Distributed Online Optimization With Long-Term Constraints

In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected through a time-varying communication graph. In each time step, each computing unit selects a constrained vector, experiences a loss equal to an arb...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automatic control Ročník 67; číslo 3; s. 1089 - 1104
Hlavní autori: Yuan, Deming, Proutiere, Alexandre, Shi, Guodong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9286, 1558-2523, 1558-2523
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected through a time-varying communication graph. In each time step, each computing unit selects a constrained vector, experiences a loss equal to an arbitrary convex function evaluated at this vector, and may communicate to its neighbors in the graph. The objective is to minimize the system-wide loss accumulated over time. We propose a decentralized algorithm with regret and cumulative constraint violation in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{\max \lbrace c,1-c\rbrace })</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{1-c/2})</tex-math></inline-formula>, respectively, for any <inline-formula><tex-math notation="LaTeX">c\in (0,1)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula> is the time horizon. When the loss functions are strongly convex, we establish improved regret and constraint violation upper bounds in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\log (T))</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\sqrt{T\log (T)})</tex-math></inline-formula>. These regret scalings match those obtained by state-of-the-art algorithms and fundamental limits in the corresponding centralized online optimization problem (for both convex and strongly convex loss functions). In the case of bandit feedback, the proposed algorithms achieve a regret and constraint violation in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{\max \lbrace c,1-c/3 \rbrace })</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{1-c/2})</tex-math></inline-formula> for any <inline-formula><tex-math notation="LaTeX">c\in (0,1)</tex-math></inline-formula>. We numerically illustrate the performance of our algorithms for the particular case of distributed online regularized linear regression problems on synthetic and real data.
AbstractList In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected through a time-varying communication graph. In each time step, each computing unit selects a constrained vector, experiences a loss equal to an arbitrary convex function evaluated at this vector, and may communicate to its neighbors in the graph. The objective is to minimize the system-wide loss accumulated over time. We propose a decentralized algorithm with regret and cumulative constraint violation in O(T c,1-c ) and O(T1-c/2), respectively, for any cin (0,1), where T is the time horizon. When the loss functions are strongly convex, we establish improved regret and constraint violation upper bounds in O( (T)) and O(T (T)). These regret scalings match those obtained by state-of-the-art algorithms and fundamental limits in the corresponding centralized online optimization problem (for both convex and strongly convex loss functions). In the case of bandit feedback, the proposed algorithms achieve a regret and constraint violation in O(T c,1-c/3 ) and O(T1-c/2) for any cin (0,1). We numerically illustrate the performance of our algorithms for the particular case of distributed online regularized linear regression problems on synthetic and real data.
In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected through a time-varying communication graph. In each time step, each computing unit selects a constrained vector, experiences a loss equal to an arbitrary convex function evaluated at this vector, and may communicate to its neighbors in the graph. The objective is to minimize the system-wide loss accumulated over time. We propose a decentralized algorithm with regret and cumulative constraint violation in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{\max \lbrace c,1-c\rbrace })</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{1-c/2})</tex-math></inline-formula>, respectively, for any <inline-formula><tex-math notation="LaTeX">c\in (0,1)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula> is the time horizon. When the loss functions are strongly convex, we establish improved regret and constraint violation upper bounds in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\log (T))</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\sqrt{T\log (T)})</tex-math></inline-formula>. These regret scalings match those obtained by state-of-the-art algorithms and fundamental limits in the corresponding centralized online optimization problem (for both convex and strongly convex loss functions). In the case of bandit feedback, the proposed algorithms achieve a regret and constraint violation in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{\max \lbrace c,1-c/3 \rbrace })</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{1-c/2})</tex-math></inline-formula> for any <inline-formula><tex-math notation="LaTeX">c\in (0,1)</tex-math></inline-formula>. We numerically illustrate the performance of our algorithms for the particular case of distributed online regularized linear regression problems on synthetic and real data.
In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected through a time-varying communication graph. In each time step, each computing unit selects a constrained vector, experiences a loss equal to an arbitrary convex function evaluated at this vector, and may communicate to its neighbors in the graph. The objective is to minimize the system-wide loss accumulated over time. We propose a decentralized algorithm with regret and cumulative constraint violation in [Formula Omitted] and [Formula Omitted], respectively, for any [Formula Omitted], where [Formula Omitted] is the time horizon. When the loss functions are strongly convex, we establish improved regret and constraint violation upper bounds in [Formula Omitted] and [Formula Omitted]. These regret scalings match those obtained by state-of-the-art algorithms and fundamental limits in the corresponding centralized online optimization problem (for both convex and strongly convex loss functions). In the case of bandit feedback, the proposed algorithms achieve a regret and constraint violation in [Formula Omitted] and [Formula Omitted] for any [Formula Omitted]. We numerically illustrate the performance of our algorithms for the particular case of distributed online regularized linear regression problems on synthetic and real data.
Author Yuan, Deming
Proutiere, Alexandre
Shi, Guodong
Author_xml – sequence: 1
  givenname: Deming
  orcidid: 0000-0003-4371-5105
  surname: Yuan
  fullname: Yuan, Deming
  email: dmyuan1012@gmail.com
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Alexandre
  orcidid: 0000-0002-4679-4673
  surname: Proutiere
  fullname: Proutiere, Alexandre
  email: alepro@kth.se
  organization: Department of Automatic Control, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 3
  givenname: Guodong
  orcidid: 0000-0002-5929-9655
  surname: Shi
  fullname: Shi, Guodong
  email: guodong.shi@sydney.edu.au
  organization: Australian Center for Field Robotics, Sydney Institute for Robotics and Intelligent Systems, The University of Sydney, Sydney, NSW, Australia
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-305491$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp9kEtLAzEURoNUsFb3gpsB11PzmkfcldYXFLqpugyTmaRNbZMxySD6602d6sKFq8uFcy73-07BwFgjAbhAcIwQZNfLyXSMIUZjArMih-gIDFGWlSnOMBmAIYSoTBku8xNw6v0mrjmlaAhuZtoHp0UXZJMszFYbmSzaoHf6swramuRFh3Uyt2aVLqXbJVNrIl9pE_wZOFbV1svzwxyBp7vb5fQhnS_uH6eTeVoTzEKaQ1pglpMmo6JhoqwwQlXDFG5KUWQCiQbDspI0R0rhmmIlVVErSIUkjGaNICOQ9nf9u2w7wVund5X74LbSfKafJ9y6FX8Nax6TU4Yif9XzrbNvnfSBb2znTHyR45xECJOiiFTeU7Wz3jupeK3Dd-R9vC1HkO975bFXvu-VH3qNIvwj_jz0j3LZK1pK-YszQhmGGfkCo3mEeA
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_ejcon_2024_101042
crossref_primary_10_1109_TNSE_2023_3309293
crossref_primary_10_1002_rnc_70188
crossref_primary_10_1109_TAC_2022_3230771
crossref_primary_10_1109_TAC_2024_3481040
crossref_primary_10_1016_j_automatica_2023_111364
crossref_primary_10_1109_TAC_2024_3489222
crossref_primary_10_1016_j_automatica_2024_111828
crossref_primary_10_1016_j_isatra_2024_06_033
crossref_primary_10_1109_TAC_2023_3312033
crossref_primary_10_1109_TNNLS_2022_3170944
crossref_primary_10_1016_j_automatica_2023_111407
crossref_primary_10_1109_TCSII_2024_3362793
crossref_primary_10_1109_TAC_2023_3239432
crossref_primary_10_1145_3508467_3508472
crossref_primary_10_1049_cth2_12759
crossref_primary_10_1007_s11768_025_00242_0
crossref_primary_10_1016_j_arcontrol_2023_100904
crossref_primary_10_1016_j_automatica_2024_111681
crossref_primary_10_1016_j_amc_2023_127865
crossref_primary_10_1109_TCSI_2022_3185398
crossref_primary_10_1109_TAC_2022_3230766
crossref_primary_10_1109_TAC_2025_3547606
crossref_primary_10_1016_j_eswa_2025_127871
crossref_primary_10_1016_j_neucom_2025_131406
crossref_primary_10_1109_TNET_2023_3318474
crossref_primary_10_1109_TMC_2025_3547148
crossref_primary_10_1109_TSMC_2022_3144187
crossref_primary_10_1016_j_ins_2023_02_037
crossref_primary_10_1109_TON_2025_3530460
crossref_primary_10_1080_00207721_2025_2538736
crossref_primary_10_1109_LCSYS_2024_3367917
crossref_primary_10_1002_asjc_2996
crossref_primary_10_1016_j_jfranklin_2023_10_041
crossref_primary_10_1007_s11431_023_2513_8
crossref_primary_10_1016_j_jfranklin_2024_107132
crossref_primary_10_1109_JAS_2023_123126
crossref_primary_10_1360_SSM_2024_0223
crossref_primary_10_1002_asjc_3747
crossref_primary_10_1109_ACCESS_2023_3305529
crossref_primary_10_1016_j_neucom_2023_127184
Cites_doi 10.1109/TAC.2017.2743462
10.1145/3055399.3055403
10.1007/s10994-007-5016-8
10.1109/TKDE.2012.191
10.1109/TAC.2010.2041686
10.1109/TSP.2020.2964200
10.1109/TIT.2020.3029304
10.1109/ACC.2010.5530578
10.1109/CDC.2008.4738860
10.1137/090770102
10.1109/TSP.2015.2449255
10.1109/TCYB.2017.2755720
10.1109/JIOT.2018.2839563
10.1109/TAC.2020.3021011
10.1109/TAC.2017.2650563
10.1109/TAC.2016.2525928
10.1561/2200000018
10.1109/TSP.2019.2896112
10.1109/CDC.2013.6760092
10.1109/TAC.2011.2161027
10.1109/GlobalSIP.2014.7032240
10.1109/TAC.2016.2529285
10.1007/978-0-85729-033-5_3
10.1561/2400000013
10.1109/TAC.2008.2009515
10.1109/CDC40024.2019.9030193
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
DOI 10.1109/TAC.2021.3057601
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 1104
ExternalDocumentID oai_DiVA_org_kth_305491
10_1109_TAC_2021_3057601
9349205
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62022042
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30919011105
  funderid: 10.13039/501100012226
– fundername: Australian Research Council
  grantid: DP190103615
  funderid: 10.13039/501100000923
– fundername: Australian Department of Education and Training Endeavour Research Fellowship
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c329t-60472963d54bd9b8a211ad9f2d8b75b1bd208ae461ff2c42fef7cf04be3945db3
IEDL.DBID RIE
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761219400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
1558-2523
IngestDate Tue Nov 04 17:18:39 EST 2025
Mon Jun 30 10:23:27 EDT 2025
Tue Nov 18 22:43:12 EST 2025
Sat Nov 29 05:41:01 EST 2025
Wed Aug 27 02:49:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-60472963d54bd9b8a211ad9f2d8b75b1bd208ae461ff2c42fef7cf04be3945db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4679-4673
0000-0003-4371-5105
0000-0002-5929-9655
PQID 2633052377
PQPubID 85475
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TAC_2021_3057601
swepub_primary_oai_DiVA_org_kth_305491
proquest_journals_2633052377
crossref_primary_10_1109_TAC_2021_3057601
ieee_primary_9349205
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
jenatton (ref8) 0
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref17
ref16
flaxman (ref10) 0
ref19
ref24
ref23
mahdavi (ref6) 2012; 13
ref26
ref25
ref20
khuzani (ref29) 0
ref22
ref21
liakopoulos (ref12) 0
yuan (ref9) 0
ref28
agarwal (ref13) 0
ref27
zinkevich (ref3) 0
abernethy (ref5) 0
ref7
ref4
zhang (ref18) 0; 70
References_xml – ident: ref14
  doi: 10.1109/TAC.2017.2743462
– start-page: 28
  year: 0
  ident: ref13
  article-title: Optimal algorithms for online convex optimization with multi-point bandit feedback
  publication-title: Proc 23rd Annu Conf Learn Theory
– start-page: 1
  year: 0
  ident: ref5
  article-title: A stochastic view of optimal regret through minimax duality
  publication-title: Proc 22th Annu Conf Learn Theory
– ident: ref11
  doi: 10.1145/3055399.3055403
– ident: ref4
  doi: 10.1007/s10994-007-5016-8
– ident: ref23
  doi: 10.1109/TKDE.2012.191
– year: 0
  ident: ref29
  article-title: Distributed regularized primal-dual method: Convergence analysis and trade-offs
– ident: ref26
  doi: 10.1109/TAC.2010.2041686
– start-page: 6140
  year: 0
  ident: ref9
  article-title: Online convex optimization for cumulative constraints
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref21
  doi: 10.1109/TSP.2020.2964200
– ident: ref33
  doi: 10.1109/TIT.2020.3029304
– ident: ref28
  doi: 10.1109/ACC.2010.5530578
– volume: 70
  start-page: 4054
  year: 0
  ident: ref18
  article-title: Projection-free distributed online learning in networks
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref36
  doi: 10.1109/CDC.2008.4738860
– start-page: 402
  year: 0
  ident: ref8
  article-title: Adaptive algorithms for online convex optimization with long-term constraints
  publication-title: Proc 33rd Int Conf Int Conf Mach Learn
– ident: ref30
  doi: 10.1137/090770102
– ident: ref17
  doi: 10.1109/TSP.2015.2449255
– ident: ref19
  doi: 10.1109/TCYB.2017.2755720
– ident: ref7
  doi: 10.1109/JIOT.2018.2839563
– ident: ref20
  doi: 10.1109/TAC.2020.3021011
– ident: ref15
  doi: 10.1109/TAC.2017.2650563
– ident: ref16
  doi: 10.1109/TAC.2016.2525928
– ident: ref1
  doi: 10.1561/2200000018
– ident: ref32
  doi: 10.1109/TSP.2019.2896112
– start-page: 3944
  year: 0
  ident: ref12
  article-title: Cautious regret minimization: Online optimization with long-term budget constraints
  publication-title: Proc Int Conf Mach Learn
– ident: ref25
  doi: 10.1109/CDC.2013.6760092
– start-page: 385
  year: 0
  ident: ref10
  article-title: Online convex optimization in the bandit setting: Gradient descent without a gradient
  publication-title: Proc 16th Annu ACM-SIAM Symp Discrete Algorithms
– ident: ref24
  doi: 10.1109/TAC.2011.2161027
– start-page: 928
  year: 0
  ident: ref3
  article-title: Online convex programming and generalized infinitesimal gradient ascent
  publication-title: Proc 20th Int Conf Int Conf Mach Learn
– ident: ref31
  doi: 10.1109/GlobalSIP.2014.7032240
– ident: ref34
  doi: 10.1109/TAC.2016.2529285
– ident: ref27
  doi: 10.1007/978-0-85729-033-5_3
– volume: 13
  start-page: 2503
  year: 2012
  ident: ref6
  article-title: Trading regret for efficiency: Online convex optimization with long term constraints
  publication-title: J Mach Learn Res
– ident: ref2
  doi: 10.1561/2400000013
– ident: ref22
  doi: 10.1109/TAC.2008.2009515
– ident: ref35
  doi: 10.1109/CDC40024.2019.9030193
SSID ssj0016441
Score 2.602387
Snippet In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1089
SubjectTerms Absolute constraint violation
Algorithms
Communication graphs
Computational geometry
Computer networks
Constraint violation
Constraints
Convex functions
Convex optimization
Convexity
Cumulative constraints
Decentralized algorithms
Distributed algorithms
Distributed computer systems
Distributed database systems
Distributed online convex optimization
distributed online convex optimization (DOCO)
Distributed systems
Functions
long-term constraints
longterm constraints
one-point bandit feedback
Online convex optimizations
Online optimization
Optimization
regret
Robots
State-of-the-art algorithms
Time-varying systems
Unsolicited e-mail
Upper bound
Upper bounds
Title Distributed Online Optimization With Long-Term Constraints
URI https://ieeexplore.ieee.org/document/9349205
https://www.proquest.com/docview/2633052377
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-305491
Volume 67
WOSCitedRecordID wos000761219400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 1558-2523
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZg4gAH3ojBQD0gJCTKmjRdGm4TD3FAwGE8blHzYhOwIVb4_cRpqUBCSNxySKLIju04tj8D7BU5U5RzHWuVmZhZL3NKCxt701IQZggpnAvNJvjVVf7wIG5m4LCphbHWhuQze4TDEMs3E_2OX2VdgVB6CFg6yzmvarWaiAHa9UrregGmeROSTER30D_xjiAlR_5uYwrIDxMUeqr8fF5-hwwNZuZ86X8HXIbF-jkZ9Sv-r8CMHa_CwjeQwTU4PkVsXGxrZU1UIYtG115RvNQVmNH9qBxGl5PxYzzwajrCFp6hcUQ5XYfb87PByUVcd0yIdUpFGfcQ-9GLlMmYMkLlhXfvCiMcNbnimSLK0CQvLOsR56hm1FnHtUuYsqlgmVHpBrTGk7HdhChJc2N5qohlqXfhMqWowSXeHyE8cawN3S8iSl3DiePhnmVwKxIhPdklkl3WZG_DQbPitYLS-GPuGlK3mVcTtg2dLz7JWtamkvbSFD-3OW_DfsW7Zh2CZ5-O7vrSs0k-lUPcnwmy9fv22zBPsbohpJh1oFW-vdsdmNMf5Wj6thvu2ydHbNIR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4hWgl6gJaHGqDtHiokJJasvd54zS0KREGkKYfwuFnrF0TQpCJLfz8e72YFUoXEzQfbsj7PeDz2zDcAP4ucKcq5jrXKTMys1zmlhY29aSkIM4QUzoViE3w0ym9uxMUSHDa5MNbaEHxmj7AZ_vLNTD_hU1lbIJUeEpZ-yBijpMrWav4M0LJX565XYZo3n5KJaI-7Pe8KUnLkpRuDQF4ZoVBV5fUF8yVpaDA0_fX3LfEzrNUXyqhbScAXWLLTDfj0gmZwE45PkB0XC1tZE1XcotFvf1T8qXMwo-tJeRcNZ9PbeOwP6giLeIbSEeV8Cy77p-PeIK5rJsQ6paKMO8j-6JXKZEwZofLCO3iFEY6aXPFMEWVokheWdYhzVDPqrOPaJUzZVLDMqHQblqezqf0KUZLmxvJUEctS78RlSlGDQ7xHQnjiWAvaCxClrgnFcXEPMjgWiZAedomwyxr2Fhw0I_5WZBpv9N1EdJt-NbAt2Fvsk6y1bS5pJ03xeZvzFuxXe9eMQ_rsk8lVV_ptkvflHc7PBNn5__Q_YGUw_jWUw7PR-S6sUsx1CAFne7BcPj7Zb_BR_ysn88fvQfaeAV711Vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Online+Optimization+With+Long-Term+Constraints&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Yuan%2C+Deming&rft.au=Proutiere%2C+Alexandre&rft.au=Shi%2C+Guodong&rft.date=2022-03-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=3&rft.spage=1089&rft.epage=1104&rft_id=info:doi/10.1109%2FTAC.2021.3057601&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2021_3057601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon