Robust inverse-design of scattering spectrum in core-shell structure using modified denoising autoencoder neural network

Neural network-based inverse design of nanophotonic device network is computationally and time efficient, but in general suffers the problems of robustness and stability against variation of the input target electromagnetic response. The inverse design network is required to be robust against the in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optics express Ročník 27; číslo 25; s. 36276
Hlavní autori: Hu, Baiqiang, Wu, Bei, Tan, Dong, Xu, Jing, Chen, Yuntian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 09.12.2019
ISSN:1094-4087, 1094-4087
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Neural network-based inverse design of nanophotonic device network is computationally and time efficient, but in general suffers the problems of robustness and stability against variation of the input target electromagnetic response. The inverse design network is required to be robust against the input electromagnetic response and to be capable of approximating the given electromagnetic response, even under the circumstances that the exact target response may not exist. We introduce a modified denoising autoencoder network to ensure the robustness of neural network-based inverse design, which consists of (1) a pre-trained network as a substitute of numerical simulation and (2) an inverse design network. We further purposely train the network with certain random disturbances added to the training dataset generated by the pre-trained network. Consequently, our modified denoising autoencoder network is more robust and more accurate than the conventional fully connected neural network. The strength and flexibility of our proposed network is illustrated via three concrete examples of achieving the desired scattering spectra of layered spherical scatterers.
AbstractList Neural network-based inverse design of nanophotonic device network is computationally and time efficient, but in general suffers the problems of robustness and stability against variation of the input target electromagnetic response. The inverse design network is required to be robust against the input electromagnetic response and to be capable of approximating the given electromagnetic response, even under the circumstances that the exact target response may not exist. We introduce a modified denoising autoencoder network to ensure the robustness of neural network-based inverse design, which consists of (1) a pre-trained network as a substitute of numerical simulation and (2) an inverse design network. We further purposely train the network with certain random disturbances added to the training dataset generated by the pre-trained network. Consequently, our modified denoising autoencoder network is more robust and more accurate than the conventional fully connected neural network. The strength and flexibility of our proposed network is illustrated via three concrete examples of achieving the desired scattering spectra of layered spherical scatterers.Neural network-based inverse design of nanophotonic device network is computationally and time efficient, but in general suffers the problems of robustness and stability against variation of the input target electromagnetic response. The inverse design network is required to be robust against the input electromagnetic response and to be capable of approximating the given electromagnetic response, even under the circumstances that the exact target response may not exist. We introduce a modified denoising autoencoder network to ensure the robustness of neural network-based inverse design, which consists of (1) a pre-trained network as a substitute of numerical simulation and (2) an inverse design network. We further purposely train the network with certain random disturbances added to the training dataset generated by the pre-trained network. Consequently, our modified denoising autoencoder network is more robust and more accurate than the conventional fully connected neural network. The strength and flexibility of our proposed network is illustrated via three concrete examples of achieving the desired scattering spectra of layered spherical scatterers.
Neural network-based inverse design of nanophotonic device network is computationally and time efficient, but in general suffers the problems of robustness and stability against variation of the input target electromagnetic response. The inverse design network is required to be robust against the input electromagnetic response and to be capable of approximating the given electromagnetic response, even under the circumstances that the exact target response may not exist. We introduce a modified denoising autoencoder network to ensure the robustness of neural network-based inverse design, which consists of (1) a pre-trained network as a substitute of numerical simulation and (2) an inverse design network. We further purposely train the network with certain random disturbances added to the training dataset generated by the pre-trained network. Consequently, our modified denoising autoencoder network is more robust and more accurate than the conventional fully connected neural network. The strength and flexibility of our proposed network is illustrated via three concrete examples of achieving the desired scattering spectra of layered spherical scatterers.
Author Hu, Baiqiang
Xu, Jing
Wu, Bei
Tan, Dong
Chen, Yuntian
Author_xml – sequence: 1
  givenname: Baiqiang
  surname: Hu
  fullname: Hu, Baiqiang
– sequence: 2
  givenname: Bei
  surname: Wu
  fullname: Wu, Bei
– sequence: 3
  givenname: Dong
  surname: Tan
  fullname: Tan, Dong
– sequence: 4
  givenname: Jing
  surname: Xu
  fullname: Xu, Jing
– sequence: 5
  givenname: Yuntian
  surname: Chen
  fullname: Chen, Yuntian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31873410$$D View this record in MEDLINE/PubMed
BookMark eNptkctrFTEUxoO02Jc715KlC-eax0wyWUq5WqFwQdp1yCQnNTqTXPOo-t877W1BxNV3-PidB-c7Q0cxRUDoNSUbykX_frfdMLkhXDApXqBTSlTf9WSUR3_VJ-islG-E0F4q-RKdcDpK3lNyin59SVMrFYd4D7lA56CEu4iTx8WaWiGHeIfLHmzNbVkpbFOGrnyFecZl9WxtGXArD9iSXPABHHYQU3i0TKsJok0OMo7QsplXqT9T_n6Bjr2ZC7x60nN0-3F7c3nVXe8-fb78cN1ZzlTtBhiJ8EQNUgkhfT_5UanBT4yq0XM3eGGks1ZMTNCRud6NgwSiJmrVMFkv-Dl6e5i7z-lHg1L1EopdzzcRUiuacU7WTXygK_rmCW3TAk7vc1hM_q2fv7UC7ADYnErJ4LUN1dSQYs0mzJoS_RCJ3m01k_oQydr07p-m57n_xf8AQGeOpA
CitedBy_id crossref_primary_10_1016_j_photonics_2022_101066
crossref_primary_10_29026_oea_2022_210147
crossref_primary_10_1002_idm2_12049
crossref_primary_10_1364_PRJ_415960
crossref_primary_10_1016_j_ijmecsci_2025_110335
crossref_primary_10_3390_nano11030633
crossref_primary_10_1002_lpor_202300855
crossref_primary_10_1515_nanoph_2022_0537
crossref_primary_10_1109_JLT_2022_3185059
crossref_primary_10_1515_nanoph_2020_0240
crossref_primary_10_1088_2515_7647_acc7e5
crossref_primary_10_1016_j_cossms_2024_101144
Cites_doi 10.1038/s41598-017-01939-2
10.1021/acsami.9b05857
10.1063/1.5033327
10.1103/PhysRevLett.100.153904
10.1038/s41566-018-0246-9
10.1364/OME.9.001842
10.1109/TAP.2007.891552
10.1021/acs.nanolett.8b03171
10.1021/acsphotonics.7b01377
10.1364/OE.22.016178
10.1364/OE.26.032704
10.1364/OE.27.016047
10.1103/PhysRevLett.122.234502
10.1364/OE.25.021358
10.1126/science.220.4598.671
10.1038/s41598-018-37952-2
10.1364/OME.9.000469
10.1364/JOSAB.28.000387
10.1364/OE.26.014678
10.1126/sciadv.aar4206
10.1364/OE.26.024135
10.1021/acsphotonics.5b00463
10.1021/acsnano.8b03569
10.1364/OE.26.033732
10.1038/nphoton.2015.69
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.27.036276
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 31873410
10_1364_OE_27_036276
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ABGOQ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ID FETCH-LOGICAL-c329t-5e806f09579667f4bf8995fb2198f3d5f6a7dcc6b26182d4d857e09b1c95bcf63
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503978100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1094-4087
IngestDate Sun Nov 09 09:24:26 EST 2025
Wed Feb 19 02:31:51 EST 2025
Sat Nov 29 06:13:38 EST 2025
Tue Nov 18 21:37:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-5e806f09579667f4bf8995fb2198f3d5f6a7dcc6b26182d4d857e09b1c95bcf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/oe.27.036276
PMID 31873410
PQID 2330329351
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2330329351
pubmed_primary_31873410
crossref_citationtrail_10_1364_OE_27_036276
crossref_primary_10_1364_OE_27_036276
PublicationCentury 2000
PublicationDate 2019-12-09
2019-Dec-09
20191209
PublicationDateYYYYMMDD 2019-12-09
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2019
References Liu (oe-27-25-36276-R36) 2014; 22
Pestourie (oe-27-25-36276-R18) 2018; 26
Jin (oe-27-25-36276-R20) 2007; 55
Liu (oe-27-25-36276-R29) 2018; 5
Liu (oe-27-25-36276-R30) 2018; 18
Wang (oe-27-25-36276-R7) 2019; 9
Piggott (oe-27-25-36276-R24) 2015; 9
Kirkpatrick (oe-27-25-36276-R25) 1983; 220
Malkiel (oe-27-25-36276-R13) 2018
Piggott (oe-27-25-36276-R11) 2017; 7
Fan (oe-27-25-36276-R6) 2019
Molesky (oe-27-25-36276-R3) 2018; 12
Tahersima (oe-27-25-36276-R14) 2019; 9
Wang (oe-27-25-36276-R21) 2011; 28
Asano (oe-27-25-36276-R12) 2018; 26
Christiansen (oe-27-25-36276-R22) 2019; 122
Campbell (oe-27-25-36276-R9) 2019; 9
Sun (oe-27-25-36276-R27) 2018; 26
So (oe-27-25-36276-R5) 2019; 11
Frandsen (oe-27-25-36276-R10) 2016; 9756
Peurifoy (oe-27-25-36276-R17) 2018; 4
Inampudi (oe-27-25-36276-R19) 2018; 112
Forestiere (oe-27-25-36276-R32) 2016; 3
Sigmund (oe-27-25-36276-R23) 2008; 100
Li (oe-27-25-36276-R38) 2019; 27
Ma (oe-27-25-36276-R28) 2018; 12
Chang (oe-27-25-36276-R2) 2018; 26
Chang (oe-27-25-36276-R1) 2017
Chen (oe-27-25-36276-R35) 2017; 25
References_xml – volume: 7
  start-page: 1786
  year: 2017
  ident: oe-27-25-36276-R11
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01939-2
– volume: 11
  start-page: 24264
  year: 2019
  ident: oe-27-25-36276-R5
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05857
– volume: 112
  start-page: 241102
  year: 2018
  ident: oe-27-25-36276-R19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5033327
– volume: 100
  start-page: 153904
  year: 2008
  ident: oe-27-25-36276-R23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.153904
– volume: 12
  start-page: 659
  year: 2018
  ident: oe-27-25-36276-R3
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0246-9
– volume: 9
  start-page: 1842
  year: 2019
  ident: oe-27-25-36276-R9
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.9.001842
– volume: 55
  start-page: 556
  year: 2007
  ident: oe-27-25-36276-R20
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2007.891552
– volume: 18
  start-page: 6570
  year: 2018
  ident: oe-27-25-36276-R30
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03171
– start-page: SF1J-8
  year: 2017
  ident: oe-27-25-36276-R1
  article-title: Inverse design of an ultra-compact mode (de) multiplexer based on subwavelength structure
– volume: 5
  start-page: 1365
  year: 2018
  ident: oe-27-25-36276-R29
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01377
– volume: 22
  start-page: 16178
  year: 2014
  ident: oe-27-25-36276-R36
  publication-title: Opt. Express
  doi: 10.1364/OE.22.016178
– volume: 26
  start-page: 32704
  year: 2018
  ident: oe-27-25-36276-R12
  publication-title: Opt. Express
  doi: 10.1364/OE.26.032704
– volume: 27
  start-page: 16047
  year: 2019
  ident: oe-27-25-36276-R38
  publication-title: Opt. Express
  doi: 10.1364/OE.27.016047
– volume: 122
  start-page: 234502
  year: 2019
  ident: oe-27-25-36276-R22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.234502
– volume: 25
  start-page: 21358
  year: 2017
  ident: oe-27-25-36276-R35
  publication-title: Opt. Express
  doi: 10.1364/OE.25.021358
– volume: 220
  start-page: 671
  year: 1983
  ident: oe-27-25-36276-R25
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 9
  start-page: 1368
  year: 2019
  ident: oe-27-25-36276-R14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37952-2
– volume: 9
  start-page: 469
  year: 2019
  ident: oe-27-25-36276-R7
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.9.000469
– volume: 28
  start-page: 387
  year: 2011
  ident: oe-27-25-36276-R21
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.28.000387
– start-page: 1
  year: 2018
  ident: oe-27-25-36276-R13
  article-title: Deep learning for the design of nano-photonic structures
– volume: 26
  start-page: 14678
  year: 2018
  ident: oe-27-25-36276-R27
  publication-title: Opt. Express
  doi: 10.1364/OE.26.014678
– volume: 4
  start-page: eaar4206
  year: 2018
  ident: oe-27-25-36276-R17
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar4206
– volume: 26
  start-page: 24135
  year: 2018
  ident: oe-27-25-36276-R2
  publication-title: Opt. Express
  doi: 10.1364/OE.26.024135
– start-page: AM4K-4
  year: 2019
  ident: oe-27-25-36276-R6
  article-title: Generating high performance, topologically-complex metasurfaces with neural networks
– volume: 3
  start-page: 68
  year: 2016
  ident: oe-27-25-36276-R32
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00463
– volume: 12
  start-page: 6326
  year: 2018
  ident: oe-27-25-36276-R28
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03569
– volume: 26
  start-page: 33732
  year: 2018
  ident: oe-27-25-36276-R18
  publication-title: Opt. Express
  doi: 10.1364/OE.26.033732
– volume: 9756
  start-page: 97560Y
  year: 2016
  ident: oe-27-25-36276-R10
  article-title: Inverse design engineering of all-silicon polarization beam splitters
– volume: 9
  start-page: 374
  year: 2015
  ident: oe-27-25-36276-R24
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.69
SSID ssj0014797
Score 2.4212098
Snippet Neural network-based inverse design of nanophotonic device network is computationally and time efficient, but in general suffers the problems of robustness and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 36276
Title Robust inverse-design of scattering spectrum in core-shell structure using modified denoising autoencoder neural network
URI https://www.ncbi.nlm.nih.gov/pubmed/31873410
https://www.proquest.com/docview/2330329351
Volume 27
WOSCitedRecordID wos000503978100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpt5W-jN2bXYIG21NwZ8u2Lo9jZIzBmjE6yJuxZakYGtuL45Kn_fYdSb6klMD2sBcT5BMb_H2cu44QeifBSyYsIB6BKMeLVBB6aaS1lweUcMVSoxLtYRPs4oKvVuL7ZNL2e2FurllZ8t1O1P8ValgDsM3W2X-Ae3goLMBvAB2uADtc_wr4H1XWNmbwv2m4UF5uWzSMT9hIO0vTJhDM_spNu57bLvSN8hrTDzp3w2RNSaG1KYR1lRfa-KignKrCLqXttjKzL80ICjMLExAuXSf5vpu7rO30Z7Wrhw4PSx1X4Sh-ASevBnPgVlUxJhGcJqxGmZWV-dqb2S5LEdgjFnynC5XTrBBHQrDaWddO9bqxAB3FSLynSMGuunNh7qj4kEYAwXJxTti5f0cMsKjXFllQVgxMtD8auqH9sL91hO4RFgujDL_9XgzFp4gJ1u2RgJd92H_VKTrp_3zbkTkQnVgv5fIRetiFF_ijo8VjNFHlE_TAtvnK5inaOXLg2-TAlcYjOXBPDpDCIznwQA5syYF7cuCBHHiPHNiRA3fkeIZ-fl5cfvridWdveDIkYuvFivtU-6aISynTUaYhMI91BgaO6zCPNU1ZLiXNIALnJI9yHjPliyyQIs6kpuFzdFxWpTpDmEdpxkMZqJzIyBd5JgWnmlFwVKWIOJmief8hE9kNpjfno1wnttpKo2S5SAhLHAJT9H6Qrt1AlgNyb3tMEtCYpgyWlqpqm4SE4LaBlxsHU_TCgTU8qQf35cE7r9DpyO_X6Bi-vXqD7subbdFsZuiIrfjMJnZmllR_AMo3lXg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+inverse-design+of+scattering+spectrum+in+core-shell+structure+using+modified+denoising+autoencoder+neural+network&rft.jtitle=Optics+express&rft.au=Hu%2C+Baiqiang&rft.au=Wu%2C+Bei&rft.au=Tan%2C+Dong&rft.au=Xu%2C+Jing&rft.date=2019-12-09&rft.eissn=1094-4087&rft.volume=27&rft.issue=25&rft.spage=36276&rft_id=info:doi/10.1364%2FOE.27.036276&rft_id=info%3Apmid%2F31873410&rft.externalDocID=31873410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon