Distributed Online Optimization With Long-Term Constraints
In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected through a time-varying communication graph. In each time step, each computing unit selects a constrained vector, experiences a loss equal to an arb...
Saved in:
| Published in: | IEEE transactions on automatic control Vol. 67; no. 3; pp. 1089 - 1104 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9286, 1558-2523, 1558-2523 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected through a time-varying communication graph. In each time step, each computing unit selects a constrained vector, experiences a loss equal to an arbitrary convex function evaluated at this vector, and may communicate to its neighbors in the graph. The objective is to minimize the system-wide loss accumulated over time. We propose a decentralized algorithm with regret and cumulative constraint violation in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{\max \lbrace c,1-c\rbrace })</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{1-c/2})</tex-math></inline-formula>, respectively, for any <inline-formula><tex-math notation="LaTeX">c\in (0,1)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula> is the time horizon. When the loss functions are strongly convex, we establish improved regret and constraint violation upper bounds in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\log (T))</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\sqrt{T\log (T)})</tex-math></inline-formula>. These regret scalings match those obtained by state-of-the-art algorithms and fundamental limits in the corresponding centralized online optimization problem (for both convex and strongly convex loss functions). In the case of bandit feedback, the proposed algorithms achieve a regret and constraint violation in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{\max \lbrace c,1-c/3 \rbrace })</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{1-c/2})</tex-math></inline-formula> for any <inline-formula><tex-math notation="LaTeX">c\in (0,1)</tex-math></inline-formula>. We numerically illustrate the performance of our algorithms for the particular case of distributed online regularized linear regression problems on synthetic and real data. |
|---|---|
| AbstractList | In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected through a time-varying communication graph. In each time step, each computing unit selects a constrained vector, experiences a loss equal to an arbitrary convex function evaluated at this vector, and may communicate to its neighbors in the graph. The objective is to minimize the system-wide loss accumulated over time. We propose a decentralized algorithm with regret and cumulative constraint violation in O(T c,1-c ) and O(T1-c/2), respectively, for any cin (0,1), where T is the time horizon. When the loss functions are strongly convex, we establish improved regret and constraint violation upper bounds in O( (T)) and O(T (T)). These regret scalings match those obtained by state-of-the-art algorithms and fundamental limits in the corresponding centralized online optimization problem (for both convex and strongly convex loss functions). In the case of bandit feedback, the proposed algorithms achieve a regret and constraint violation in O(T c,1-c/3 ) and O(T1-c/2) for any cin (0,1). We numerically illustrate the performance of our algorithms for the particular case of distributed online regularized linear regression problems on synthetic and real data. In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected through a time-varying communication graph. In each time step, each computing unit selects a constrained vector, experiences a loss equal to an arbitrary convex function evaluated at this vector, and may communicate to its neighbors in the graph. The objective is to minimize the system-wide loss accumulated over time. We propose a decentralized algorithm with regret and cumulative constraint violation in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{\max \lbrace c,1-c\rbrace })</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{1-c/2})</tex-math></inline-formula>, respectively, for any <inline-formula><tex-math notation="LaTeX">c\in (0,1)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula> is the time horizon. When the loss functions are strongly convex, we establish improved regret and constraint violation upper bounds in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\log (T))</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\sqrt{T\log (T)})</tex-math></inline-formula>. These regret scalings match those obtained by state-of-the-art algorithms and fundamental limits in the corresponding centralized online optimization problem (for both convex and strongly convex loss functions). In the case of bandit feedback, the proposed algorithms achieve a regret and constraint violation in <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{\max \lbrace c,1-c/3 \rbrace })</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\mathcal O}(T^{1-c/2})</tex-math></inline-formula> for any <inline-formula><tex-math notation="LaTeX">c\in (0,1)</tex-math></inline-formula>. We numerically illustrate the performance of our algorithms for the particular case of distributed online regularized linear regression problems on synthetic and real data. In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected through a time-varying communication graph. In each time step, each computing unit selects a constrained vector, experiences a loss equal to an arbitrary convex function evaluated at this vector, and may communicate to its neighbors in the graph. The objective is to minimize the system-wide loss accumulated over time. We propose a decentralized algorithm with regret and cumulative constraint violation in [Formula Omitted] and [Formula Omitted], respectively, for any [Formula Omitted], where [Formula Omitted] is the time horizon. When the loss functions are strongly convex, we establish improved regret and constraint violation upper bounds in [Formula Omitted] and [Formula Omitted]. These regret scalings match those obtained by state-of-the-art algorithms and fundamental limits in the corresponding centralized online optimization problem (for both convex and strongly convex loss functions). In the case of bandit feedback, the proposed algorithms achieve a regret and constraint violation in [Formula Omitted] and [Formula Omitted] for any [Formula Omitted]. We numerically illustrate the performance of our algorithms for the particular case of distributed online regularized linear regression problems on synthetic and real data. |
| Author | Yuan, Deming Proutiere, Alexandre Shi, Guodong |
| Author_xml | – sequence: 1 givenname: Deming orcidid: 0000-0003-4371-5105 surname: Yuan fullname: Yuan, Deming email: dmyuan1012@gmail.com organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Alexandre orcidid: 0000-0002-4679-4673 surname: Proutiere fullname: Proutiere, Alexandre email: alepro@kth.se organization: Department of Automatic Control, KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 3 givenname: Guodong orcidid: 0000-0002-5929-9655 surname: Shi fullname: Shi, Guodong email: guodong.shi@sydney.edu.au organization: Australian Center for Field Robotics, Sydney Institute for Robotics and Intelligent Systems, The University of Sydney, Sydney, NSW, Australia |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-305491$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) |
| BookMark | eNp9kEtLAzEURoNUsFb3gpsB11PzmkfcldYXFLqpugyTmaRNbZMxySD6602d6sKFq8uFcy73-07BwFgjAbhAcIwQZNfLyXSMIUZjArMih-gIDFGWlSnOMBmAIYSoTBku8xNw6v0mrjmlaAhuZtoHp0UXZJMszFYbmSzaoHf6swramuRFh3Uyt2aVLqXbJVNrIl9pE_wZOFbV1svzwxyBp7vb5fQhnS_uH6eTeVoTzEKaQ1pglpMmo6JhoqwwQlXDFG5KUWQCiQbDspI0R0rhmmIlVVErSIUkjGaNICOQ9nf9u2w7wVund5X74LbSfKafJ9y6FX8Nax6TU4Yif9XzrbNvnfSBb2znTHyR45xECJOiiFTeU7Wz3jupeK3Dd-R9vC1HkO975bFXvu-VH3qNIvwj_jz0j3LZK1pK-YszQhmGGfkCo3mEeA |
| CODEN | IETAA9 |
| CitedBy_id | crossref_primary_10_1016_j_ejcon_2024_101042 crossref_primary_10_1109_TNSE_2023_3309293 crossref_primary_10_1002_rnc_70188 crossref_primary_10_1109_TAC_2022_3230771 crossref_primary_10_1109_TAC_2024_3481040 crossref_primary_10_1016_j_automatica_2023_111364 crossref_primary_10_1109_TAC_2024_3489222 crossref_primary_10_1016_j_automatica_2024_111828 crossref_primary_10_1016_j_isatra_2024_06_033 crossref_primary_10_1109_TAC_2023_3312033 crossref_primary_10_1109_TNNLS_2022_3170944 crossref_primary_10_1016_j_automatica_2023_111407 crossref_primary_10_1109_TCSII_2024_3362793 crossref_primary_10_1109_TAC_2023_3239432 crossref_primary_10_1145_3508467_3508472 crossref_primary_10_1049_cth2_12759 crossref_primary_10_1007_s11768_025_00242_0 crossref_primary_10_1016_j_arcontrol_2023_100904 crossref_primary_10_1016_j_automatica_2024_111681 crossref_primary_10_1016_j_amc_2023_127865 crossref_primary_10_1109_TCSI_2022_3185398 crossref_primary_10_1109_TAC_2022_3230766 crossref_primary_10_1109_TAC_2025_3547606 crossref_primary_10_1016_j_eswa_2025_127871 crossref_primary_10_1016_j_neucom_2025_131406 crossref_primary_10_1109_TNET_2023_3318474 crossref_primary_10_1109_TMC_2025_3547148 crossref_primary_10_1109_TSMC_2022_3144187 crossref_primary_10_1016_j_ins_2023_02_037 crossref_primary_10_1109_TON_2025_3530460 crossref_primary_10_1080_00207721_2025_2538736 crossref_primary_10_1109_LCSYS_2024_3367917 crossref_primary_10_1002_asjc_2996 crossref_primary_10_1016_j_jfranklin_2023_10_041 crossref_primary_10_1007_s11431_023_2513_8 crossref_primary_10_1016_j_jfranklin_2024_107132 crossref_primary_10_1109_JAS_2023_123126 crossref_primary_10_1360_SSM_2024_0223 crossref_primary_10_1002_asjc_3747 crossref_primary_10_1109_ACCESS_2023_3305529 crossref_primary_10_1016_j_neucom_2023_127184 |
| Cites_doi | 10.1109/TAC.2017.2743462 10.1145/3055399.3055403 10.1007/s10994-007-5016-8 10.1109/TKDE.2012.191 10.1109/TAC.2010.2041686 10.1109/TSP.2020.2964200 10.1109/TIT.2020.3029304 10.1109/ACC.2010.5530578 10.1109/CDC.2008.4738860 10.1137/090770102 10.1109/TSP.2015.2449255 10.1109/TCYB.2017.2755720 10.1109/JIOT.2018.2839563 10.1109/TAC.2020.3021011 10.1109/TAC.2017.2650563 10.1109/TAC.2016.2525928 10.1561/2200000018 10.1109/TSP.2019.2896112 10.1109/CDC.2013.6760092 10.1109/TAC.2011.2161027 10.1109/GlobalSIP.2014.7032240 10.1109/TAC.2016.2529285 10.1007/978-0-85729-033-5_3 10.1561/2400000013 10.1109/TAC.2008.2009515 10.1109/CDC40024.2019.9030193 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D ADTPV AOWAS D8V |
| DOI | 10.1109/TAC.2021.3057601 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 1104 |
| ExternalDocumentID | oai_DiVA_org_kth_305491 10_1109_TAC_2021_3057601 9349205 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62022042 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 30919011105 funderid: 10.13039/501100012226 – fundername: Australian Research Council grantid: DP190103615 funderid: 10.13039/501100000923 – fundername: Australian Department of Education and Training Endeavour Research Fellowship |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D ADTPV AOWAS D8V |
| ID | FETCH-LOGICAL-c329t-60472963d54bd9b8a211ad9f2d8b75b1bd208ae461ff2c42fef7cf04be3945db3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761219400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9286 1558-2523 |
| IngestDate | Tue Nov 04 17:18:39 EST 2025 Mon Jun 30 10:23:27 EDT 2025 Tue Nov 18 22:43:12 EST 2025 Sat Nov 29 05:41:01 EST 2025 Wed Aug 27 02:49:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c329t-60472963d54bd9b8a211ad9f2d8b75b1bd208ae461ff2c42fef7cf04be3945db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4679-4673 0000-0003-4371-5105 0000-0002-5929-9655 |
| PQID | 2633052377 |
| PQPubID | 85475 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_TAC_2021_3057601 swepub_primary_oai_DiVA_org_kth_305491 proquest_journals_2633052377 crossref_primary_10_1109_TAC_2021_3057601 ieee_primary_9349205 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref15 jenatton (ref8) 0 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref1 ref17 ref16 flaxman (ref10) 0 ref19 ref24 ref23 mahdavi (ref6) 2012; 13 ref26 ref25 ref20 khuzani (ref29) 0 ref22 ref21 liakopoulos (ref12) 0 yuan (ref9) 0 ref28 agarwal (ref13) 0 ref27 zinkevich (ref3) 0 abernethy (ref5) 0 ref7 ref4 zhang (ref18) 0; 70 |
| References_xml | – ident: ref14 doi: 10.1109/TAC.2017.2743462 – start-page: 28 year: 0 ident: ref13 article-title: Optimal algorithms for online convex optimization with multi-point bandit feedback publication-title: Proc 23rd Annu Conf Learn Theory – start-page: 1 year: 0 ident: ref5 article-title: A stochastic view of optimal regret through minimax duality publication-title: Proc 22th Annu Conf Learn Theory – ident: ref11 doi: 10.1145/3055399.3055403 – ident: ref4 doi: 10.1007/s10994-007-5016-8 – ident: ref23 doi: 10.1109/TKDE.2012.191 – year: 0 ident: ref29 article-title: Distributed regularized primal-dual method: Convergence analysis and trade-offs – ident: ref26 doi: 10.1109/TAC.2010.2041686 – start-page: 6140 year: 0 ident: ref9 article-title: Online convex optimization for cumulative constraints publication-title: Proc Adv Neural Inf Process Syst – ident: ref21 doi: 10.1109/TSP.2020.2964200 – ident: ref33 doi: 10.1109/TIT.2020.3029304 – ident: ref28 doi: 10.1109/ACC.2010.5530578 – volume: 70 start-page: 4054 year: 0 ident: ref18 article-title: Projection-free distributed online learning in networks publication-title: Proc 34th Int Conf Mach Learn – ident: ref36 doi: 10.1109/CDC.2008.4738860 – start-page: 402 year: 0 ident: ref8 article-title: Adaptive algorithms for online convex optimization with long-term constraints publication-title: Proc 33rd Int Conf Int Conf Mach Learn – ident: ref30 doi: 10.1137/090770102 – ident: ref17 doi: 10.1109/TSP.2015.2449255 – ident: ref19 doi: 10.1109/TCYB.2017.2755720 – ident: ref7 doi: 10.1109/JIOT.2018.2839563 – ident: ref20 doi: 10.1109/TAC.2020.3021011 – ident: ref15 doi: 10.1109/TAC.2017.2650563 – ident: ref16 doi: 10.1109/TAC.2016.2525928 – ident: ref1 doi: 10.1561/2200000018 – ident: ref32 doi: 10.1109/TSP.2019.2896112 – start-page: 3944 year: 0 ident: ref12 article-title: Cautious regret minimization: Online optimization with long-term budget constraints publication-title: Proc Int Conf Mach Learn – ident: ref25 doi: 10.1109/CDC.2013.6760092 – start-page: 385 year: 0 ident: ref10 article-title: Online convex optimization in the bandit setting: Gradient descent without a gradient publication-title: Proc 16th Annu ACM-SIAM Symp Discrete Algorithms – ident: ref24 doi: 10.1109/TAC.2011.2161027 – start-page: 928 year: 0 ident: ref3 article-title: Online convex programming and generalized infinitesimal gradient ascent publication-title: Proc 20th Int Conf Int Conf Mach Learn – ident: ref31 doi: 10.1109/GlobalSIP.2014.7032240 – ident: ref34 doi: 10.1109/TAC.2016.2529285 – ident: ref27 doi: 10.1007/978-0-85729-033-5_3 – volume: 13 start-page: 2503 year: 2012 ident: ref6 article-title: Trading regret for efficiency: Online convex optimization with long term constraints publication-title: J Mach Learn Res – ident: ref2 doi: 10.1561/2400000013 – ident: ref22 doi: 10.1109/TAC.2008.2009515 – ident: ref35 doi: 10.1109/CDC40024.2019.9030193 |
| SSID | ssj0016441 |
| Score | 2.602387 |
| Snippet | In this article, we consider distributed online convex optimization problems, where the distributed system consists of various computing units connected... |
| SourceID | swepub proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1089 |
| SubjectTerms | Absolute constraint violation Algorithms Communication graphs Computational geometry Computer networks Constraint violation Constraints Convex functions Convex optimization Convexity Cumulative constraints Decentralized algorithms Distributed algorithms Distributed computer systems Distributed database systems Distributed online convex optimization distributed online convex optimization (DOCO) Distributed systems Functions long-term constraints longterm constraints one-point bandit feedback Online convex optimizations Online optimization Optimization regret Robots State-of-the-art algorithms Time-varying systems Unsolicited e-mail Upper bound Upper bounds |
| Title | Distributed Online Optimization With Long-Term Constraints |
| URI | https://ieeexplore.ieee.org/document/9349205 https://www.proquest.com/docview/2633052377 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-305491 |
| Volume | 67 |
| WOSCitedRecordID | wos000761219400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 1558-2523 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8aAH3-L6ogcRBOu2adok3hZ18bCsHtbHLTRN4i7qrrjV328mrUVBBG85JCHMZF7JzDcAhzGCzmWKhJHiNqTUqJDrlITCOQeZcQ4_S32hcJ8NBvzhQdy04KSphTHG-OQzc4pD_5evp8U7PpV1BELpIWDpHGOsqtVqfgzQrlda1wkw4c2XZCQ6w-65CwRJfOruNqaA_DBBvqfKT_fyO2SoNzO9lf8dcBWWa3cy6Fb8X4OWmazD0jeQwQ04u0BsXGxrZXRQIYsG105RvNQVmMH9uBwF_enkMRw6NR1gC0_fOKKcbcJt73J4fhXWHRPCIiGiDDPEfnQipVOqtFA8d-FdroUlmiuWqlhpEvHc0Cy2lhSUWGNZYSOqTCJoqlWyBfOT6cRsQ5BlNo-cM2MsMTTRlhe5MpxorGTVVKdt6HwRURY1nDge7ln6sCIS0pFdItllTfY2HDcrXisojT_mbiB1m3k1Yduw98UnWcvaTJIsSfBxm7E2HFW8a9YhePbF-K4rHZvkUznC_amId37ffhcWCVY3-BSzPZgv397NPiwUH-V49nbg79sn7WfR5A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5kFdSDb3F99iCCYN02TdvE2-IDxXX1sOreQtMkuqi74lZ_v5m0FgURvOWQhDCTzCMz8w3Aboigc4kkfiCZ8SnV0mcqJj63xkGircGfxq5QuJN2u6zf5zcTcFDXwmitXfKZPsShi-WrUf6OX2UtjlB6CFg6GVNKwrJaq44ZoGYv5a59woTVQcmAt3rtY-sKkvDQ3m5MAvmhhFxXlZ8G5nfQUKdozub_d8QFmKsMSq9d3oBFmNDDJZj9BjO4DEcniI6Lja208kpsUe_aioqXqgbTux8Uj15nNHzwe1ZQe9jE07WOKMYrcHt22js-96ueCX4eEV74CaI_2kelYioVlyyzDl6muCGKyTSWoVQkYJmmSWgMySkx2qS5CajUEaexktEqNIajoV4DL0lMFlhzRhuiaaQMyzOpGVFYy6qoipvQ-iKiyCtAcTzcs3CORcCFJbtAsouK7E3Yr1e8lmAaf8xdRurW8yrCNmHzi0-iem1jQZIowu_tNG3CXsm7eh3CZ58M7trCskk8FY-4P-Xh-u_b78D0ee-qIzoX3csNmCFY6-ASzjahUby96y2Yyj-Kwfht2929TwBv1Ss |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Online+Optimization+With+Long-Term+Constraints&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Yuan%2C+Deming&rft.au=Proutiere%2C+Alexandre&rft.au=Shi%2C+Guodong&rft.date=2022-03-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=67&rft.issue=3&rft.spage=1089&rft.epage=1104&rft_id=info:doi/10.1109%2FTAC.2021.3057601&rft.externalDocID=9349205 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |