Leveraging AI and Data Visualization for Enhanced Policy-Making: Aligning Research Initiatives with Sustainable Development Goals
Scientists, research institutions, funding agencies, and policy-makers have all emphasized the need to monitor and prioritize research investments and outputs to support the achievement of the United Nations Sustainable Development Goals (SDGs). Unfortunately, many current and historic research publ...
Uložené v:
| Vydané v: | Sustainability Ročník 16; číslo 24; s. 11050 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.12.2024
|
| Predmet: | |
| ISSN: | 2071-1050, 2071-1050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Scientists, research institutions, funding agencies, and policy-makers have all emphasized the need to monitor and prioritize research investments and outputs to support the achievement of the United Nations Sustainable Development Goals (SDGs). Unfortunately, many current and historic research publications, proposals, and grants were not categorized against the SDGs at the time of submission. Manual post hoc classification is time-consuming and prone to human biases. Even when classified, few tools are available to decision makers for supporting resource allocation. This paper aims to develop a deep learning classifier for categorizing research abstracts by the SDGs and a decision support system for research funding policy-makers. First, we fine-tune a Bidirectional Encoder Representations from Transformers (BERT) model using a dataset of 15,488 research abstracts from authors at leading Brazilian universities, which were preprocessed and balanced for training and testing. Second, we present a PowerBI dashboard that visualizes classifications for supporting informed resource allocation for sustainability-focused research. The model achieved an F1-score, precision, and recall exceeding 70% for certain classes and successfully classified existing projects, thereby enabling better tracking of Agenda 2030 progress. Although the model is capable of classifying any text, it is specifically optimized for Brazilian research due to the nature of its fine-tuning data. |
|---|---|
| AbstractList | Scientists, research institutions, funding agencies, and policy-makers have all emphasized the need to monitor and prioritize research investments and outputs to support the achievement of the United Nations Sustainable Development Goals (SDGs). Unfortunately, many current and historic research publications, proposals, and grants were not categorized against the SDGs at the time of submission. Manual post hoc classification is time-consuming and prone to human biases. Even when classified, few tools are available to decision makers for supporting resource allocation. This paper aims to develop a deep learning classifier for categorizing research abstracts by the SDGs and a decision support system for research funding policy-makers. First, we fine-tune a Bidirectional Encoder Representations from Transformers (BERT) model using a dataset of 15,488 research abstracts from authors at leading Brazilian universities, which were preprocessed and balanced for training and testing. Second, we present a PowerBI dashboard that visualizes classifications for supporting informed resource allocation for sustainability-focused research. The model achieved an F1-score, precision, and recall exceeding 70% for certain classes and successfully classified existing projects, thereby enabling better tracking of Agenda 2030 progress. Although the model is capable of classifying any text, it is specifically optimized for Brazilian research due to the nature of its fine-tuning data. |
| Audience | Academic |
| Author | Santos, Guto Leoni Leal, Roberto Cesar da Silva Lynn, Theo Endo, Patricia Takako Medeiros Neto, Leonides Leal da Silva, Raysa Carla Lino Ferreira da Silva Barros, Maicon Herverton Dourado, Raphael Augusto |
| Author_xml | – sequence: 1 givenname: Maicon Herverton orcidid: 0000-0002-0275-3298 surname: Lino Ferreira da Silva Barros fullname: Lino Ferreira da Silva Barros, Maicon Herverton – sequence: 2 givenname: Leonides orcidid: 0000-0002-0987-0921 surname: Medeiros Neto fullname: Medeiros Neto, Leonides – sequence: 3 givenname: Guto Leoni orcidid: 0000-0002-0257-4214 surname: Santos fullname: Santos, Guto Leoni – sequence: 4 givenname: Roberto Cesar da Silva orcidid: 0009-0001-6526-6278 surname: Leal fullname: Leal, Roberto Cesar da Silva – sequence: 5 givenname: Raysa Carla orcidid: 0009-0004-8271-4687 surname: Leal da Silva fullname: Leal da Silva, Raysa Carla – sequence: 6 givenname: Theo orcidid: 0000-0001-9284-7580 surname: Lynn fullname: Lynn, Theo – sequence: 7 givenname: Raphael Augusto orcidid: 0000-0001-6445-6590 surname: Dourado fullname: Dourado, Raphael Augusto – sequence: 8 givenname: Patricia Takako orcidid: 0000-0002-9163-5583 surname: Endo fullname: Endo, Patricia Takako |
| BookMark | eNpVkU1PGzEQhq2KSgXKqX_AUk8VWvBH1rvbW0TSECkIBG2vq4l3duN0YwfbS6G3_nMchQOxD_PKep4ZyXNCjqyzSMgXzi6krNhlGLgSI85Zzj6QY8EKnu3y0bv8iZyFsGbpSMkrro7J_wU-oYfO2I6O5xRsQycQgf42YYDe_INonKWt83RqV2A1NvTO9Ua_ZDfwJ0nf6bg3nd3p9xgQvF7RuTXRJPEJA_1r4oo-DCGCsbDskU7SvN5tN2gjnTnow2fysU0Fz97qKfn1Y_rz6jpb3M7mV-NFpqWoYiaLQivBseAVlkzkvChVrhBHcqmEzFMoEEqtm0Yvi0boJbZVPkKuqlYDQ5Cn5Ou-79a7xwFDrNdu8DaNrCUfVYViOS8TdbGnOuixNrZ10YNOt8GN0enDW5Pex6XgVSmFUEn4diAkJuJz7GAIoZ4_3B-y53tWexeCx7beerMB_1JzVu92WL_boXwFGg2QYA |
| Cites_doi | 10.1007/s11042-022-13428-4 10.1145/3641289 10.1109/ACCESS.2022.3223094 10.18653/v1/2020.emnlp-demos.6 10.1038/s41467-024-46150-w 10.1007/978-3-031-61057-8_31 10.1109/SP46215.2023.10179300 10.18653/v1/W18-5446 10.1038/nature14539 10.1038/s41598-021-01801-6 10.1109/IIAI-AAI59060.2023.00158 10.1007/s11625-022-01093-3 10.1007/978-81-322-3972-7 10.1109/ICDMW60847.2023.00181 10.3115/1225403.1225421 10.1016/S0169-7439(00)00122-2 10.1002/9781119515326.ch4 10.1007/s11625-024-01561-y 10.1007/978-3-031-21743-2_21 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.3390/su162411050 |
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 2071-1050 |
| ExternalDocumentID | A821983226 10_3390_su162411050 |
| GeographicLocations | Brazil |
| GeographicLocations_xml | – name: Brazil |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFFHD AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c329t-377c621e719e8025178656ee43b6235ee47ea8ccddcb7d2cbef954e169fca0ea3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001386590000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2071-1050 |
| IngestDate | Mon Jun 30 13:26:30 EDT 2025 Tue Nov 04 18:17:11 EST 2025 Thu Nov 13 15:59:41 EST 2025 Sat Nov 29 07:16:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c329t-377c621e719e8025178656ee43b6235ee47ea8ccddcb7d2cbef954e169fca0ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0275-3298 0009-0001-6526-6278 0009-0004-8271-4687 0000-0002-0987-0921 0000-0001-6445-6590 0000-0001-9284-7580 0000-0002-0257-4214 0000-0002-9163-5583 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3149760518?pq-origsite=%requestingapplication% |
| PQID | 3149760518 |
| PQPubID | 2032327 |
| ParticipantIDs | proquest_journals_3149760518 gale_infotracacademiconefile_A821983226 gale_incontextgauss_ISR_A821983226 crossref_primary_10_3390_su162411050 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sustainability |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Rosenblatt (ref_30) 2024; 15 (ref_5) 2022; 10 ref_13 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_19 LeCun (ref_15) 2015; 521 ref_17 Peng (ref_20) 2023; 1 Xu (ref_35) 2001; 56 Das (ref_14) 2017; 5 Khurana (ref_16) 2023; 82 ref_25 ref_24 ref_23 ref_22 ref_21 Asadikia (ref_4) 2024; 19 Vaswani (ref_9) 2017; 30 Matsui (ref_27) 2022; 17 ref_1 ref_3 ref_2 ref_29 ref_28 ref_26 ref_8 ref_7 Chang (ref_18) 2024; 15 ref_6 |
| References_xml | – volume: 5 start-page: 1301 year: 2017 ident: ref_14 article-title: A survey on machine learning: Concept, algorithms and applications publication-title: Int. J. Innov. Res. Comput. Commun. Eng. – ident: ref_28 – ident: ref_32 – ident: ref_3 – ident: ref_24 – ident: ref_26 – ident: ref_34 – volume: 30 start-page: 6000 year: 2017 ident: ref_9 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 82 start-page: 3713 year: 2023 ident: ref_16 article-title: Natural language processing: State of the art, current trends and challenges publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13428-4 – volume: 15 start-page: 1 year: 2024 ident: ref_18 article-title: A survey on evaluation of large language models publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3641289 – volume: 10 start-page: 123534 year: 2022 ident: ref_5 article-title: A Comparison of Multi-Label Text Classification Models in Research Articles Labeled With Sustainable Development Goals publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3223094 – ident: ref_23 doi: 10.18653/v1/2020.emnlp-demos.6 – ident: ref_1 – volume: 15 start-page: 1829 year: 2024 ident: ref_30 article-title: Data leakage inflates prediction performance in connectome-based machine learning models publication-title: Nat. Commun. doi: 10.1038/s41467-024-46150-w – volume: 1 start-page: 1 year: 2023 ident: ref_20 article-title: Near-Duplicate Sequence Search at Scale for Large Language Model Memorization Evaluation publication-title: Proc. ACM Manag. Data – ident: ref_11 doi: 10.1007/978-3-031-61057-8_31 – ident: ref_21 – ident: ref_22 doi: 10.1109/SP46215.2023.10179300 – ident: ref_17 doi: 10.18653/v1/W18-5446 – volume: 521 start-page: 436 year: 2015 ident: ref_15 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_25 – ident: ref_33 – ident: ref_2 – ident: ref_6 doi: 10.1038/s41598-021-01801-6 – ident: ref_8 doi: 10.1109/IIAI-AAI59060.2023.00158 – volume: 17 start-page: 969 year: 2022 ident: ref_27 article-title: A natural language processing model for supporting sustainable development goals: Translating semantics, visualizing nexus, and connecting stakeholders publication-title: Sustain. Sci. doi: 10.1007/s11625-022-01093-3 – ident: ref_12 doi: 10.1007/978-81-322-3972-7 – ident: ref_31 doi: 10.1109/ICDMW60847.2023.00181 – ident: ref_10 – ident: ref_29 doi: 10.3115/1225403.1225421 – volume: 56 start-page: 1 year: 2001 ident: ref_35 article-title: Monte Carlo cross validation publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(00)00122-2 – ident: ref_19 – ident: ref_13 doi: 10.1002/9781119515326.ch4 – volume: 19 start-page: 2041 year: 2024 ident: ref_4 article-title: Navigating sustainability: Key factors in prioritising Sustainable Development Goals publication-title: Sustain. Sci. doi: 10.1007/s11625-024-01561-y – ident: ref_7 doi: 10.1007/978-3-031-21743-2_21 |
| SSID | ssj0000331916 |
| Score | 2.3514168 |
| Snippet | Scientists, research institutions, funding agencies, and policy-makers have all emphasized the need to monitor and prioritize research investments and outputs... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 11050 |
| SubjectTerms | Artificial intelligence Datasets Decision making Large language models Methods Policy sciences Sustainable development Technology application |
| Title | Leveraging AI and Data Visualization for Enhanced Policy-Making: Aligning Research Initiatives with Sustainable Development Goals |
| URI | https://www.proquest.com/docview/3149760518 |
| Volume | 16 |
| WOSCitedRecordID | wos001386590000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC50RlgvvnbF8TE0i-ApmKQnLy8yanQHdoZB3cU9hU6nowOS0enoUfCfW5V0dhRkT3sLpA8NVV39VfVXXwHsYx6bC5dzS6VBZPU8N7NSlWOyQm84Ko2kn-fVsIlgNApvbqKxaY_WhlbZxMQqUNdqz8TbxiB8mE0lVcwPOQL7AJG4Ex4_PFo0Q4reWs1AjUVok_CW3YL2eDAc__lbc7E5Opzj1216HLN9tLbj464QZNgfLqbPw3N155yv_t_drsGKwZ6sXzvLOiyoYgO-NK3JegM243nbGy40515_hdefCl2-GmjE-gMmioydiVKw3xNNTZl1KydD_Mvi4q7iFLBacNgaVtOujlj_fnJLJRjWUP3YgGhLley4ZlQNZlfzXi72jsvELqZ4RL7Br_P4-vSHZYY3WJK7UYmBK5C-66jAiVRYCaOFCB2V6vEUEZeHH4ESoZRZJtMgcyV6SOT1lONHuRS2EnwTWsW0UFvAPLw_U9_mqYzSXh66QiIszDzSSuR5Ztsd2G8slzzUGh0J5jZk4OSdgTvwnayakOpFQbSaW_GkdTK4ukz6IQZuim1-Bw7MonxazoQUpksBd0JCWR9W7jamT8y518nc0tv__r0Dyy7Co5oYswutcvak9mBJPpcTPetC-yQejS-7sDh8ibvGjd8AU-gEIQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RpRK9lEeLui2lVkXVU9TEzstICK3KUiJ2V6tCK3pyHcehK1VZug4gjvwhfiPjPLogVb1x4BYpVuQk38x8M54HwBb6sbmkjDk6jbjjBzRzUp2js2LPcHTKVZjn1bCJaDSKT074eAFu2loYm1bZ6sRKUWdTZWPknxhS-Qi5txfvnv1x7NQoe7rajtCoYXGory7RZTM7yR7-3w-U7vePPx84zVQBRzHKS5SoSIXU05HHdVx17IqR02jtsxSpQIAXkZaxUlmm0iijCrfOA197Ic-VdLVk-NwnsOgj2N0OLI6T4fjH36iOyxDSXlgXAjLGXcSTF-J7I41x75m-fxuAyqrtLz-277ECzxv-THo14FdhQRdrsNSWV5s1WO_PS_dwYaO7zAu4HmgU22ooE-klRBYZ2ZOlJN8nxhaW1uWoBDk86Re_qrwIUjdNdobVxK5t0vs9ObVhJNKmK5LEpl5VrdMNsRFtcjSvRyN38rHIlymK-Uv49iCfZh06xbTQr4AEyAHS0GWp4qmfx1QqpLZZYPs9sjxz3S5stdgQZ3WfEYH-mYWQuAOhLry3uBG2c0dhU4NO5bkxIjn6KnoxGh-rn8MufGwW5dNyJpVsKi1wJ7bZ172VGy24RKO7jJgj6_X_b7-DpYPj4UAMktHhG3hGke7ViT4b0Cln5_otPFUX5cTMNhsxIfDzoZF4C6oGVGc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9RAEJ_gYcQXQYRwiroxGJ8a2t3rx5oYc3J32ICXCyjhbdlud-ES0sPbovHRf8u_ztl-eJAY33jwrUk3Tbv9zcxvZucDYAf9WCMpY57OYu71Qpp7mTborLgzHJ1xFRlTDZuIx-Pk9JRPluBXWwvj0ipbnVgp6nymXIx8lyGVj5F7B8muadIiJoPR-6uvnpsg5U5a23EaNUQO9I_v6L7Zd-kA__VrSkfDz3sfvWbCgKcY5SVKV6wiGug44DqpunclyG-07rEMaUGIF7GWiVJ5rrI4pwo_g4c9HUTcKOlryfC592A5Zuj0dGD5w3A8OfoT4fEZwjuI6qJAxriP2Aoi3AOkNP4tM_h3Y1BZuNHq_7w3a_Co4dWkXwvCY1jSxTqstGXXdh02h4uSPlzY6DT7BH4eahTnalgT6adEFjkZyFKSk6l1Bad1mSpBbk-GxUWVL0HqZsrep2qS11vSv5yeu_ASadMYSepSsqqW6pa4SDc5XtSpkRt5WmR_huK_AV_uZGs2oVPMCr0FJERukEU-yxTPeiahUiHlzUPXB5KZ3Pe7sNPiRFzV_UcE-m0OTuIGnLrwymFIuI4ehfv_5_LaWpEeH4l-gkbJ6e2oC2-aRWZWzqWSTQUGvolrAnZr5XYLNNHoNCsWKHv679sv4QHCTxym44Nn8JAiC6zzf7ahU86v9XO4r76VUzt_0UgMgbO7BuJvQ5FdAQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+AI+and+Data+Visualization+for+Enhanced+Policy-Making%3A+Aligning+Research+Initiatives+with+Sustainable+Development+Goals&rft.jtitle=Sustainability&rft.au=Lino+Ferreira+da+Silva+Barros%2C+Maicon+Herverton&rft.au=Medeiros+Neto%2C+Leonides&rft.au=Santos%2C+Guto+Leoni&rft.au=Leal%2C+Roberto+Cesar+da+Silva&rft.date=2024-12-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=24&rft.spage=11050&rft_id=info:doi/10.3390%2Fsu162411050&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su162411050 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |