Constraint-Tightening and Stability in Stochastic Model Predictive Control

Constraint tightening to non-conservatively guarantee recursive feasibility and stability in Stochastic Model Predictive Control is addressed. Stability and feasibility requirements are considered separately, highlighting the difference between existence of a solution and feasibility of a suitable,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 62; H. 7; S. 3165 - 3177
Hauptverfasser: Lorenzen, Matthias, Dabbene, Fabrizio, Tempo, Roberto, Allgower, Frank
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2017
Schlagworte:
ISSN:0018-9286, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Constraint tightening to non-conservatively guarantee recursive feasibility and stability in Stochastic Model Predictive Control is addressed. Stability and feasibility requirements are considered separately, highlighting the difference between existence of a solution and feasibility of a suitable, a priori known candidate solution. Subsequently, a Stochastic Model Predictive Control algorithm which unifies previous results is derived, leaving the designer the option to balance an increased feasible region against guaranteed bounds on the asymptotic average performance and convergence time. Besides typical performance bounds, under mild assumptions, we prove asymptotic stability in probability of the minimal robust positively invariant set obtained by the unconstrained LQ-optimal controller. A numerical example, demonstrating the efficacy of the proposed approach in comparison with classical, recursively feasible Stochastic MPC and Robust MPC, is provided.
AbstractList Constraint tightening to non-conservatively guarantee recursive feasibility and stability in Stochastic Model Predictive Control is addressed. Stability and feasibility requirements are considered separately, highlighting the difference between existence of a solution and feasibility of a suitable, a priori known candidate solution. Subsequently, a Stochastic Model Predictive Control algorithm which unifies previous results is derived, leaving the designer the option to balance an increased feasible region against guaranteed bounds on the asymptotic average performance and convergence time. Besides typical performance bounds, under mild assumptions, we prove asymptotic stability in probability of the minimal robust positively invariant set obtained by the unconstrained LQ-optimal controller. A numerical example, demonstrating the efficacy of the proposed approach in comparison with classical, recursively feasible Stochastic MPC and Robust MPC, is provided.
Author Lorenzen, Matthias
Tempo, Roberto
Allgower, Frank
Dabbene, Fabrizio
Author_xml – sequence: 1
  givenname: Matthias
  surname: Lorenzen
  fullname: Lorenzen, Matthias
  email: matthias.lorenzen@ist.uni-stuttgart.de
  organization: Inst. for Syst. Theor. & Autom. Control, Univ. of Stuttgart, Stuttgart, Germany
– sequence: 2
  givenname: Fabrizio
  surname: Dabbene
  fullname: Dabbene, Fabrizio
  email: fabrizio.dabbene@polito.it
  organization: IEIIT, Politec. di Torino, Turin, Italy
– sequence: 3
  givenname: Roberto
  surname: Tempo
  fullname: Tempo, Roberto
  organization: IEIIT, Politec. di Torino, Turin, Italy
– sequence: 4
  givenname: Frank
  surname: Allgower
  fullname: Allgower, Frank
  email: frank.allgower@ist.uni-stuttgart.de
  organization: Inst. for Syst. Theor. & Autom. Control, Univ. of Stuttgart, Stuttgart, Germany
BookMark eNp9kE1LAzEURYNUsK3uBTfzB6bme5JlGdQqFQXreshkXtrImJEkCP33Tmlx4cLV48I7l8uZoUkYAiB0TfCCEKxvN8t6QTGRCyqpwFydoSkRQpVUUDZBU4yJKjVV8gLNUvoYo-ScTNFTPYSUo_Ehlxu_3WUIPmwLE7riLZvW9z7vCx_GMNidSdnb4nnooC9eI3TeZv8NxViR49BfonNn-gRXpztH7_d3m3pVrl8eHuvlurSM6lwy4xjT2GJshFQt6cC2gjpFJThSaW5dC1pjJW3LwGhneedap1snjFNcVWyO5LHXxiGlCK6xPpvsDyuM7xuCm4ORZjTSHIw0JyMjiP-AX9F_mrj_D7k5Ih4Aft-rijFccfYD-7JvZw
CODEN IETAA9
CitedBy_id crossref_primary_10_1002_rnc_3999
crossref_primary_10_1002_rnc_3912
crossref_primary_10_1007_s40435_023_01272_9
crossref_primary_10_1109_LCSYS_2024_3408608
crossref_primary_10_1109_TCST_2024_3477089
crossref_primary_10_1109_LCSYS_2019_2918763
crossref_primary_10_1049_cth2_12456
crossref_primary_10_1002_rnc_5409
crossref_primary_10_1016_j_ifacol_2019_06_128
crossref_primary_10_1109_TAC_2021_3124750
crossref_primary_10_1016_j_automatica_2022_110208
crossref_primary_10_1016_j_automatica_2021_110108
crossref_primary_10_1016_j_ifacol_2020_12_793
crossref_primary_10_1109_TAC_2024_3433988
crossref_primary_10_1109_TIV_2023_3238023
crossref_primary_10_1016_j_ejcon_2021_12_005
crossref_primary_10_1016_j_ifacol_2023_10_1057
crossref_primary_10_1016_j_segan_2023_101205
crossref_primary_10_1016_j_oceaneng_2025_122431
crossref_primary_10_1515_auto_2021_0025
crossref_primary_10_1002_rnc_7671
crossref_primary_10_1109_LCSYS_2024_3514472
crossref_primary_10_1049_cth2_12070
crossref_primary_10_3390_electronics12061270
crossref_primary_10_1002_rnc_4106
crossref_primary_10_1109_TAC_2020_3009362
crossref_primary_10_1109_TAC_2021_3128466
crossref_primary_10_1115_1_4069104
crossref_primary_10_1109_TCST_2018_2879938
crossref_primary_10_1016_j_ifacol_2023_10_1641
crossref_primary_10_1016_j_trb_2023_102787
crossref_primary_10_1515_auto_2021_0033
crossref_primary_10_1109_TCST_2023_3291531
crossref_primary_10_1016_j_jfranklin_2023_05_012
crossref_primary_10_1109_TAC_2022_3157131
crossref_primary_10_1109_LCSYS_2021_3091628
crossref_primary_10_1016_j_arcontrol_2020_09_001
crossref_primary_10_3390_electronics9122078
crossref_primary_10_1109_TASE_2024_3355152
crossref_primary_10_1016_j_ifacol_2020_06_064
crossref_primary_10_1016_j_ins_2018_05_021
crossref_primary_10_1109_TCYB_2021_3080818
crossref_primary_10_1016_j_isatra_2023_03_037
crossref_primary_10_1002_rnc_6004
crossref_primary_10_1049_cth2_12588
crossref_primary_10_1109_TAC_2023_3273420
crossref_primary_10_1109_TCST_2025_3547260
crossref_primary_10_1049_iet_cta_2018_5543
crossref_primary_10_1109_TAES_2018_2798219
crossref_primary_10_1016_j_jfranklin_2022_06_005
crossref_primary_10_1109_ACCESS_2018_2876721
crossref_primary_10_1016_j_ifacol_2022_11_095
crossref_primary_10_1016_j_automatica_2020_108854
crossref_primary_10_1109_TCST_2019_2908938
crossref_primary_10_1109_TAC_2023_3273775
crossref_primary_10_1002_asjc_3088
crossref_primary_10_1016_j_automatica_2020_109095
crossref_primary_10_1016_j_apm_2022_08_009
crossref_primary_10_1109_TCYB_2019_2895305
crossref_primary_10_1109_JSYST_2020_2989314
crossref_primary_10_1007_s11071_025_11382_y
crossref_primary_10_1016_j_ifacol_2020_12_359
crossref_primary_10_1016_j_jprocont_2018_04_010
crossref_primary_10_1109_TAC_2020_3011845
crossref_primary_10_1109_TAC_2024_3390870
crossref_primary_10_1109_LCSYS_2019_2949194
crossref_primary_10_1016_j_ifacol_2020_12_515
crossref_primary_10_1016_j_ifacol_2020_12_636
crossref_primary_10_1109_TCST_2019_2952788
crossref_primary_10_1016_j_ast_2018_04_009
crossref_primary_10_1177_10775463211028075
crossref_primary_10_1080_01691864_2023_2168134
crossref_primary_10_1002_tee_23177
crossref_primary_10_1109_JAS_2024_124974
crossref_primary_10_1016_j_jfranklin_2022_02_004
crossref_primary_10_1115_1_4067768
crossref_primary_10_1002_rnc_5636
crossref_primary_10_1016_j_ifacol_2020_12_362
crossref_primary_10_1016_j_automatica_2020_109402
crossref_primary_10_1109_TAC_2020_3018438
crossref_primary_10_1109_TVT_2025_3550898
crossref_primary_10_1109_TAC_2021_3059842
crossref_primary_10_1109_TITS_2022_3147719
crossref_primary_10_1016_j_automatica_2017_03_031
crossref_primary_10_1002_oca_2501
crossref_primary_10_1016_j_neucom_2024_127706
crossref_primary_10_1016_j_paerosci_2019_05_003
crossref_primary_10_1109_LCSYS_2022_3176405
crossref_primary_10_1109_TAC_2022_3226712
crossref_primary_10_1016_j_compchemeng_2023_108277
crossref_primary_10_1016_j_compchemeng_2022_108112
crossref_primary_10_1016_j_ifacol_2018_11_010
crossref_primary_10_1109_TSMC_2023_3298511
crossref_primary_10_3390_app12031113
crossref_primary_10_1109_LCSYS_2022_3182643
crossref_primary_10_1016_j_automatica_2018_02_017
crossref_primary_10_1002_oca_2575
crossref_primary_10_1109_TAC_2024_3498702
crossref_primary_10_1016_j_ifacol_2020_12_014
crossref_primary_10_1002_rnc_7010
crossref_primary_10_1016_j_est_2024_111177
crossref_primary_10_1109_LRA_2022_3141192
crossref_primary_10_1109_TAC_2023_3294868
crossref_primary_10_1109_LCSYS_2024_3445723
crossref_primary_10_1109_TPWRS_2023_3321847
crossref_primary_10_1177_09544070251339518
crossref_primary_10_1016_j_sysconle_2018_02_001
crossref_primary_10_1093_imamci_dnaf009
crossref_primary_10_1109_ACCESS_2025_3530984
crossref_primary_10_1109_ACCESS_2020_2975990
crossref_primary_10_1109_MITS_2021_3084964
crossref_primary_10_3390_pr12030457
Cites_doi 10.1007/s10957-010-9754-6
10.1109/CDC.2014.7040135
10.1016/j.automatica.2006.07.011
10.1109/ACC.2014.6858851
10.1016/j.automatica.2004.08.019
10.1007/978-1-4471-4610-0
10.3182/20140824-6-ZA-1003.01255
10.1109/TAC.2010.2086553
10.1016/j.automatica.2017.03.031
10.1016/S0005-1098(01)00174-1
10.1109/TRO.2010.2044948
10.1109/ACC.2015.7170855
10.1109/CDC.2011.6161250
10.1109/TAC.1987.1104567
10.1016/j.automatica.2014.10.035
10.1016/j.jprocont.2013.08.008
10.1016/j.automatica.2016.04.008
10.1109/TAC.2008.2010886
10.1109/CDC.2015.7402994
10.1007/BFb0080630
10.1016/0005-1098(96)00063-5
10.1002/rnc.1249
10.1002/rnc.815
10.1109/ECC.2014.6862498
10.1016/S0005-1098(99)00113-2
10.1109/TAC.2011.2176429
10.1109/TAC.1972.1100085
10.1016/j.jprocont.2016.03.005
10.1007/978-1-4471-5361-0
10.1016/j.automatica.2010.06.034
10.3182/20140824-6-ZA-1003.00696
10.1016/j.automatica.2011.02.029
10.1016/S0005-1098(01)00051-6
10.1007/978-3-319-17933-9
10.1109/TAC.2012.2203054
10.1155/S1024123X98000866
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAC.2016.2625048
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 3177
ExternalDocumentID 10_1109_TAC_2016_2625048
7733074
Genre orig-research
GrantInformation_xml – fundername: CNR-JST international lab COOPS
– fundername: Cluster of Excellence in Simulation Technology
  grantid: 310/2
– fundername: German Research Foundation (DFG)
  funderid: 10.13039/501100001659
– fundername: University of Stuttgart
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c329t-3af3390c00a568b1decb52f826ef1794cfbe99086cb3ea9fc4dfbf9bf5af84873
IEDL.DBID RIE
ISICitedReferencesCount 162
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404299300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Sat Nov 29 05:40:33 EST 2025
Tue Nov 18 19:54:13 EST 2025
Wed Aug 27 02:52:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-3af3390c00a568b1decb52f826ef1794cfbe99086cb3ea9fc4dfbf9bf5af84873
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TAC_2016_2625048
ieee_primary_7733074
crossref_primary_10_1109_TAC_2016_2625048
PublicationCentury 2000
PublicationDate 2017-July
2017-7-00
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref30
blanchini (ref32) 2015
ref11
ref10
calafiore (ref42) 2011; 47
mayne (ref23) 2015; 48
ref2
ref17
ref16
bayer (ref5) 0
ref19
ref18
blanchini (ref28) 1999; 35
ono (ref39) 0
dreyfus (ref1) 1977; 130
ref24
prékopa (ref40) 2010; 324
ref26
ref25
ref41
ref22
ref44
ref21
ref43
klenke (ref38) 2014
ref27
kerrigan (ref34) 2000
ref29
ref8
ref7
herceg (ref33) 0
ref9
ref4
ref3
zhang (ref20) 0
ref6
References_xml – ident: ref43
  doi: 10.1007/s10957-010-9754-6
– ident: ref15
  doi: 10.1109/CDC.2014.7040135
– ident: ref10
  doi: 10.1016/j.automatica.2006.07.011
– ident: ref9
  doi: 10.1109/ACC.2014.6858851
– ident: ref3
  doi: 10.1016/j.automatica.2004.08.019
– start-page: 3427
  year: 0
  ident: ref39
  article-title: Iterative risk allocation: A new approach to robust model predictive control with a joint chance constraint
  publication-title: Proc IEEE Conf Decision Control
– ident: ref41
  doi: 10.1007/978-1-4471-4610-0
– ident: ref14
  doi: 10.3182/20140824-6-ZA-1003.01255
– ident: ref17
  doi: 10.1109/TAC.2010.2086553
– ident: ref26
  doi: 10.1016/j.automatica.2017.03.031
– ident: ref36
  doi: 10.1016/S0005-1098(01)00174-1
– start-page: 502
  year: 0
  ident: ref33
  article-title: Multi-parametric toolbox 3.0
  publication-title: Proc Eur Control Conf
– ident: ref8
  doi: 10.1109/TRO.2010.2044948
– ident: ref24
  doi: 10.1109/ACC.2015.7170855
– ident: ref19
  doi: 10.1109/CDC.2011.6161250
– ident: ref30
  doi: 10.1109/TAC.1987.1104567
– ident: ref13
  doi: 10.1016/j.automatica.2014.10.035
– ident: ref44
  doi: 10.1016/j.jprocont.2013.08.008
– ident: ref16
  doi: 10.1016/j.automatica.2016.04.008
– ident: ref22
  doi: 10.1109/TAC.2008.2010886
– year: 2000
  ident: ref34
  article-title: Robust constraint satisfaction: Invariant sets and predictive control
– volume: 48
  start-page: 1
  year: 2015
  ident: ref23
  article-title: Robust and stochastic MPC: Are we going in the right direction?
  publication-title: IFAC-PapersOnLine IFAC Conf Nonlinear Model Predictive Control
– ident: ref25
  doi: 10.1109/CDC.2015.7402994
– ident: ref37
  doi: 10.1007/BFb0080630
– ident: ref2
  doi: 10.1016/0005-1098(96)00063-5
– ident: ref6
  doi: 10.1002/rnc.1249
– ident: ref4
  doi: 10.1002/rnc.815
– ident: ref12
  doi: 10.1109/ECC.2014.6862498
– volume: 35
  start-page: 1747
  year: 1999
  ident: ref28
  article-title: Set invariance in control
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00113-2
– ident: ref7
  doi: 10.1109/TAC.2011.2176429
– ident: ref31
  doi: 10.1109/TAC.1972.1100085
– volume: 324
  year: 2010
  ident: ref40
  publication-title: Stochastic Programming Ser Mathematics and its Applications
– year: 0
  ident: ref20
  article-title: Stochastic model predictive control using a combination of randomized and robust optimization
  publication-title: Proc IEEE Conf Decision Control
– ident: ref21
  doi: 10.1016/j.jprocont.2016.03.005
– year: 2014
  ident: ref38
  publication-title: Probability Theory A Comprehensive Course ser Universitext
  doi: 10.1007/978-1-4471-5361-0
– ident: ref18
  doi: 10.1016/j.automatica.2010.06.034
– ident: ref35
  doi: 10.3182/20140824-6-ZA-1003.00696
– volume: 47
  start-page: 1279
  year: 2011
  ident: ref42
  article-title: Research on probabilistic methods for control system design
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.02.029
– ident: ref27
  doi: 10.1016/S0005-1098(01)00051-6
– year: 2015
  ident: ref32
  publication-title: Set-Theoretic Methods in Control
  doi: 10.1007/978-3-319-17933-9
– ident: ref11
  doi: 10.1109/TAC.2012.2203054
– ident: ref29
  doi: 10.1155/S1024123X98000866
– start-page: 2068
  year: 0
  ident: ref5
  article-title: Discrete-time incremental ISS: A framework for robust NMPC
  publication-title: Proc Eur Control Conf
– volume: 130
  year: 1977
  ident: ref1
  publication-title: The Art and Theory of Dynamic Programming ser Mathematics in Science and Engineering
SSID ssj0016441
Score 2.6251943
Snippet Constraint tightening to non-conservatively guarantee recursive feasibility and stability in Stochastic Model Predictive Control is addressed. Stability and...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 3165
SubjectTerms Asymptotic stability
Chance constraints
constrained control
discrete-time stochastic systems
Numerical stability
Optimization
Predictive control
randomized algorithms
receding horizon control
Robustness
stochastic model predictive control
Stochastic processes
Uncertainty
Title Constraint-Tightening and Stability in Stochastic Model Predictive Control
URI https://ieeexplore.ieee.org/document/7733074
Volume 62
WOSCitedRecordID wos000404299300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8KAHv6Y4v8jBi2C3tGmT9DiGQzyMHSbsVvKJg9HJ3AT_e_PSWiaI4K0pCbS_Nu_ll_fyfgjdMR3TNFEiUlS5KHWCRNJkacSct4Q0ZoxoFcQm-GQi5vN82kIPzVkYa21IPrN9uAyxfLPSW9gqG3Du2TdP26jNOavOajURA_DrldX1EzgRTUiS5IPZcAQ5XKyfMCjYJX64oB1NleBSxkf_e5hjdFgvHfGw-tYnqGXLU3SwU1Cwi55BfzOoPmyiGdBuC9seWJYG-1VlyIP9xIvSN1b6VUKJZgxiaEs8XUPABkwfHlXJ62foZfw4Gz1FtVpCpGmSbyIqHaU50YTIjAkVG6tVljhPH6yDWaedst71CKYVtTJ3OjVOuVy5TDrhaQs9R51yVdoLhFVMueOx1MqwNJaZMrGz2mRMJtxRRXpo8A1goetS4vBuyyJQCpIXHvICIC9qyHvovhnxVpXR-KNvF9Bu-tVAX_5--wrtJ-BpQwbtNeps1lt7g_b0x2bxvr4N_8gXSAG63A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKagHf01x_uzBi2C3tGnT9jiGY-ocO0zYrSRpgoPRydwE_3vz0lomiOCtKQm0X5v38uW9vA_ghkmPBr6IXUGFdgMdE5dnYeAybSwh9RgjUlixiWg4jCeTZFSDu-osjFLKJp-pFl7aWH42lyvcKmtHkWHfUbABm2EQ-KQ4rVXFDNCzF3bXTGE_roKSJGmPO13M4mItn2HJrviHE1pTVbFOpbf_v8c5gL1y8eh0iq99CDWVH8HuWknBBjyiAqfVfVi6YyTeCjc-HJ5njllX2kzYT2eam8ZcvnIs0uygHNrMGS0wZIPGz-kW6evH8NK7H3f7bqmX4ErqJ0uXck1pQiQhPGSx8DIlRehrQyCUxnkntVDG-cRMCqp4omWQaaEToUOuY0Nc6AnU83muTsERHo105HEpMhZ4PBSZp5XMQsb9SFNBmtD-BjCVZTFxfLdZakkFSVIDeYqQpyXkTbitRrwVhTT-6NtAtKt-JdBnv9--hu3--HmQDh6GT-ew46Pftfm0F1BfLlbqErbkx3L6vriy_8sXK4m-Iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraint-Tightening+and+Stability+in+Stochastic+Model+Predictive+Control&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Lorenzen%2C+Matthias&rft.au=Dabbene%2C+Fabrizio&rft.au=Tempo%2C+Roberto&rft.au=Allgower%2C+Frank&rft.date=2017-07-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=62&rft.issue=7&rft.spage=3165&rft.epage=3177&rft_id=info:doi/10.1109%2FTAC.2016.2625048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2016_2625048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon