Hybrid Deep Learning Combining Mode Decomposition and Intelligent Optimization for Discharge Forecasting: A Case Study of the Baiquan Karst Spring

Karst springs play a critical strategic role in regional economic and ecological sustainability, yet their spatiotemporal heterogeneity and hydrological complexity pose substantial challenges for flow prediction. This study proposes FMD-mGTO-BiGRU-KAN, a four-stage hybrid deep learning architecture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability Jg. 17; H. 18; S. 8101
Hauptverfasser: Li, Yanling, Dong, Tianxing, Shao, Yingying, Mao, Xiaoming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2025
Schlagworte:
ISSN:2071-1050, 2071-1050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Karst springs play a critical strategic role in regional economic and ecological sustainability, yet their spatiotemporal heterogeneity and hydrological complexity pose substantial challenges for flow prediction. This study proposes FMD-mGTO-BiGRU-KAN, a four-stage hybrid deep learning architecture for daily spring flow prediction that integrates multi-feature signal decomposition, meta-heuristic optimization, and interpretable neural network design: constructing an Feature Mode Decomposition (FMD) decomposition layer to mitigate modal aliasing in meteorological signals; employing the improved Gorilla Troops Optimizer (mGTO) optimization algorithm to enable autonomous hyperparameter evolution, overcoming the limitations of traditional grid search; designing a Bidirectional Gated Recurrent Unit (BiGRU) network to capture long-term historical dependencies in spring flow sequences through bidirectional recurrent mechanisms; introducing Kolmogorov–Arnold Networks (KAN) to replace the fully connected layer, and improving the model interpretability through differentiable symbolic operations; Additionally, residual modules and dropout blocks are incorporated to enhance generalization capability, reduce overfitting risks. By integrating multiple deep learning algorithms, this hybrid model leverages their respective strengths to adeptly accommodate intricate meteorological conditions, thereby enhancing its capacity to discern the underlying patterns within complex and dynamic input features. Comparative results against benchmark models (LSTM, GRU, and Transformer) show that the proposed framework achieves 82.47% and 50.15% reductions in MSE and RMSE, respectively, with the NSE increasing by 8.01% to 0.9862. The prediction errors are more tightly distributed, and the proposed model surpasses the benchmark model in overall performance, validating its superiority. The model’s exceptional prediction ability offers a novel high-precision solution for spring flow prediction in complex hydrological systems.
AbstractList Karst springs play a critical strategic role in regional economic and ecological sustainability, yet their spatiotemporal heterogeneity and hydrological complexity pose substantial challenges for flow prediction. This study proposes FMD-mGTO-BiGRU-KAN, a four-stage hybrid deep learning architecture for daily spring flow prediction that integrates multi-feature signal decomposition, meta-heuristic optimization, and interpretable neural network design: constructing an Feature Mode Decomposition (FMD) decomposition layer to mitigate modal aliasing in meteorological signals; employing the improved Gorilla Troops Optimizer (mGTO) optimization algorithm to enable autonomous hyperparameter evolution, overcoming the limitations of traditional grid search; designing a Bidirectional Gated Recurrent Unit (BiGRU) network to capture long-term historical dependencies in spring flow sequences through bidirectional recurrent mechanisms; introducing Kolmogorov–Arnold Networks (KAN) to replace the fully connected layer, and improving the model interpretability through differentiable symbolic operations; Additionally, residual modules and dropout blocks are incorporated to enhance generalization capability, reduce overfitting risks. By integrating multiple deep learning algorithms, this hybrid model leverages their respective strengths to adeptly accommodate intricate meteorological conditions, thereby enhancing its capacity to discern the underlying patterns within complex and dynamic input features. Comparative results against benchmark models (LSTM, GRU, and Transformer) show that the proposed framework achieves 82.47% and 50.15% reductions in MSE and RMSE, respectively, with the NSE increasing by 8.01% to 0.9862. The prediction errors are more tightly distributed, and the proposed model surpasses the benchmark model in overall performance, validating its superiority. The model’s exceptional prediction ability offers a novel high-precision solution for spring flow prediction in complex hydrological systems.
