Synthesis and optimization of membrane cascade for gas separation via mixed‐integer nonlinear programming
Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product purity simultaneously, many such configurations are possible. These designs rely on the process engineer's experience and therefore subop...
Gespeichert in:
| Veröffentlicht in: | AIChE journal Jg. 63; H. 6; S. 1989 - 2006 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
American Institute of Chemical Engineers
01.06.2017
|
| Schlagworte: | |
| ISSN: | 0001-1541, 1547-5905 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product purity simultaneously, many such configurations are possible. These designs rely on the process engineer's experience and therefore suboptimal configurations are often the result. This article proposes a systematic methodology for obtaining the optimal multistage membrane flow sheet and corresponding operating conditions. The new approach is applied to cross‐flow membrane modules that separate CO 2 from CH 4 , for which the optimization of the proposed superstructure has been achieved via a mixed‐integer nonlinear programming model, with the gas processing cost as objective function. The novelty of this work resides in the large number of possible interconnections between each membrane module, the energy recovery from the high pressure outlet stream and allowing for nonisothermal conditions. The results presented in this work comprise the optimal flow sheet and operating conditions of two case studies. © 2017 American Institute of Chemical Engineers AIChE J , 63: 1989–2006, 2017 |
|---|---|
| AbstractList | Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product purity simultaneously, many such configurations are possible. These designs rely on the process engineer's experience and therefore suboptimal configurations are often the result. This article proposes a systematic methodology for obtaining the optimal multistage membrane flow sheet and corresponding operating conditions. The new approach is applied to cross‐flow membrane modules that separate CO2 from CH4, for which the optimization of the proposed superstructure has been achieved via a mixed‐integer nonlinear programming model, with the gas processing cost as objective function. The novelty of this work resides in the large number of possible interconnections between each membrane module, the energy recovery from the high pressure outlet stream and allowing for nonisothermal conditions. The results presented in this work comprise the optimal flow sheet and operating conditions of two case studies. © 2017 American Institute of Chemical Engineers AIChE J, 63: 1989–2006, 2017 Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product purity simultaneously, many such configurations are possible. These designs rely on the process engineer's experience and therefore suboptimal configurations are often the result. This article proposes a systematic methodology for obtaining the optimal multistage membrane flow sheet and corresponding operating conditions. The new approach is applied to cross‐flow membrane modules that separate CO 2 from CH 4 , for which the optimization of the proposed superstructure has been achieved via a mixed‐integer nonlinear programming model, with the gas processing cost as objective function. The novelty of this work resides in the large number of possible interconnections between each membrane module, the energy recovery from the high pressure outlet stream and allowing for nonisothermal conditions. The results presented in this work comprise the optimal flow sheet and operating conditions of two case studies. © 2017 American Institute of Chemical Engineers AIChE J , 63: 1989–2006, 2017 |
| Author | Caballero, José A. Aliaga‐Vicente, Alicia Fernández‐Torres, María J. |
| Author_xml | – sequence: 1 givenname: Alicia surname: Aliaga‐Vicente fullname: Aliaga‐Vicente, Alicia organization: Dept. of Chemical Engineering University of Alicante Ap. Correos 99 03080 Alicante Spain – sequence: 2 givenname: José A. surname: Caballero fullname: Caballero, José A. organization: Dept. of Chemical Engineering University of Alicante Ap. Correos 99 03080 Alicante Spain – sequence: 3 givenname: María J. orcidid: 0000-0002-2492-8845 surname: Fernández‐Torres fullname: Fernández‐Torres, María J. organization: Dept. of Chemical Engineering University of Alicante Ap. Correos 99 03080 Alicante Spain |
| BookMark | eNptkE1OwzAQhS1UJNrCghtYYsUire3ETrJEFX9SJRbAOprYTnBpnGC7iLLiCJyRk2BaVojVaEbfmzfzJmhke6sROqVkRglhczByRrlI6QEaU57lCS8JH6ExIYQmcUCP0MT7VexYXrAxer7f2vCkvfEYrML9EExn3iGY3uK-wZ3uagdWYwlegtK46R1uwWOvB3B77NUA7sybVl8fn8YG3WqH41VrYzU4PLi-ddB1xrbH6LCBtdcnv3WKHq8uHxY3yfLu-nZxsUxkysqQMF1LlYKgSoDgrOac1zXLmkxBLdKagBRCpqUiipCmLHha1IUsI0UzzQTP0yk62--N3i8b7UO16jfORsuKFiUnORFZGan5npKu997pppIm7D4KDsy6oqT6SbSKiVa7RKPi_I9icKYDt_2H_QZ8Z3tn |
| CitedBy_id | crossref_primary_10_1016_j_energy_2018_12_160 crossref_primary_10_1016_j_cep_2018_06_024 crossref_primary_10_1016_j_memsci_2018_05_038 crossref_primary_10_1146_annurev_chembioeng_100722_114853 crossref_primary_10_1021_acs_iecr_4c03693 crossref_primary_10_1016_j_memsci_2018_08_024 crossref_primary_10_1016_j_memsci_2019_117796 crossref_primary_10_1016_j_compchemeng_2023_108464 crossref_primary_10_1016_j_memsci_2024_123574 crossref_primary_10_1002_aic_16738 crossref_primary_10_1016_j_ces_2020_116275 crossref_primary_10_1016_j_compchemeng_2023_108501 crossref_primary_10_1016_j_ijggc_2019_02_010 crossref_primary_10_1016_j_jgsce_2024_205479 crossref_primary_10_1016_j_seppur_2023_123682 crossref_primary_10_1002_aic_16588 crossref_primary_10_1016_j_jenvman_2018_09_059 crossref_primary_10_1016_j_memsci_2021_119514 crossref_primary_10_3390_pr9111871 |
| Cites_doi | 10.1016/j.ijggc.2012.10.009 10.1016/S0009-2509(96)00376-4 10.1021/ie900499y 10.1016/B978-0-12-386547-2.00011-9 10.1016/j.memsci.2010.08.029 10.1016/j.ijggc.2013.04.012 10.1016/j.fuel.2011.12.074 10.1016/j.memsci.2016.09.011 10.1016/0098-1354(90)85010-8 10.1016/j.compchemeng.2011.08.002 10.1016/0376-7388(95)00273-1 10.1016/S0376-7388(02)00259-4 10.1016/S0009-2509(98)00313-3 10.1016/0376-7388(95)00272-3 10.1021/ie8019032 10.1016/0255-2701(87)80032-6 10.1016/j.memsci.2015.08.023 10.1016/j.memsci.2008.03.040 10.1016/S0098-1354(00)00625-6 10.1016/j.memsci.2012.11.070 10.1016/S1359-4311(02)00006-6 10.1002/0470020393 10.1016/j.apm.2015.02.010 10.1002/9781118938607 10.1021/ie0108088 10.1002/aic.690420806 |
| ContentType | Journal Article |
| Copyright | 2017 American Institute of Chemical Engineers |
| Copyright_xml | – notice: 2017 American Institute of Chemical Engineers |
| DBID | AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
| DOI | 10.1002/aic.15631 |
| DatabaseName | CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1547-5905 |
| EndPage | 2006 |
| ExternalDocumentID | 10_1002_aic_15631 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHQN AAIHA AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJIA ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYN AEUYR AEYWJ AFBPY AFFHD AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CITATION CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O8X O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 S0X SAMSI SUPJJ TAE TN5 TUS UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT 7ST 7U5 8FD C1K L7M SOI |
| ID | FETCH-LOGICAL-c329t-2ebcd3a61d6a652b555bb24f4dab63b0ac66c39d0d00f98538b8c955514e26573 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400658400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-1541 |
| IngestDate | Mon Nov 10 03:09:30 EST 2025 Tue Nov 18 21:16:40 EST 2025 Sat Nov 29 07:16:24 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c329t-2ebcd3a61d6a652b555bb24f4dab63b0ac66c39d0d00f98538b8c955514e26573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2492-8845 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/aic.15631 |
| PQID | 1895070649 |
| PQPubID | 7879 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_1895070649 crossref_citationtrail_10_1002_aic_15631 crossref_primary_10_1002_aic_15631 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-01 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | AIChE journal |
| PublicationYear | 2017 |
| Publisher | American Institute of Chemical Engineers |
| Publisher_xml | – name: American Institute of Chemical Engineers |
| References | e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 Hussain A (e_1_2_11_18_1) 2014; 36 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Turton R (e_1_2_11_24_1) 2012 e_1_2_11_21_1 Smith R. (e_1_2_11_35_1) 2016 e_1_2_11_20_1 Green D (e_1_2_11_30_1) 2007 e_1_2_11_25_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 Drioli E (e_1_2_11_27_1) 2011 e_1_2_11_19_1 |
| References_xml | – ident: e_1_2_11_17_1 doi: 10.1016/j.ijggc.2012.10.009 – ident: e_1_2_11_13_1 doi: 10.1016/S0009-2509(96)00376-4 – ident: e_1_2_11_34_1 doi: 10.1021/ie900499y – ident: e_1_2_11_5_1 doi: 10.1016/B978-0-12-386547-2.00011-9 – ident: e_1_2_11_9_1 doi: 10.1016/j.memsci.2010.08.029 – ident: e_1_2_11_16_1 doi: 10.1016/j.ijggc.2013.04.012 – ident: e_1_2_11_19_1 doi: 10.1016/j.fuel.2011.12.074 – ident: e_1_2_11_33_1 doi: 10.1016/j.memsci.2016.09.011 – volume-title: Chemical Process Design and Integration year: 2016 ident: e_1_2_11_35_1 – ident: e_1_2_11_23_1 doi: 10.1016/0098-1354(90)85010-8 – ident: e_1_2_11_14_1 doi: 10.1016/j.compchemeng.2011.08.002 – ident: e_1_2_11_12_1 doi: 10.1016/0376-7388(95)00273-1 – volume-title: Analysis, Synthesis, and Design of Chemical Processes year: 2012 ident: e_1_2_11_24_1 – ident: e_1_2_11_2_1 doi: 10.1016/S0376-7388(02)00259-4 – volume-title: Perry's Chemical Engineers' Handbook year: 2007 ident: e_1_2_11_30_1 – ident: e_1_2_11_7_1 doi: 10.1016/S0009-2509(98)00313-3 – volume-title: Membrane Engineering for the Treatment of Gases year: 2011 ident: e_1_2_11_27_1 – ident: e_1_2_11_11_1 doi: 10.1016/0376-7388(95)00272-3 – ident: e_1_2_11_3_1 doi: 10.1021/ie8019032 – ident: e_1_2_11_21_1 doi: 10.1016/0255-2701(87)80032-6 – ident: e_1_2_11_20_1 – ident: e_1_2_11_31_1 doi: 10.1016/j.memsci.2015.08.023 – ident: e_1_2_11_15_1 doi: 10.1016/j.memsci.2008.03.040 – ident: e_1_2_11_26_1 – ident: e_1_2_11_8_1 doi: 10.1016/S0098-1354(00)00625-6 – ident: e_1_2_11_22_1 doi: 10.1016/j.memsci.2012.11.070 – volume: 36 start-page: 11 issue: 3 year: 2014 ident: e_1_2_11_18_1 article-title: Process design analyses of CO2 capture from natural gas by polymer membrane publication-title: J Chem Soc Pak. – ident: e_1_2_11_4_1 doi: 10.1016/S1359-4311(02)00006-6 – ident: e_1_2_11_25_1 – ident: e_1_2_11_6_1 doi: 10.1002/0470020393 – ident: e_1_2_11_32_1 doi: 10.1016/j.apm.2015.02.010 – ident: e_1_2_11_28_1 doi: 10.1002/9781118938607 – ident: e_1_2_11_29_1 doi: 10.1021/ie0108088 – ident: e_1_2_11_10_1 doi: 10.1002/aic.690420806 |
| SSID | ssj0012782 |
| Score | 2.3415408 |
| Snippet | Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1989 |
| SubjectTerms | Carbon dioxide Configurations Cross flow Energy recovery Gas membrane separation Gas separation High pressure Membranes Modules Multistage Nonlinear programming Objective function Optimization Organic chemistry Superstructures |
| Title | Synthesis and optimization of membrane cascade for gas separation via mixed‐integer nonlinear programming |
| URI | https://www.proquest.com/docview/1895070649 |
| Volume | 63 |
| WOSCitedRecordID | wos000400658400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaWLQc4IH5FoSALcUCKUhI7duJj1R9BhSoEW9RbZCfeNmI3W22W1XLjEXgj3oUnYfyTbJb2UA5cosjrOJvMl_HMePwNQq_BSeaFVOOQS0bCRFMaqkgloSpVIgs2LlUkbbGJ9OQkOzsTHweDX-1emOUkretstRKX_1XU0AbCNltn_0Hc3aDQAOcgdDiC2OF4I8F__l6DUWd4RkxMfAYqYer3Wrq19Cn4x7XJ9mpMarxNMzyXTdBoxwIO3ZaVDKbVSpddJoQlldDzoHbEGoYe2-V1TduZryWyfb9_cRj0_6e0Za_luewG-1KZjFAXSJ2YqMp6HUSZyi5u583xrHGL-MHebj_obRtjG_luBxzZCiN-55H9_UAGx7v9gEacrhOvOiUdh2DZuSbt9XKShkxErK-4vWasrmhhkwfWm9FN1OTa2cKxz8qq2AUv1k9GG4zcf82UXf6i43omOVya20tvoS2SMpEN0dbBp6PTD91CFkkzR1jvn6klt4rI2-6-mybRpkVgzZzRfXTP-yd4z-HqARro-iG622OtfIS-dgjDgDDcRxiejXGLMOwRhgFhGBCG1wjDgDBsEfb7x0-PLdxhC_ew9RidHh2O9t-FvmZHWFAiFiHRqiip5HHJJWdEMcaUIsk4KaXiFD78gvOCijIqo2gswFbMVFYIZux2TThL6RM0hPvppwhTDq5LpESSSJYkJVVKpzrOOCU6lmlBt9Gb9rXlhSe0N3VVJvkV8WyjV13XS8ficl2nnfbd5_47afI4E-Axgd0unt1kjOfozhrSO2i4mH_TL9DtYrmomvlLD44_8cOb1A |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+optimization+of+membrane+cascade+for+gas+separation+via+mixed%E2%80%90integer+nonlinear+programming&rft.jtitle=AIChE+journal&rft.au=Aliaga%E2%80%90Vicente%2C+Alicia&rft.au=Caballero%2C+Jos%C3%A9+A.&rft.au=Fern%C3%A1ndez%E2%80%90Torres%2C+Mar%C3%ADa+J.&rft.date=2017-06-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=63&rft.issue=6&rft.spage=1989&rft.epage=2006&rft_id=info:doi/10.1002%2Faic.15631&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_15631 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |