Linear Convergence of First- and Zeroth-Order Primal-Dual Algorithms for Distributed Nonconvex Optimization
This article considers the distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of local cost functions by using local information exchange. We first consider a distributed first-order primal-dual algorithm. We show that it converges sublinearly to a statio...
Saved in:
| Published in: | IEEE transactions on automatic control Vol. 67; no. 8; pp. 4194 - 4201 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9286, 1558-2523, 1558-2523 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This article considers the distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of local cost functions by using local information exchange. We first consider a distributed first-order primal-dual algorithm. We show that it converges sublinearly to a stationary point if each local cost function is smooth and linearly to a global optimum under an additional condition that the global cost function satisfies the Polyak-Łojasiewicz condition. This condition is weaker than strong convexity, which is a standard condition for proving linear convergence of distributed optimization algorithms, and the global minimizer is not necessarily unique. Motivated by the situations where the gradients are unavailable, we then propose a distributed zeroth-order algorithm, derived from the considered first-order algorithm by using a deterministic gradient estimator, and show that it has the same convergence properties as the considered first-order algorithm under the same conditions. The theoretical results are illustrated by numerical simulations. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 1558-2523 |
| DOI: | 10.1109/TAC.2021.3108501 |