Audience Academic
Author Shao, Yingying
Dong, Tianxing
Mao, Xiaoming
Li, Yanling
Author_xml – sequence: 1
  givenname: Yanling
  surname: Li
  fullname: Li, Yanling
– sequence: 2
  givenname: Tianxing
  surname: Dong
  fullname: Dong, Tianxing
– sequence: 3
  givenname: Yingying
  surname: Shao
  fullname: Shao, Yingying
– sequence: 4
  givenname: Xiaoming
  surname: Mao
  fullname: Mao, Xiaoming
BookMark eNpVkc1OHDEMx0cVlUoplz5BpJ5aaSFfs5npbbsUWHUREtueRyZxhqCdZEgyEtvH4Ikb2Eot9sGW_bMt-f--OvDBY1V9ZPREiJaepokp1jSMsjfVIaeKzRit6cF_-bvqOKV7WkwI1rL5YfV0ubuNzpAzxJGsEaJ3vifLMNy6l-wqGCxNHYYxJJdd8AS8ISufcbt1PfpMrsfsBvcbXpo2RHLmkr6D2CM5DxE1pFw2fSULsoSEZJMnsyPBknyH5Bu4hwk8-QExZbIZYyE_VG8tbBMe_41H1a_z7z-Xl7P19cVquVjPtOBtnslaUrRUSWM4N7ymqCXMuQZTKwAOTNtGagrQ6laisnPbWMM0E1hzragWR9Wn_d4xhocJU-7uwxR9OdkJXst5LaUQhTrZUz1ssXPehhxBFzc4OF0EsK7UF02tlJBKtWXg86uBwmR8zD1MKXWrzc1r9sue1TGkFNF25QMDxF3HaPesafdPU_EHUEGWLw
Cites_doi 10.1016/j.jhydrol.2024.132235
10.1016/j.jhydrol.2022.127511
10.1002/2013RG000443
10.1016/j.knosys.2023.110462
10.1002/int.22535
10.1016/j.scitotenv.2018.06.184
10.1109/ETFG55873.2023.10407702
10.3115/v1/D14-1179
10.3390/w13182540
10.1109/ACCESS.2022.3186519
10.1007/s10462-024-10838-8
10.1007/s10040-013-1046-4
10.1007/s10040-004-0402-9
10.3390/en18010106
10.1007/978-1-4614-4106-9
10.1016/j.jhydrol.2022.127907
10.1007/s43832-022-00015-9
10.1029/2022WR032602
10.1109/CVPR.2016.90
10.1109/TIE.2022.3156156
10.1155/2018/8328167
10.1007/s10462-021-09992-0
10.1016/j.jhydrol.2024.130946
10.5194/hess-12-989-2008
10.1016/j.jhydrol.2020.125423
10.1007/s11269-014-0527-0
10.1007/s10040-020-02139-5
10.1002/2016WR018850
10.1109/TNNLS.2016.2582924
10.1016/j.jhydrol.2022.128116
10.1109/ACCESS.2019.2900371
10.1007/s11269-014-0898-2
10.1016/j.jhydrol.2024.131128
10.1002/9781119079231
10.1007/978-1-4020-5729-8_4
10.1016/j.jhydrol.2020.125320
10.1007/s00366-021-01368-w
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su17188101
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Geology
EISSN 2071-1050
ExternalDocumentID A857734779
10_3390_su17188101
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c329t-4540ef074dd22d250ec4a62cad57aa2a1cf84c0aa9c94e7f6f8fd1c13e52c70c3
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001581096800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2071-1050
IngestDate Fri Sep 26 22:35:14 EDT 2025
Sat Nov 29 10:29:38 EST 2025
Thu Nov 13 15:52:40 EST 2025
Sat Nov 29 07:15:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-4540ef074dd22d250ec4a62cad57aa2a1cf84c0aa9c94e7f6f8fd1c13e52c70c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3254654433?pq-origsite=%requestingapplication%
PQID 3254654433
PQPubID 2032327
ParticipantIDs proquest_journals_3254654433
gale_infotracacademiconefile_A857734779
gale_incontextgauss_ISR_A857734779
crossref_primary_10_3390_su17188101
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kazakis (ref_13) 2018; 643
Goldscheider (ref_1) 2020; 28
Hartmann (ref_2) 2014; 52
Zhang (ref_23) 2024; 633
Efstratiadis (ref_9) 2008; 12
(ref_10) 2022; 607
Diodato (ref_11) 2014; 28
Singh (ref_29) 2022; 10
ref_14
ref_36
ref_32
Broderick (ref_5) 2016; 52
ref_31
ref_30
Abdollahzadeh (ref_27) 2021; 36
Liu (ref_21) 2019; 7
Li (ref_34) 2023; 2
Greff (ref_37) 2017; 28
ref_39
ref_38
Katsanou (ref_12) 2015; 29
Song (ref_16) 2022; 612
Yildiz (ref_42) 2022; 38
(ref_6) 2022; 610
Jiang (ref_35) 2014; 12
An (ref_17) 2020; 589
Akay (ref_24) 2022; 55
Granata (ref_15) 2018; 2018
Gallegos (ref_8) 2013; 21
Hussien (ref_28) 2024; 57
Zhou (ref_18) 2024; 634
Miao (ref_33) 2023; 70
ref_20
ref_41
ref_40
Zhou (ref_22) 2024; 645
Barman (ref_7) 2022; 2
Mostafa (ref_26) 2023; 269
Bakalowicz (ref_3) 2005; 13
Blaschke (ref_19) 2024; 60
ref_4
Dodangeh (ref_25) 2020; 590
References_xml – volume: 645
  start-page: 132235
  year: 2024
  ident: ref_22
  article-title: Interpretable Multi-Step Hybrid Deep Learning Model for Karst Spring Discharge Prediction: Integrating Temporal Fusion Transformers with Ensemble Empirical Mode Decomposition
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.132235
– volume: 607
  start-page: 127511
  year: 2022
  ident: ref_10
  article-title: Contribution of the Satellite-Data Driven Snow Routine to a Karst Hydrological Model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127511
– volume: 52
  start-page: 218
  year: 2014
  ident: ref_2
  article-title: Karst Water Resources in a Changing World: Review of Hydrological Modeling Approaches
  publication-title: Rev. Geophys.
  doi: 10.1002/2013RG000443
– volume: 269
  start-page: 110462
  year: 2023
  ident: ref_26
  article-title: An Improved Gorilla Troops Optimizer for Global Optimization Problems and Feature Selection
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110462
– ident: ref_32
– volume: 36
  start-page: 5887
  year: 2021
  ident: ref_27
  article-title: Artificial Gorilla Troops Optimizer: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22535
– volume: 643
  start-page: 592
  year: 2018
  ident: ref_13
  article-title: Management and Research Strategies of Karst Aquifers in Greece: Literature Overview and Exemplification Based on Hydrodynamic Modelling and Vulnerability Assessment of a Strategic Karst Aquifer
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.184
– ident: ref_30
  doi: 10.1109/ETFG55873.2023.10407702
– ident: ref_31
  doi: 10.3115/v1/D14-1179
– ident: ref_14
  doi: 10.3390/w13182540
– volume: 10
  start-page: 71450
  year: 2022
  ident: ref_29
  article-title: Optimal Bidding Strategy for Social Welfare Maximization in Wind Farm Integrated Deregulated Power System Using Artificial Gorilla Troops Optimizer Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3186519
– volume: 57
  start-page: 246
  year: 2024
  ident: ref_28
  article-title: An In-Depth Survey of the Artificial Gorilla Troops Optimizer: Outcomes, Variations, and Applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10838-8
– volume: 21
  start-page: 1749
  year: 2013
  ident: ref_8
  article-title: Simulating Flow in Karst Aquifers at Laboratory and Sub-Regional Scales Using MODFLOW-CFP
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-013-1046-4
– volume: 13
  start-page: 148
  year: 2005
  ident: ref_3
  article-title: Karst Groundwater: A Challenge for New Resources
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-004-0402-9
– volume: 12
  start-page: 71
  year: 2014
  ident: ref_35
  article-title: Dynamic Prediction of Spring Flow and Resources Evaluation of Baiquan at Xinxiang
  publication-title: Yellow River
– ident: ref_20
  doi: 10.3390/en18010106
– ident: ref_39
  doi: 10.1007/978-1-4614-4106-9
– volume: 610
  start-page: 127907
  year: 2022
  ident: ref_6
  article-title: Springs Regarded as Hydraulic Features and Interpreted in the Context of Basin-Scale Groundwater Flow
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127907
– volume: 2
  start-page: 7
  year: 2022
  ident: ref_7
  article-title: Study of Water Quality, Socio-Economic Status and Policy Intervention in Spring Ecosystems of Tripura, Northeast India
  publication-title: Discov. Water
  doi: 10.1007/s43832-022-00015-9
– volume: 60
  start-page: e2022WR032602
  year: 2024
  ident: ref_19
  article-title: Transformer Versus LSTM: A Comparison of Deep Learning Models for Karst Spring Discharge Forecasting
  publication-title: Water Resour. Res.
  doi: 10.1029/2022WR032602
– ident: ref_36
  doi: 10.1109/CVPR.2016.90
– volume: 70
  start-page: 1949
  year: 2023
  ident: ref_33
  article-title: Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery Fault Diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2022.3156156
– volume: 2018
  start-page: 8328167
  year: 2018
  ident: ref_15
  article-title: Machine Learning Models for Spring Discharge Forecasting
  publication-title: Geofluids
  doi: 10.1155/2018/8328167
– volume: 55
  start-page: 829
  year: 2022
  ident: ref_24
  article-title: A Comprehensive Survey on Optimizing Deep Learning Models by Metaheuristics
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09992-0
– volume: 633
  start-page: 130946
  year: 2024
  ident: ref_23
  article-title: A Hybrid Framework Based on LSTM for Predicting Karst Spring Discharge Using Historical Data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.130946
– volume: 12
  start-page: 989
  year: 2008
  ident: ref_9
  article-title: HYDROGEIOS: A Semi-Distributed GIS-Based Hydrological Model for Modified River Basins
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-12-989-2008
– volume: 590
  start-page: 125423
  year: 2020
  ident: ref_25
  article-title: Novel Hybrid Intelligence Models for Flood-Susceptibility Prediction: Meta Optimization of the GMDH and SVR Models with the Genetic Algorithm and Harmony Search
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125423
– volume: 28
  start-page: 969
  year: 2014
  ident: ref_11
  article-title: Predicting Monthly Spring Discharges Using a Simple Statistical Model
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0527-0
– volume: 28
  start-page: 1661
  year: 2020
  ident: ref_1
  article-title: Global Distribution of Carbonate Rocks and Karst Water Resources
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-020-02139-5
– volume: 52
  start-page: 8343
  year: 2016
  ident: ref_5
  article-title: Transferability of Hydrological Models and Ensemble Averaging Methods between Contrasting Climatic Periods
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR018850
– volume: 28
  start-page: 2222
  year: 2017
  ident: ref_37
  article-title: LSTM: A Search Space Odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref_41
– volume: 612
  start-page: 128116
  year: 2022
  ident: ref_16
  article-title: Spatial-Temporal Behavior of Precipitation Driven Karst Spring Discharge in a Mountain Terrain
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128116
– volume: 7
  start-page: 26102
  year: 2019
  ident: ref_21
  article-title: An Ensemble Model Based on Adaptive Noise Reducer and Over-Fitting Prevention LSTM for Multivariate Time Series Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900371
– volume: 29
  start-page: 1623
  year: 2015
  ident: ref_12
  article-title: Simulation of Karst Springs Discharge in Case of Incomplete Time Series
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0898-2
– volume: 634
  start-page: 131128
  year: 2024
  ident: ref_18
  article-title: A Hybrid Self-Adaptive DWT-WaveNet-LSTM Deep Learning Architecture for Karst Spring Forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.131128
– ident: ref_38
– volume: 2
  start-page: 34
  year: 2023
  ident: ref_34
  article-title: Application of the Grey Theory to Dynamic Analyses of the Baiquan Spring Flow Rate in Xinxiang
  publication-title: Hydrogeol. Eng. Geol.
– ident: ref_40
  doi: 10.1002/9781119079231
– ident: ref_4
  doi: 10.1007/978-1-4020-5729-8_4
– volume: 589
  start-page: 125320
  year: 2020
  ident: ref_17
  article-title: Simulation of Karst Spring Discharge Using a Combination of Time–Frequency Analysis Methods and Long Short-Term Memory Neural Networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125320
– volume: 38
  start-page: 4207
  year: 2022
  ident: ref_42
  article-title: Enhanced Grasshopper Optimization Algorithm Using Elite Opposition-Based Learning for Solving Real-World Engineering Problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01368-w
SSID ssj0000331916
Score 2.3758132
Snippet Karst springs play a critical strategic role in regional economic and ecological sustainability, yet their spatiotemporal heterogeneity and hydrological...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 8101
SubjectTerms Aquifers
Case studies
Decomposition method
Deep learning
Environmental aspects
Fault lines
Geology
Groundwater
Hydrology
Karst
Machine learning
Mathematical optimization
Natural history
Optimization algorithms
Prediction theory
Springs
Stream measurements
Stress concentration
Technology application
Time series
Title Hybrid Deep Learning Combining Mode Decomposition and Intelligent Optimization for Discharge Forecasting: A Case Study of the Baiquan Karst Spring
URI https://www.proquest.com/docview/3254654433
Volume 17
WOSCitedRecordID wos001581096800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELb6ANFLC6VVA201AiROK7K2N15zQWmb0gg1RAWkclq5flQ5sEmzG6Rc-BH8YmY2TqNKiAu3teyDpRnPa2e-j7E3mFQZKb1MrBYykR38yrXSSeqEzq3LrFO2IZtQg0F-fa2HseBWxbbKpU1sDLUbW6qRvxME3E5gbeLD5C4h1ij6uxopNNbZJiGVoZ5vnvQGw6v7KktboIqlnQUuqcD8HuWbojkmWKsHnujv9rhxMuc7_3u9p2w7hpfQXejDM7bmy132ZDl9XO2y_d5qsg0PxqeNG48_Nhy_8-fs98WcxrjgzPsJRPzVW0DDcdOQSQDRp-EmNaPHji8wpYP-PbhnDZ_REP2IE56AYTGcjaoGk8kDcYFaU1G39Xvowil6UaBmxjmMA2A0CidmdDczJXzClLuGReFxj3077309vUgidUNiBdc1Iam3fcDwxDnOHYZZ3krT4da4TBnDTWpDLm3bGG219Cp0Qh5calPhM25V24p9tlGOS3_AIOchCMzjlA4pjQnngZxq0F7fKJ553mKvl2IsJguEjgIzGxJ2sRJ2i70iCRcEeVFST82tmVVV0f9yVXTzTCkhldIt9jYeCuN6aqyJIwp4EULJenDycKkGRXz0VbHSgRf_3n7JtjjRCDetaodso57O_BF7ZH_Wo2p6HHX4mK1f_urhati_HH7_A6WrAJs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFFQufBQqAgVGfIiTRbzrZL1ICIWmJVHaEEGRysls17tVDjhpnIDyN_gh_EZm_NGoEuLWAzdLu7Ks9fPbmfXMewAvKKkyUeSiwGoZBVGHrmKtdBCmUsc2bdtU2cJsQo1G8cmJHm_A77oXhssqa04siDqdWj4jfy1ZuJ3F2uS72XnArlH8d7W20ChhMXSrn5Sy5W8HPXq_L4U42D_e6weVq0BgpdALFvluOU87Z5oKkVIE4GxkOsKatK2MESa0Po5syxhtdeSU7_jYp6ENpWsLq1pW0n2vwWbEYG_A5nhwNP56carTkgTpsFPqoEqpW4SnkOifZbQu7Xx_5_9iUzu4_b8txx24VYXP2C3xfhc2XLYNW3V3db4NO_vrzj2aWFEXDdz4UHgYr-7Br_6K29Sw59wMK33ZMyRiPC3MMpDt4WiQi-2rijY0WYqDC_HSBX4kov1edbAihf3Ym-SF5pRD9jq1Judq8jfYxT2KEpCLNVc49UjRNr43k_OlyXBoKPDG8mD1Pny5klXbgUY2zdwDwFh4LylPVdqH3AYdew4avHb6VIm2E014XsMmmZUKJAllbgyuZA2uJjxjRCUs6ZFxzdCZWeZ5Mvj8KenGbaVkpJRuwqtqkp8u5saaqgWDHoRVwC7N3K1hl1SklidrzD389_BT2OofHx0mh4PR8BHcFGyZXJTl7UJjMV-6x3Dd_lhM8vmT6vtB-HbVGP0DjnxdFQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VlNeFR6EiUGDEQ5xWzdqbeI2EUGhaGgVCxEMqp8X12lUObNJsAsrf4Ofw65jZeBtVQtx64LaSLWvl_TwP78z3ATyjpMokiUsiq2USJR16SrXSUZxLndq8bXNlK7EJNRymR0d6tAG_614YLqusbWJlqPOJ5TvyXcnE7UzWJnd9KIsY9Q5eT08jVpDiP621nMYKIgO3_EnpW_mq36Nv_VyIg_3Pe4dRUBiIrBR6zoTfLefJi-a5EDlFA84mpiOsydvKGGFi69PEtozRVidO-Y5PfR7bWLq2sKplJa17CTYpJE9EAzZH_fejr2c3PC1J8I47K05UKXWLsBWTK2BKrXNe8O--oHJwBzf_5625BTdCWI3d1Tm4DRuu2IJrddd1uQXb--uOPpoYTBoNXHlbaRsv78CvwyW3r2HPuSkG3tkTJIN5XIloIMvG0SAX4YdKNzRFjv0zUtM5fiAD_D10tiKlA9gblxUXlUPWQLWm5Crzl9jFPYoekIs4lzjxSFE4vjHj04UpcGAoIMfVhetd-HIhu7YNjWJSuHuAqfBeUv6qtI-5PTr1HEx47fSxEm0nmvC0hlA2XTGTZJTRMdCyNdCa8ITRlTHVR8HIODGLssz6nz5m3bStlEyU0k14ESb5yXxmrAmtGfQizA52buZODcEsGLsyW-Pv_r-HH8NVAmb2rj8cPIDrgpWUq2q9HWjMZwv3EC7bH_NxOXsUjhLCt4uG6B85CmXV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Deep+Learning+Combining+Mode+Decomposition+and+Intelligent+Optimization+for+Discharge+Forecasting%3A+A+Case+Study+of+the+Baiquan+Karst+Spring&rft.jtitle=Sustainability&rft.au=Li%2C+Yanling&rft.au=Dong+Tianxing&rft.au=Shao+Yingying&rft.au=Mao+Xiaoming&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2071-1050&rft.volume=17&rft.issue=18&rft.spage=8101&rft_id=info:doi/10.3390%2Fsu17188101&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon