Hybrid Deep Learning Combining Mode Decomposition and Intelligent Optimization for Discharge Forecasting: A Case Study of the Baiquan Karst Spring
Karst springs play a critical strategic role in regional economic and ecological sustainability, yet their spatiotemporal heterogeneity and hydrological complexity pose substantial challenges for flow prediction. This study proposes FMD-mGTO-BiGRU-KAN, a four-stage hybrid deep learning architecture...
Uložené v:
| Vydané v: | Sustainability Ročník 17; číslo 18; s. 8101 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2025
|
| Predmet: | |
| ISSN: | 2071-1050, 2071-1050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Karst springs play a critical strategic role in regional economic and ecological sustainability, yet their spatiotemporal heterogeneity and hydrological complexity pose substantial challenges for flow prediction. This study proposes FMD-mGTO-BiGRU-KAN, a four-stage hybrid deep learning architecture for daily spring flow prediction that integrates multi-feature signal decomposition, meta-heuristic optimization, and interpretable neural network design: constructing an Feature Mode Decomposition (FMD) decomposition layer to mitigate modal aliasing in meteorological signals; employing the improved Gorilla Troops Optimizer (mGTO) optimization algorithm to enable autonomous hyperparameter evolution, overcoming the limitations of traditional grid search; designing a Bidirectional Gated Recurrent Unit (BiGRU) network to capture long-term historical dependencies in spring flow sequences through bidirectional recurrent mechanisms; introducing Kolmogorov–Arnold Networks (KAN) to replace the fully connected layer, and improving the model interpretability through differentiable symbolic operations; Additionally, residual modules and dropout blocks are incorporated to enhance generalization capability, reduce overfitting risks. By integrating multiple deep learning algorithms, this hybrid model leverages their respective strengths to adeptly accommodate intricate meteorological conditions, thereby enhancing its capacity to discern the underlying patterns within complex and dynamic input features. Comparative results against benchmark models (LSTM, GRU, and Transformer) show that the proposed framework achieves 82.47% and 50.15% reductions in MSE and RMSE, respectively, with the NSE increasing by 8.01% to 0.9862. The prediction errors are more tightly distributed, and the proposed model surpasses the benchmark model in overall performance, validating its superiority. The model’s exceptional prediction ability offers a novel high-precision solution for spring flow prediction in complex hydrological systems. |
|---|---|
| AbstractList | Karst springs play a critical strategic role in regional economic and ecological sustainability, yet their spatiotemporal heterogeneity and hydrological complexity pose substantial challenges for flow prediction. This study proposes FMD-mGTO-BiGRU-KAN, a four-stage hybrid deep learning architecture for daily spring flow prediction that integrates multi-feature signal decomposition, meta-heuristic optimization, and interpretable neural network design: constructing an Feature Mode Decomposition (FMD) decomposition layer to mitigate modal aliasing in meteorological signals; employing the improved Gorilla Troops Optimizer (mGTO) optimization algorithm to enable autonomous hyperparameter evolution, overcoming the limitations of traditional grid search; designing a Bidirectional Gated Recurrent Unit (BiGRU) network to capture long-term historical dependencies in spring flow sequences through bidirectional recurrent mechanisms; introducing Kolmogorov–Arnold Networks (KAN) to replace the fully connected layer, and improving the model interpretability through differentiable symbolic operations; Additionally, residual modules and dropout blocks are incorporated to enhance generalization capability, reduce overfitting risks. By integrating multiple deep learning algorithms, this hybrid model leverages their respective strengths to adeptly accommodate intricate meteorological conditions, thereby enhancing its capacity to discern the underlying patterns within complex and dynamic input features. Comparative results against benchmark models (LSTM, GRU, and Transformer) show that the proposed framework achieves 82.47% and 50.15% reductions in MSE and RMSE, respectively, with the NSE increasing by 8.01% to 0.9862. The prediction errors are more tightly distributed, and the proposed model surpasses the benchmark model in overall performance, validating its superiority. The model’s exceptional prediction ability offers a novel high-precision solution for spring flow prediction in complex hydrological systems. |
| Audience | Academic |
| Author | Shao, Yingying Dong, Tianxing Mao, Xiaoming Li, Yanling |
| Author_xml | – sequence: 1 givenname: Yanling surname: Li fullname: Li, Yanling – sequence: 2 givenname: Tianxing surname: Dong fullname: Dong, Tianxing – sequence: 3 givenname: Yingying surname: Shao fullname: Shao, Yingying – sequence: 4 givenname: Xiaoming surname: Mao fullname: Mao, Xiaoming |
| BookMark | eNpVkc1OHDEMx0cVlUoplz5BpJ5aaSFfs5npbbsUWHUREtueRyZxhqCdZEgyEtvH4Ikb2Eot9sGW_bMt-f--OvDBY1V9ZPREiJaepokp1jSMsjfVIaeKzRit6cF_-bvqOKV7WkwI1rL5YfV0ubuNzpAzxJGsEaJ3vifLMNy6l-wqGCxNHYYxJJdd8AS8ISufcbt1PfpMrsfsBvcbXpo2RHLmkr6D2CM5DxE1pFw2fSULsoSEZJMnsyPBknyH5Bu4hwk8-QExZbIZYyE_VG8tbBMe_41H1a_z7z-Xl7P19cVquVjPtOBtnslaUrRUSWM4N7ymqCXMuQZTKwAOTNtGagrQ6laisnPbWMM0E1hzragWR9Wn_d4xhocJU-7uwxR9OdkJXst5LaUQhTrZUz1ssXPehhxBFzc4OF0EsK7UF02tlJBKtWXg86uBwmR8zD1MKXWrzc1r9sue1TGkFNF25QMDxF3HaPesafdPU_EHUEGWLw |
| Cites_doi | 10.1016/j.jhydrol.2024.132235 10.1016/j.jhydrol.2022.127511 10.1002/2013RG000443 10.1016/j.knosys.2023.110462 10.1002/int.22535 10.1016/j.scitotenv.2018.06.184 10.1109/ETFG55873.2023.10407702 10.3115/v1/D14-1179 10.3390/w13182540 10.1109/ACCESS.2022.3186519 10.1007/s10462-024-10838-8 10.1007/s10040-013-1046-4 10.1007/s10040-004-0402-9 10.3390/en18010106 10.1007/978-1-4614-4106-9 10.1016/j.jhydrol.2022.127907 10.1007/s43832-022-00015-9 10.1029/2022WR032602 10.1109/CVPR.2016.90 10.1109/TIE.2022.3156156 10.1155/2018/8328167 10.1007/s10462-021-09992-0 10.1016/j.jhydrol.2024.130946 10.5194/hess-12-989-2008 10.1016/j.jhydrol.2020.125423 10.1007/s11269-014-0527-0 10.1007/s10040-020-02139-5 10.1002/2016WR018850 10.1109/TNNLS.2016.2582924 10.1016/j.jhydrol.2022.128116 10.1109/ACCESS.2019.2900371 10.1007/s11269-014-0898-2 10.1016/j.jhydrol.2024.131128 10.1002/9781119079231 10.1007/978-1-4020-5729-8_4 10.1016/j.jhydrol.2020.125320 10.1007/s00366-021-01368-w |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.3390/su17188101 |
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences Geology |
| EISSN | 2071-1050 |
| ExternalDocumentID | A857734779 10_3390_su17188101 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFFHD AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c329t-4540ef074dd22d250ec4a62cad57aa2a1cf84c0aa9c94e7f6f8fd1c13e52c70c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001581096800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2071-1050 |
| IngestDate | Fri Sep 26 22:35:14 EDT 2025 Sat Nov 29 10:29:38 EST 2025 Thu Nov 13 15:52:40 EST 2025 Sat Nov 29 07:15:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c329t-4540ef074dd22d250ec4a62cad57aa2a1cf84c0aa9c94e7f6f8fd1c13e52c70c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3254654433?pq-origsite=%requestingapplication% |
| PQID | 3254654433 |
| PQPubID | 2032327 |
| ParticipantIDs | proquest_journals_3254654433 gale_infotracacademiconefile_A857734779 gale_incontextgauss_ISR_A857734779 crossref_primary_10_3390_su17188101 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sustainability |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kazakis (ref_13) 2018; 643 Goldscheider (ref_1) 2020; 28 Hartmann (ref_2) 2014; 52 Zhang (ref_23) 2024; 633 Efstratiadis (ref_9) 2008; 12 (ref_10) 2022; 607 Diodato (ref_11) 2014; 28 Singh (ref_29) 2022; 10 ref_14 ref_36 ref_32 Broderick (ref_5) 2016; 52 ref_31 ref_30 Abdollahzadeh (ref_27) 2021; 36 Liu (ref_21) 2019; 7 Li (ref_34) 2023; 2 Greff (ref_37) 2017; 28 ref_39 ref_38 Katsanou (ref_12) 2015; 29 Song (ref_16) 2022; 612 Yildiz (ref_42) 2022; 38 (ref_6) 2022; 610 Jiang (ref_35) 2014; 12 An (ref_17) 2020; 589 Akay (ref_24) 2022; 55 Granata (ref_15) 2018; 2018 Gallegos (ref_8) 2013; 21 Hussien (ref_28) 2024; 57 Zhou (ref_18) 2024; 634 Miao (ref_33) 2023; 70 ref_20 ref_41 ref_40 Zhou (ref_22) 2024; 645 Barman (ref_7) 2022; 2 Mostafa (ref_26) 2023; 269 Bakalowicz (ref_3) 2005; 13 Blaschke (ref_19) 2024; 60 ref_4 Dodangeh (ref_25) 2020; 590 |
| References_xml | – volume: 645 start-page: 132235 year: 2024 ident: ref_22 article-title: Interpretable Multi-Step Hybrid Deep Learning Model for Karst Spring Discharge Prediction: Integrating Temporal Fusion Transformers with Ensemble Empirical Mode Decomposition publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.132235 – volume: 607 start-page: 127511 year: 2022 ident: ref_10 article-title: Contribution of the Satellite-Data Driven Snow Routine to a Karst Hydrological Model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127511 – volume: 52 start-page: 218 year: 2014 ident: ref_2 article-title: Karst Water Resources in a Changing World: Review of Hydrological Modeling Approaches publication-title: Rev. Geophys. doi: 10.1002/2013RG000443 – volume: 269 start-page: 110462 year: 2023 ident: ref_26 article-title: An Improved Gorilla Troops Optimizer for Global Optimization Problems and Feature Selection publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110462 – ident: ref_32 – volume: 36 start-page: 5887 year: 2021 ident: ref_27 article-title: Artificial Gorilla Troops Optimizer: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22535 – volume: 643 start-page: 592 year: 2018 ident: ref_13 article-title: Management and Research Strategies of Karst Aquifers in Greece: Literature Overview and Exemplification Based on Hydrodynamic Modelling and Vulnerability Assessment of a Strategic Karst Aquifer publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.184 – ident: ref_30 doi: 10.1109/ETFG55873.2023.10407702 – ident: ref_31 doi: 10.3115/v1/D14-1179 – ident: ref_14 doi: 10.3390/w13182540 – volume: 10 start-page: 71450 year: 2022 ident: ref_29 article-title: Optimal Bidding Strategy for Social Welfare Maximization in Wind Farm Integrated Deregulated Power System Using Artificial Gorilla Troops Optimizer Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3186519 – volume: 57 start-page: 246 year: 2024 ident: ref_28 article-title: An In-Depth Survey of the Artificial Gorilla Troops Optimizer: Outcomes, Variations, and Applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10838-8 – volume: 21 start-page: 1749 year: 2013 ident: ref_8 article-title: Simulating Flow in Karst Aquifers at Laboratory and Sub-Regional Scales Using MODFLOW-CFP publication-title: Hydrogeol. J. doi: 10.1007/s10040-013-1046-4 – volume: 13 start-page: 148 year: 2005 ident: ref_3 article-title: Karst Groundwater: A Challenge for New Resources publication-title: Hydrogeol. J. doi: 10.1007/s10040-004-0402-9 – volume: 12 start-page: 71 year: 2014 ident: ref_35 article-title: Dynamic Prediction of Spring Flow and Resources Evaluation of Baiquan at Xinxiang publication-title: Yellow River – ident: ref_20 doi: 10.3390/en18010106 – ident: ref_39 doi: 10.1007/978-1-4614-4106-9 – volume: 610 start-page: 127907 year: 2022 ident: ref_6 article-title: Springs Regarded as Hydraulic Features and Interpreted in the Context of Basin-Scale Groundwater Flow publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127907 – volume: 2 start-page: 7 year: 2022 ident: ref_7 article-title: Study of Water Quality, Socio-Economic Status and Policy Intervention in Spring Ecosystems of Tripura, Northeast India publication-title: Discov. Water doi: 10.1007/s43832-022-00015-9 – volume: 60 start-page: e2022WR032602 year: 2024 ident: ref_19 article-title: Transformer Versus LSTM: A Comparison of Deep Learning Models for Karst Spring Discharge Forecasting publication-title: Water Resour. Res. doi: 10.1029/2022WR032602 – ident: ref_36 doi: 10.1109/CVPR.2016.90 – volume: 70 start-page: 1949 year: 2023 ident: ref_33 article-title: Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery Fault Diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2022.3156156 – volume: 2018 start-page: 8328167 year: 2018 ident: ref_15 article-title: Machine Learning Models for Spring Discharge Forecasting publication-title: Geofluids doi: 10.1155/2018/8328167 – volume: 55 start-page: 829 year: 2022 ident: ref_24 article-title: A Comprehensive Survey on Optimizing Deep Learning Models by Metaheuristics publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09992-0 – volume: 633 start-page: 130946 year: 2024 ident: ref_23 article-title: A Hybrid Framework Based on LSTM for Predicting Karst Spring Discharge Using Historical Data publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.130946 – volume: 12 start-page: 989 year: 2008 ident: ref_9 article-title: HYDROGEIOS: A Semi-Distributed GIS-Based Hydrological Model for Modified River Basins publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-12-989-2008 – volume: 590 start-page: 125423 year: 2020 ident: ref_25 article-title: Novel Hybrid Intelligence Models for Flood-Susceptibility Prediction: Meta Optimization of the GMDH and SVR Models with the Genetic Algorithm and Harmony Search publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125423 – volume: 28 start-page: 969 year: 2014 ident: ref_11 article-title: Predicting Monthly Spring Discharges Using a Simple Statistical Model publication-title: Water Resour. Manag. doi: 10.1007/s11269-014-0527-0 – volume: 28 start-page: 1661 year: 2020 ident: ref_1 article-title: Global Distribution of Carbonate Rocks and Karst Water Resources publication-title: Hydrogeol. J. doi: 10.1007/s10040-020-02139-5 – volume: 52 start-page: 8343 year: 2016 ident: ref_5 article-title: Transferability of Hydrological Models and Ensemble Averaging Methods between Contrasting Climatic Periods publication-title: Water Resour. Res. doi: 10.1002/2016WR018850 – volume: 28 start-page: 2222 year: 2017 ident: ref_37 article-title: LSTM: A Search Space Odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582924 – ident: ref_41 – volume: 612 start-page: 128116 year: 2022 ident: ref_16 article-title: Spatial-Temporal Behavior of Precipitation Driven Karst Spring Discharge in a Mountain Terrain publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128116 – volume: 7 start-page: 26102 year: 2019 ident: ref_21 article-title: An Ensemble Model Based on Adaptive Noise Reducer and Over-Fitting Prevention LSTM for Multivariate Time Series Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2900371 – volume: 29 start-page: 1623 year: 2015 ident: ref_12 article-title: Simulation of Karst Springs Discharge in Case of Incomplete Time Series publication-title: Water Resour. Manag. doi: 10.1007/s11269-014-0898-2 – volume: 634 start-page: 131128 year: 2024 ident: ref_18 article-title: A Hybrid Self-Adaptive DWT-WaveNet-LSTM Deep Learning Architecture for Karst Spring Forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.131128 – ident: ref_38 – volume: 2 start-page: 34 year: 2023 ident: ref_34 article-title: Application of the Grey Theory to Dynamic Analyses of the Baiquan Spring Flow Rate in Xinxiang publication-title: Hydrogeol. Eng. Geol. – ident: ref_40 doi: 10.1002/9781119079231 – ident: ref_4 doi: 10.1007/978-1-4020-5729-8_4 – volume: 589 start-page: 125320 year: 2020 ident: ref_17 article-title: Simulation of Karst Spring Discharge Using a Combination of Time–Frequency Analysis Methods and Long Short-Term Memory Neural Networks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125320 – volume: 38 start-page: 4207 year: 2022 ident: ref_42 article-title: Enhanced Grasshopper Optimization Algorithm Using Elite Opposition-Based Learning for Solving Real-World Engineering Problems publication-title: Eng. Comput. doi: 10.1007/s00366-021-01368-w |
| SSID | ssj0000331916 |
| Score | 2.3759017 |
| Snippet | Karst springs play a critical strategic role in regional economic and ecological sustainability, yet their spatiotemporal heterogeneity and hydrological... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 8101 |
| SubjectTerms | Aquifers Case studies Decomposition method Deep learning Environmental aspects Fault lines Geology Groundwater Hydrology Karst Machine learning Mathematical optimization Natural history Optimization algorithms Prediction theory Springs Stream measurements Stress concentration Technology application Time series |
| Title | Hybrid Deep Learning Combining Mode Decomposition and Intelligent Optimization for Discharge Forecasting: A Case Study of the Baiquan Karst Spring |
| URI | https://www.proquest.com/docview/3254654433 |
| Volume | 17 |
| WOSCitedRecordID | wos001581096800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RFkQvPAoVKaUaARInC9u79sZcUNqmNIKGqDzUnqzx7rrKASeNHaRc-BH8YmacTaNKiAtHa0erlWZ2ZnY8831CvHahUhSlsiC1qQxU1lUBJs4GKF2pjbRR0c5Wff-kh8PuxUU28gW32rdVrnxi66jtxHCN_K1k4HYGa5Pvp9cBs0bx31VPobEhthipjOx867A_HJ3fVFlCSSYWpUtcUknve9JvRO6YYa1uRaK_--M2yJw8_N_jPRIPfHoJvaU9PBZ3XLUj7q-mj-sdsdtfT7aRoL_atHDvQ8vxu3gifp8ueIwLjp2bgsdfvQJyHEVLJgFMn0aL3IzuO74AKwuDG3DPBj6TI_rhJzyB0mI4HtctJpMD5gI1WHO39TvowRFFUeBmxgVMSqBsFA5xfD3HCj7Sk7uBZeHxqfh20v96dBp46obAyDhrGEk9dCWlJ9bGsaU0yxmFaWzQJhoxxsiUXWVCxMxkyukyLbuljUwkXRIbHRq5KzarSeWeCUhcqk0YFrq0JJpgEStUWipLMTcsYuyIVys15tMlQkdOLxtWdr5Wdke8ZA3nDHlRcU_NFc7rOh98Oc973UTTflpnHfHGC5WTZoYG_YgCHYRRsm5J7q_MIPeXvs7XNrD37-XnYjtmGuG2VW1fbDazuXsh7pqfzbieHXgbPhAbZ7_69DUanI0u_wB0aQFB |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHWi88DGYVhhg8SGeIhLbiRskhMq60apdqWBD4ylzbWfqA2nXpKD-DX4Iv5F702TVJMTbHnj2lRU5J8fXzr3nALx0vpS4S8VeZCPhybglPR0662nhUmWEDcZlb9XXgRoOW6en8WgDfte9MFRWWXNiSdR2auiO_I0g4XYSaxPvZxceuUbR39XaQmMFi75b_sQjW_6u18H3-4rzw4Pj_a5XuQp4RvC4IJFv36W4c1rLucUMwBmpI260DZXWXAcmbUnjax2bWDqVRmkrtYEJhAu5Ub4ROO8N2JQE9gZsjnpHo2-Xtzq-QEgH0UoHVYjYRzwFSP8ko3Vl5_s7_5eb2uHd_2057sGdKn1m7RXe78OGy7Zhq-6uzrdh52DduYeBFXXhwK2PpYfx8gH86i6pTY11nJuxSl_2nCExjkuzDEb2cDhIxfZVRRvTmWW9S_HSgn1Cov1edbAyTPtZZ5KXmlOOkdep0TlVk79lbbaPWQKjYs0lm6YMs232QU8uFjpjfY2JN1tdrD6Ek2tZtR1oZNPM7QILXaSM749VajE01GMutVRCWswp_DHXTXhRwyaZrRRIEjy5EbiSNbia8JwQlZCkR0Y1Q-d6kedJ78vnpN0KFc6nVNyE11VQOi3m2uiqBQMfhFTArkTu1bBLKlLLkzXmHv17-BlsdY-PBsmgN-w_htucLJPLsrw9aBTzhXsCN82PYpLPn1bfD4Oz68boH6zAXbs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VlNeFR6EiUGDEQ5xW3bW96ywSQqFpaJQSIl5qT1vH9lY5sEmzCSh_g5_Dr2O88TaqhLj1wNkjy_J-nhl7Z74P4IUNhaAolQaJSXgg0pYIVGxNoLjNpeYmGlW9Vd8O5WDQOjpKhxvwu-6FcWWVtU-sHLWZaPdGvssdcbsja-O7uS-LGHa6b6dngVOQcn9aazmNFUT6dvmTrm_lm16HvvVLxrr7X_YOAq8wEGjO0rkj_A5tTlHUGMYMZQNWC5UwrUwslWIq0nlL6FCpVKfCyjzJW7mJdMRtzLQMNad5r8AmpeSCNWBz2PswPD5_4Qk5wTtKVpyonKchYSuiUOAotS5Ewb_HgirAdW__z1tzB275tBrbq3NwFzZssQU36q7rcgu299cdfWToXRoNXHtfaRsv78Gvg6VrX8OOtVP0vLOnSA5zVIlooJONo0FXhO8r3VAVBnvnpKZz_EgO-LvvbEW6DmBnXFZcVBadBqpWpasyf41t3KPsAV0R5xInOVIWju_U-GyhCuwrSshx9eB6H75eyq5tQ6OYFPYBYGwTqcNwJHNDprEaMaGE5MJQrhGOmGrC8xpC2XTFTJLRjc4BLVsDrQnPHLoyR_VROGScqkVZZr3Pn7J2K5Y0n5RpE155o3wynymtfGsGLcSxg12w3KkhmHlnV2Zr_D389_BTuE7AzA57g_4juMmcknJVrbcDjflsYR_DVf1jPi5nT_xRQji5bIj-AVhwZns |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Deep+Learning+Combining+Mode+Decomposition+and+Intelligent+Optimization+for+Discharge+Forecasting%3A+A+Case+Study+of+the+Baiquan+Karst+Spring&rft.jtitle=Sustainability&rft.au=Li%2C+Yanling&rft.au=Dong+Tianxing&rft.au=Shao+Yingying&rft.au=Mao+Xiaoming&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2071-1050&rft.volume=17&rft.issue=18&rft.spage=8101&rft_id=info:doi/10.3390%2Fsu17188101&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |