Interference Constraint Active Learning with Uncertain Feedback for Cognitive Radio Networks

In this paper, an intelligent probing method for interference constraint learning is proposed to allow a centralized cognitive radio network (CRN) to access the frequency band of a primary user (PU) in an underlay cognitive communication scenario. The main idea is that the CRN probes the PU and subs...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on wireless communications Ročník 16; číslo 7; s. 4654 - 4668
Hlavní autori: Tsakmalis, Anestis, Chatzinotas, Symeon, Ottersten, Bjorn
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1536-1276, 1558-2248, 1558-2248
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, an intelligent probing method for interference constraint learning is proposed to allow a centralized cognitive radio network (CRN) to access the frequency band of a primary user (PU) in an underlay cognitive communication scenario. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback is implicit channel state information of the PU link, indicating whether the probing-induced interference is harmful or not. The intelligence of this sequential probing process lies in the selection of the power levels of the secondary users, which aims to minimize the number of probing attempts, a clearly active learning (AL) procedure, and expectantly the overall PU QoS degradation. The enhancement introduced in this paper is that we incorporate the probability of each feedback being correct into this intelligent probing mechanism by using a multivariate Bayesian AL method. This technique is inspired by the probabilistic bisection algorithm and the deterministic cutting plane methods (CPMs). The optimality of this multivariate Bayesian AL method is proven and its effectiveness is demonstrated through numerical simulations. Computationally cheap CPM adaptations are also presented, which outperform existing AL methods.
AbstractList In this paper, an intelligent probing method for interference constraint learning is proposed to allow a centralized cognitive radio network (CRN) to access the frequency band of a primary user (PU) in an underlay cognitive communication scenario. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback is implicit channel state information of the PU link, indicating whether the probing-induced interference is harmful or not. The intelligence of this sequential probing process lies in the selection of the power levels of the secondary users, which aims to minimize the number of probing attempts, a clearly active learning (AL) procedure, and expectantly the overall PU QoS degradation. The enhancement introduced in this paper is that we incorporate the probability of each feedback being correct into this intelligent probing mechanism by using a multivariate Bayesian AL method. This technique is inspired by the probabilistic bisection algorithm and the deterministic cutting plane methods (CPMs). The optimality of this multivariate Bayesian AL method is proven and its effectiveness is demonstrated through numerical simulations. Computationally cheap CPM adaptations are also presented, which outperform existing AL methods.
Author Tsakmalis, Anestis
Chatzinotas, Symeon
Ottersten, Bjorn
Author_xml – sequence: 1
  givenname: Anestis
  surname: Tsakmalis
  fullname: Tsakmalis, Anestis
  email: anestis.tsakmalis@uni.lu
  organization: Interdiscipl. Centre for Security, Univ. of Luxembourg, Luxembourg City, Luxembourg
– sequence: 2
  givenname: Symeon
  surname: Chatzinotas
  fullname: Chatzinotas, Symeon
  email: symeon.chatzinotas@uni.lu
  organization: Interdiscipl. Centre for Security, Univ. of Luxembourg, Luxembourg City, Luxembourg
– sequence: 3
  givenname: Bjorn
  surname: Ottersten
  fullname: Ottersten, Bjorn
  email: bjorn.ottersten@uni.lu
  organization: Interdiscipl. Centre for Security, Univ. of Luxembourg, Luxembourg City, Luxembourg
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-258988$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp9kMtKAzEUQINUsFb3gpsB11PzmOeyVKuFoiCtboSQmblp09akJqnFvzdjSxcuXCWQc24u5xx1tNGA0BXBfUJweTt9G_YpJnmf5piwjJygLknTIqY0KTrtnWUxoXl2hs6dW-JAZmnaRe9j7cFKsKBriIZGO2-F0j4a1F59QTQBYbXS82in_CKaBcj68B6NAJpK1KtIGhu0uVa_-ItolImewO-MXbkLdCrF2sHl4eyh2eh-OnyMJ88P4-FgEteMlj7OClxWZSNS1iQUCwlpnROZSagTwqDCtBJVJWXYWUAhJa1II4lMIAFGc9ZI1kPxfq7bwWZb8Y1VH8J-cyMUv1OvA27snK_8gtO0KIsi8Dd7fmPN5xac50uztTqsyElJytAvoSxQeE_V1jhnQR7nEszb5jw0521zfmgelOyPUisvvDK6rbr-T7zeiwoAjv_kJU1YkbMfTdiSOA
CODEN ITWCAX
CitedBy_id crossref_primary_10_1007_s12083_020_01053_7
crossref_primary_10_1109_JSYST_2018_2799902
crossref_primary_10_1002_dac_3805
crossref_primary_10_1109_ACCESS_2021_3057911
crossref_primary_10_1109_JSTSP_2017_2785826
crossref_primary_10_1109_TGCN_2019_2902838
crossref_primary_10_1109_TVT_2020_2979047
crossref_primary_10_1016_j_phycom_2022_101808
crossref_primary_10_1109_COMST_2017_2773628
Cites_doi 10.1109/TIT.2009.2034786
10.1109/TVT.2010.2043124
10.1080/01621459.1996.10476956
10.1109/ICC.2016.7511432
10.1016/S0166-218X(98)00103-6
10.1016/j.comnet.2006.05.001
10.1049/iet-com.2010.0542
10.1109/SPAWC.2014.6941505
10.1109/TWC.2014.2362119
10.1287/moor.18.2.255
10.2140/pjm.1960.10.1257
10.2307/2938238
10.1007/978-3-319-24540-9_29
10.1109/JSAC.2012.121108
10.1109/JSAC.2004.839380
10.1109/COMST.2016.2539923
10.1109/JPROC.2009.2015717
10.1109/TCCN.2016.2613562
10.1109/TSP.2013.2278155
10.1023/A:1008917713940
10.1109/TSP.2002.808104
10.1137/120861898
10.1109/ITA.2009.5044927
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
DOI 10.1109/TWC.2017.2701361
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 4668
ExternalDocumentID oai_DiVA_org_kth_258988
10_1109_TWC_2017_2701361
7924387
Genre orig-research
GrantInformation_xml – fundername: European Union under the HORIZON 2020 Research Project SANSA: Shared Access Terrestrial-Satellite Backhaul Network enabled by Smart Antennas
  funderid: 10.13039/501100007601
– fundername: National Research Fund of Luxembourg under the CORE projects SeMIGod: Spectrum Management and Interference Mitigation in Cognitive Radio Satellite Networks and SATSENT: Satellite Sensor Networks for Spectrum Monitoring
  funderid: 10.13039/501100001866
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c329t-6809b9da53d420afe5c71f6fec413eb02babbff001ae8ff2b1df1f4e4e3273df3
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405458300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
1558-2248
IngestDate Tue Nov 04 16:29:59 EST 2025
Fri Jul 25 18:57:18 EDT 2025
Tue Nov 18 20:25:53 EST 2025
Sat Nov 29 02:55:14 EST 2025
Wed Aug 27 02:52:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords cutting plane methods
Bayesian active learning
Bayes methods
Interference channels
Sensors
probabilistic bisection algorithm
Cognitive radio
Interference constraints
Signal to noise ratio
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-6809b9da53d420afe5c71f6fec413eb02babbff001ae8ff2b1df1f4e4e3273df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4528-396X
PQID 1919013423
PQPubID 105736
PageCount 15
ParticipantIDs swepub_primary_oai_DiVA_org_kth_258988
crossref_primary_10_1109_TWC_2017_2701361
ieee_primary_7924387
proquest_journals_1919013423
crossref_citationtrail_10_1109_TWC_2017_2701361
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
boyd (ref20) 2008
ref11
ref10
ref2
ref16
ref19
gilks (ref25) 1996
wicker (ref17) 1995
mitola (ref1) 2000
ref23
ref26
ref22
ref21
boyd (ref24) 1991
ref28
ref27
ref29
ref8
ref7
ref9
bertsekas (ref30) 1995
murphy (ref18) 2012
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1109/TIT.2009.2034786
– ident: ref13
  doi: 10.1109/TVT.2010.2043124
– ident: ref29
  doi: 10.1080/01621459.1996.10476956
– ident: ref21
  doi: 10.1109/ICC.2016.7511432
– ident: ref27
  doi: 10.1016/S0166-218X(98)00103-6
– ident: ref4
  doi: 10.1016/j.comnet.2006.05.001
– year: 2008
  ident: ref20
  article-title: Localization and cutting-plane methods
– ident: ref14
  doi: 10.1049/iet-com.2010.0542
– ident: ref7
  doi: 10.1109/SPAWC.2014.6941505
– ident: ref6
  doi: 10.1109/TWC.2014.2362119
– ident: ref26
  doi: 10.1287/moor.18.2.255
– ident: ref22
  doi: 10.2140/pjm.1960.10.1257
– year: 2000
  ident: ref1
  article-title: Cognitive radio: An integrated agent architecture for software defined radio
– ident: ref23
  doi: 10.2307/2938238
– ident: ref9
  doi: 10.1007/978-3-319-24540-9_29
– ident: ref12
  doi: 10.1109/JSAC.2012.121108
– ident: ref2
  doi: 10.1109/JSAC.2004.839380
– ident: ref16
  doi: 10.1109/COMST.2016.2539923
– ident: ref3
  doi: 10.1109/JPROC.2009.2015717
– ident: ref8
  doi: 10.1109/TCCN.2016.2613562
– ident: ref5
  doi: 10.1109/TSP.2013.2278155
– year: 1991
  ident: ref24
  publication-title: Linear Controller Design Limits of Performance
– ident: ref28
  doi: 10.1023/A:1008917713940
– year: 2012
  ident: ref18
  publication-title: Machine Learning A Probabilistic Perspective
– year: 1996
  ident: ref25
  publication-title: Markov Chain Monte Carlo in Practice
– year: 1995
  ident: ref17
  publication-title: Error Control Systems for Digital Communication and Storage
– ident: ref11
  doi: 10.1109/TSP.2002.808104
– ident: ref19
  doi: 10.1137/120861898
– year: 1995
  ident: ref30
  publication-title: Dynamic Programming and Optimal Control
– ident: ref15
  doi: 10.1109/ITA.2009.5044927
SSID ssj0017655
Score 2.3319738
Snippet In this paper, an intelligent probing method for interference constraint learning is proposed to allow a centralized cognitive radio network (CRN) to access...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4654
SubjectTerms Active learning
Bayes methods
Bayesian active learning
Bayesian analysis
Cognitive radio
Computer simulation
cutting plane methods
Feedback
Interference
Interference channels
Interference constraints
Learning
probabilistic bisection algorithm
Probabilistic methods
Probability theory
Radio networks
Sensors
Signal to noise ratio
Title Interference Constraint Active Learning with Uncertain Feedback for Cognitive Radio Networks
URI https://ieeexplore.ieee.org/document/7924387
https://www.proquest.com/docview/1919013423
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-258988
Volume 16
WOSCitedRecordID wos000405458300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPOjBt1hf5CCC4Np9dJvkWNTiQYqIr4MQ8tRSacWu_n4n2bgoiOBtD0nIziSZb5KZbwAOPMpQtMgTPB9LdFC0TtAqskTKQkmtjHEhfezukg4G7OGBX83AcZMLY60NwWf2xH-Gt3wz0e_-qqxN0VkoGJ2FWUq7da5W82JAu6HCKW5gX1eGNk-SKW_f3J_6GC56klPPUJb9MEGhpspPePmdMjSYmf7y_ya4AksRTpJerf9VmLHjNVj8RjK4Do_h0i-m9RFfoDOUhahILxx1JDKsPhF_JUtusVEIEiB9tGsoyBFBWIvdYpQRuZZmOCGDOnp8ugG3_fOb04sk1lRIdJHzKumylCtuZFmYTp5KZ0tNM9d1VqM1syrNlVTKORSotMy5XGXGZa5jO7ZAoGNcsQlz48nYbgFhHLGAy7RzCGK4ypi0mdHa4QAll0WnBe0vMQsdCcf9D76I4HikXKBihFeMiIppwVHT47Um2_ij7bqXf9Muir4Fu1-aFHE3TgX6pAh7PNdhCw5r7Tb9PL322fCuJ1CRYlQ9i7xknLHt34ffgQU_iTpedxfmqrd3uwfz-qMaTt_2w4r8BAuN4IA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB6ctJD0kD6cULdpq0MpFLr2Pi3paJKahLimFCfNISD0bI2LXexNfn9GWmVJoAR624MktDOS5htp5huAjx5lKFrkCZ6PFTooWidoFVkiZaGkVsa4kD52MaHTKbu85N878KXNhbHWhuAz2_ef4S3frPS1vyobUHQWCka34ElVlnnaZGu1bwZ0GGqc4hb2lWVo-yiZ8sHs55GP4qL9nHqOsuyBEQpVVR4CzPukocHQjJ__3xRfwF4ElGTUrICX0LHLV_DsHs1gF67CtV9M7CO-RGcoDFGTUTjsSORY_UX8pSw5x0YhTICM0bKhKBcEgS12i3FG5Ic08xWZNvHjm304H3-dHZ0ksapCoouc18mQpVxxI6vCoAyls5WmmRs6q9GeWZXmSirlHApUWuZcrjLjMlfa0hYIdYwrDmB7uVra10AYRzTgMu0cwhiuMiZtZrR2OEDFZVH2YHAnZqEj5bj_wT8iuB4pF6gY4RUjomJ68Lnt8beh23ikbdfLv20XRd-DwztNirgfNwK9UgQ-nu2wB58a7bb9PMH28fxiJFCRYlH_FnnFOGNv_j38B9g5mX2biMnp9Owt7PoJNdG7h7Bdr6_tO3iqb-r5Zv0-rM5b2xrjxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interference+Constraint+Active+Learning+with+Uncertain+Feedback+for+Cognitive+Radio+Networks&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Tsakmalis%2C+Anestis&rft.au=Chatzinotas%2C+Symeon&rft.au=Ottersten%2C+Bjorn&rft.date=2017-07-01&rft.issn=1536-1276&rft.volume=16&rft.issue=7&rft.spage=4654&rft.epage=4668&rft_id=info:doi/10.1109%2FTWC.2017.2701361&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2017_2701361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon