each node in the graph, with the aim of optimizing the tradeoff between steady-state performance, graph sampling rate, and convergence rate of the adaptive algorithms. Finally, a distributed RLS strategy is derived and shown to be convergent to its centralized counterpart. Numerical simulations carried out over both synthetic and real data illustrate the good performance of the proposed sampling and recovery strategies for (distributed) adaptive learning of signals defined over graphs.
Author Banelli, Paolo
Isufi, Elvin
Barbarossa, Sergio
Di Lorenzo, Paolo
Leus, Geert
Author_xml – sequence: 1
  givenname: Paolo
  orcidid: 0000-0002-4130-3177
  surname: Di Lorenzo
  fullname: Di Lorenzo, Paolo
  email: paolo.dilorenzo@uniroma1.it
  organization: Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome, Rome, Italy
– sequence: 2
  givenname: Paolo
  orcidid: 0000-0002-0004-6370
  surname: Banelli
  fullname: Banelli, Paolo
  email: paolo.banelli@unipg.it
  organization: Department of Engineering, University of Perugia, Perugia, Italy
– sequence: 3
  givenname: Elvin
  orcidid: 0000-0002-1919-260X
  surname: Isufi
  fullname: Isufi, Elvin
  email: isufi-1@tudelft.nl
  organization: Department of Engineering, University of Perugia, Perugia, Italy
– sequence: 4
  givenname: Sergio
  orcidid: 0000-0001-9846-8741
  surname: Barbarossa
  fullname: Barbarossa, Sergio
  email: sergio.barbarossa@uniroma1.it
  organization: Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome, Rome, Italy
– sequence: 5
  givenname: Geert
  surname: Leus
  fullname: Leus, Geert
  email: g.j.t.leus@tudelft.nl
  organization: Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, CD, The Netherlands
BookMark eNp9kE1LwzAYgINMcJveBS_9A535buJtDJ3CYINO8FbSJukiXVuSIPjvzdjw4MFT3sPzvLx5ZmDSD70B4B7BBUJQPu7L3QJDJBZYEEYEvQJTJCnKIS34JM2QkZyJ4uMGzEL4hBBRKvkUbJZajdF9mWzt1XjIStf2qst2fmhMCK5vn7Jl1w7excMxZKrX2Tbhx4SU6jh2CcjK6FU0rTPhFlxb1QVzd3nn4P3leb96zTfb9dtquckbgmXMJeemplZSW7NaE11YrgtaY60axTAWRcGslA2UqBaisAhqqXlNJDdMWcEwmQN-3tv4IQRvbNW4qKIb-nSK6yoEq1OTKjWpTk2qS5Mkwj_i6NNn_Pd_ysNZccaYX1wQDiFn5AeS9m-B
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_LSP_2024_3514800
crossref_primary_10_1016_j_dsp_2022_103558
crossref_primary_10_1016_j_dsp_2020_102782
crossref_primary_10_1016_j_sigpro_2022_108662
crossref_primary_10_1007_s11265_022_01802_2
crossref_primary_10_1016_j_sigpro_2021_108180
crossref_primary_10_1016_j_sigpro_2023_109230
crossref_primary_10_1007_s13042_023_02013_2
crossref_primary_10_1109_TSP_2024_3442556
crossref_primary_10_1016_j_sigpro_2024_109394
crossref_primary_10_1109_TSP_2019_2940129
crossref_primary_10_1109_TCSII_2024_3364090
crossref_primary_10_1109_TSIPN_2025_3546469
crossref_primary_10_1109_TSP_2021_3054523
crossref_primary_10_1007_s00034_024_02626_0
crossref_primary_10_1109_TSP_2021_3099630
crossref_primary_10_1109_TSP_2023_3329948
crossref_primary_10_1186_s13634_023_00995_3
crossref_primary_10_1002_ett_3687
crossref_primary_10_1109_TSP_2024_3435935
crossref_primary_10_1109_TSIPN_2020_2964214
crossref_primary_10_1016_j_dsp_2025_105144
crossref_primary_10_1109_TSIPN_2020_2975393
crossref_primary_10_1016_j_dsp_2022_103587
crossref_primary_10_1109_LSP_2025_3539012
crossref_primary_10_1109_TSP_2020_2993780
crossref_primary_10_1109_TSIPN_2023_3277591
crossref_primary_10_1016_j_sigpro_2019_107326
crossref_primary_10_1109_TNSE_2023_3275625
crossref_primary_10_1109_TSIPN_2025_3597466
crossref_primary_10_1109_TMM_2022_3218172
crossref_primary_10_1109_TSIPN_2020_3046237
crossref_primary_10_1109_LSP_2023_3316095
crossref_primary_10_3390_a13090228
crossref_primary_10_1109_TSP_2020_2996374
crossref_primary_10_1109_TCSII_2020_3045217
crossref_primary_10_1109_LSP_2025_3576173
crossref_primary_10_1016_j_knosys_2022_110159
crossref_primary_10_1007_s11760_024_03712_1
crossref_primary_10_1109_TGRS_2020_2976799
crossref_primary_10_1016_j_dsp_2021_102965
crossref_primary_10_1109_TSP_2020_3002607
crossref_primary_10_1109_TSIPN_2021_3101109
crossref_primary_10_1109_TSP_2024_3495225
crossref_primary_10_1109_TSP_2020_3037404
crossref_primary_10_1016_j_jfranklin_2024_106805
crossref_primary_10_3390_sym14020426
crossref_primary_10_1109_TSIPN_2021_3060007
crossref_primary_10_1109_TSIPN_2023_3304142
crossref_primary_10_1109_TSP_2019_2904922
crossref_primary_10_1016_j_sigpro_2020_107749
crossref_primary_10_1016_j_dsp_2023_104356
crossref_primary_10_1109_TSP_2019_2952053
crossref_primary_10_1007_s11760_024_03186_1
crossref_primary_10_1109_TNNLS_2025_3553872
crossref_primary_10_1109_TSIPN_2022_3142509
crossref_primary_10_1109_TSIPN_2023_3276687
crossref_primary_10_1109_TSIPN_2023_3345142
crossref_primary_10_1109_TSP_2019_2929930
crossref_primary_10_1109_TSP_2023_3284364
Cites_doi 10.1109/TIT.2017.2653801
10.1109/JSTSP.2017.2726979
10.1109/TSP.2017.2755586
10.1109/TSP.2012.2188718
10.1109/TSP.2017.2708035
10.1109/TPWRS.2004.841239
10.1090/S0002-9947-08-04511-X
10.1016/j.eplepsyres.2008.02.002
10.1109/TNN.2009.2015974
10.1109/TSP.2013.2273197
10.1109/TSP.2016.2637317
10.1109/ICASSP.2013.6638704
10.1109/ICASSP.2012.6288775
10.1109/TSP.2015.2491890
10.1002/0471461288.ch3
10.1109/TSP.2014.2379662
10.1109/TSP.2016.2546233
10.1109/TSP.2016.2573748
10.1109/JSTSP.2015.2403799
10.1109/TSIPN.2016.2613687
10.1109/TSP.2013.2238935
10.1109/MSP.2012.2235192
10.1109/TSP.2015.2411217
10.1109/TSP.2016.2620116
10.1109/TSP.2016.2614793
10.1109/TSP.2015.2507546
10.1137/1.9780898719437
10.1109/TSP.2014.2321121
10.1287/mnsc.13.7.492
10.1109/TSIPN.2016.2614903
10.1109/JSTSP.2017.2726976
10.1561/2200000051
10.1109/TSP.2015.2469645
10.1109/TSP.2009.2024278
10.1017/CBO9780511804441
10.1109/TSP.2007.913164
10.1561/2200000016
10.1109/9.362841
10.1109/MSP.2014.2329213
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSP.2018.2835384
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 3598
ExternalDocumentID 10_1109_TSP_2018_2835384
8360065
Genre orig-research
GrantInformation_xml – fundername: Fondazione Cassa di Risparmio di Perugia
  funderid: 10.13039/501100004486
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
ID FETCH-LOGICAL-c329t-966eb4f94fb5bd3d7f6d74b2daca5228775f99c091b887f10d9d6b396e5af8523
IEDL.DBID RIE
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435193800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sat Nov 29 04:10:46 EST 2025
Tue Nov 18 21:32:40 EST 2025
Wed Aug 27 08:33:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-966eb4f94fb5bd3d7f6d74b2daca5228775f99c091b887f10d9d6b396e5af8523
ORCID 0000-0002-0004-6370
0000-0001-9846-8741
0000-0002-4130-3177
0000-0002-1919-260X
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TSP_2018_2835384
crossref_primary_10_1109_TSP_2018_2835384
ieee_primary_8360065
PublicationCentury 2000
PublicationDate 2018-July1,-1
2018-7-1
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-July1,-1
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref38
ref18
schaible (ref36) 2004
belkin (ref19) 2006; 7
(ref41) 0
ref24
ref45
ref23
ref26
ref25
ref20
ref42
ref22
ref44
ref21
ref43
ref28
ref27
sayed (ref29) 2011
ref8
ref7
ref9
ref4
ref3
lafferty (ref17) 0
ref6
ref5
ref40
gama (ref16) 2016
References_xml – year: 0
  ident: ref41
  article-title: 1981-2010 U.S. Climate Normals
– ident: ref43
  doi: 10.1109/TIT.2017.2653801
– ident: ref11
  doi: 10.1109/JSTSP.2017.2726979
– year: 2011
  ident: ref29
  publication-title: Adaptive Filters
– ident: ref21
  doi: 10.1109/TSP.2017.2755586
– start-page: 493
  year: 2004
  ident: ref36
  article-title: Recent developments in fractional programming: Single-ratio and max-min case
  publication-title: Nonlinear Analysis and Convex Analysis
– ident: ref5
  doi: 10.1109/TSP.2012.2188718
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref19
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– ident: ref25
  doi: 10.1109/TSP.2017.2708035
– start-page: 315
  year: 0
  ident: ref17
  article-title: Diffusion kernels on graphs and other discrete structures
  publication-title: Proc 19th Int Conf Mach Learn
– ident: ref40
  doi: 10.1109/TPWRS.2004.841239
– ident: ref8
  doi: 10.1090/S0002-9947-08-04511-X
– ident: ref42
  doi: 10.1016/j.eplepsyres.2008.02.002
– ident: ref18
  doi: 10.1109/TNN.2009.2015974
– ident: ref6
  doi: 10.1109/TSP.2013.2273197
– ident: ref35
  doi: 10.1109/TSP.2016.2637317
– ident: ref12
  doi: 10.1109/ICASSP.2013.6638704
– ident: ref9
  doi: 10.1109/ICASSP.2012.6288775
– ident: ref31
  doi: 10.1109/TSP.2015.2491890
– ident: ref44
  doi: 10.1002/0471461288.ch3
– ident: ref30
  doi: 10.1109/TSP.2014.2379662
– ident: ref23
  doi: 10.1109/TSP.2016.2546233
– ident: ref13
  doi: 10.1109/TSP.2016.2573748
– ident: ref27
  doi: 10.1109/JSTSP.2015.2403799
– ident: ref24
  doi: 10.1109/TSIPN.2016.2613687
– ident: ref2
  doi: 10.1109/TSP.2013.2238935
– ident: ref1
  doi: 10.1109/MSP.2012.2235192
– ident: ref14
  doi: 10.1109/TSP.2015.2411217
– ident: ref20
  doi: 10.1109/TSP.2016.2620116
– ident: ref7
  doi: 10.1109/TSP.2016.2614793
– ident: ref15
  doi: 10.1109/TSP.2015.2507546
– ident: ref33
  doi: 10.1137/1.9780898719437
– ident: ref4
  doi: 10.1109/TSP.2014.2321121
– ident: ref37
  doi: 10.1287/mnsc.13.7.492
– ident: ref22
  doi: 10.1109/TSIPN.2016.2614903
– ident: ref26
  doi: 10.1109/JSTSP.2017.2726976
– ident: ref45
  doi: 10.1561/2200000051
– ident: ref10
  doi: 10.1109/TSP.2015.2469645
– ident: ref39
  doi: 10.1109/TSP.2009.2024278
– ident: ref34
  doi: 10.1017/CBO9780511804441
– ident: ref38
  doi: 10.1109/TSP.2007.913164
– year: 2016
  ident: ref16
  article-title: Rethinking sketching as sampling: A graph signal processing approach
– ident: ref28
  doi: 10.1561/2200000016
– ident: ref32
  doi: 10.1109/9.362841
– ident: ref3
  doi: 10.1109/MSP.2014.2329213
SSID ssj0014496
Score 2.563855
Snippet The goal of this paper is to propose novel strategies for adaptive learning of signals defined over graphs, which are observed over a (randomly) time-varying...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 3584
SubjectTerms Adaptation and learning
Adaptive learning
graph signal processing
Laplace equations
sampling on graphs
Signal processing
Signal processing algorithms
Steady-state
successive convex approximation
Task analysis
Title Adaptive Graph Signal Processing: Algorithms and Optimal Sampling Strategies
URI https://ieeexplore.ieee.org/document/8360065
Volume 66
WOSCitedRecordID wos000435193800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAHX1WsL_bgRTB9ZDfZrLciVg-lFlqht7CP2Vpo09Km_n53kzRUEMFbCDMkfBt2vs3MfIPQPfGJVsYIzwdCPWoZtidlSLyAUMlDCE0IWaNwj_X70XjMBxX0WPbCAEBWfAYNd5nl8vVCbdyvsqZrOLAhcw_tMRbmvVplxoDSbBaXpQv2QREbb1OSLd4cDQeuhitqOG0xEtEfIWhnpkoWUrrH_3uZE3RUUEfcydf6FFUgOUOHO4KCNdTraLF0Gxh-dULUeDidOJeiG8CaPOHObLJYTdPP-RqLRON3az63JkPhSsuTCd7K1cL6HH10X0bPb14xL8FTxOepE9oESQ2nRgZSE81MqBmVvhZKWJoVMRYYzpVlCNJuLabd0lyHktglCYSJ7In0AlWTRQKXCANYmkBkm4NLA4qAk7ZqRVpCAIEE4tdRcwthrAoxcTfTYhZnh4oWjy3osQM9LkCvo4fSY5kLafxhW3N4l3YF1Fe_375GB845r6G9QdV0tYFbtK--0ul6dZd9Jd_s1rqw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDb7E-c_AimDbNbh7rrYi1YqyFVugtZLOztdCmpU39_e4maakggrcQZpPw7bLzbWbmG4BbYhMRSxmZNhJqUsWwTc5dYjqEcuaiK13MCoUDr932-33WKcH9qhYGEbPkM6zqyyyWLybxQv8qq-mCA-UyN2BTd85iebXWKmZAadaNSxEG9Srf6y-Dkhar9bodncXlV7W6GPHpDye01lUlcyrN_f99zgHsFeTRaOSzfQglTI5gd01S8BiChoimegsznrUUtdEdDvSQoh5AmTwYjdFgMhumn-O5ESXCeFfmY2XSjXRyeTIwloK1OD-Bj-ZT77FlFh0TzJjYLNVSm8ipZFRyhwsiPOkKj3JbRHGkiJbveY5kLFYcgavNRdYtwYTLiZoUJ5K-OpOeQjmZJHgGBqIiCoTXGepAYOQwUo8tX3B00OFI7ArUlhCGcSEnrrtajMLsWGGxUIEeatDDAvQK3K1GTHMpjT9sjzXeK7sC6vPfb9_Adqv3FoTBS_v1Anb0g_KM2ksop7MFXsFW_JUO57PrbMV8A-Gbvf8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Graph+Signal+Processing%3A+Algorithms+and+Optimal+Sampling+Strategies&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Di+Lorenzo%2C+Paolo&rft.au=Banelli%2C+Paolo&rft.au=Isufi%2C+Elvin&rft.au=Barbarossa%2C+Sergio&rft.date=2018-07-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=66&rft.issue=13&rft.spage=3584&rft.epage=3598&rft_id=info:doi/10.1109%2FTSP.2018.2835384&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2018_2835384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon