Synthesis and optimization of membrane cascade for gas separation via mixed‐integer nonlinear programming

Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product purity simultaneously, many such configurations are possible. These designs rely on the process engineer's experience and therefore subop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal Jg. 63; H. 6; S. 1989 - 2006
Hauptverfasser: Aliaga‐Vicente, Alicia, Caballero, José A., Fernández‐Torres, María J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York American Institute of Chemical Engineers 01.06.2017
Schlagworte:
ISSN:0001-1541, 1547-5905
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product purity simultaneously, many such configurations are possible. These designs rely on the process engineer's experience and therefore suboptimal configurations are often the result. This article proposes a systematic methodology for obtaining the optimal multistage membrane flow sheet and corresponding operating conditions. The new approach is applied to cross‐flow membrane modules that separate CO 2 from CH 4 , for which the optimization of the proposed superstructure has been achieved via a mixed‐integer nonlinear programming model, with the gas processing cost as objective function. The novelty of this work resides in the large number of possible interconnections between each membrane module, the energy recovery from the high pressure outlet stream and allowing for nonisothermal conditions. The results presented in this work comprise the optimal flow sheet and operating conditions of two case studies. © 2017 American Institute of Chemical Engineers AIChE J , 63: 1989–2006, 2017
AbstractList Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product purity simultaneously, many such configurations are possible. These designs rely on the process engineer's experience and therefore suboptimal configurations are often the result. This article proposes a systematic methodology for obtaining the optimal multistage membrane flow sheet and corresponding operating conditions. The new approach is applied to cross‐flow membrane modules that separate CO2 from CH4, for which the optimization of the proposed superstructure has been achieved via a mixed‐integer nonlinear programming model, with the gas processing cost as objective function. The novelty of this work resides in the large number of possible interconnections between each membrane module, the energy recovery from the high pressure outlet stream and allowing for nonisothermal conditions. The results presented in this work comprise the optimal flow sheet and operating conditions of two case studies. © 2017 American Institute of Chemical Engineers AIChE J, 63: 1989–2006, 2017
Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product purity simultaneously, many such configurations are possible. These designs rely on the process engineer's experience and therefore suboptimal configurations are often the result. This article proposes a systematic methodology for obtaining the optimal multistage membrane flow sheet and corresponding operating conditions. The new approach is applied to cross‐flow membrane modules that separate CO 2 from CH 4 , for which the optimization of the proposed superstructure has been achieved via a mixed‐integer nonlinear programming model, with the gas processing cost as objective function. The novelty of this work resides in the large number of possible interconnections between each membrane module, the energy recovery from the high pressure outlet stream and allowing for nonisothermal conditions. The results presented in this work comprise the optimal flow sheet and operating conditions of two case studies. © 2017 American Institute of Chemical Engineers AIChE J , 63: 1989–2006, 2017
Author Caballero, José A.
Aliaga‐Vicente, Alicia
Fernández‐Torres, María J.
Author_xml – sequence: 1
  givenname: Alicia
  surname: Aliaga‐Vicente
  fullname: Aliaga‐Vicente, Alicia
  organization: Dept. of Chemical Engineering University of Alicante Ap. Correos 99 03080 Alicante Spain
– sequence: 2
  givenname: José A.
  surname: Caballero
  fullname: Caballero, José A.
  organization: Dept. of Chemical Engineering University of Alicante Ap. Correos 99 03080 Alicante Spain
– sequence: 3
  givenname: María J.
  orcidid: 0000-0002-2492-8845
  surname: Fernández‐Torres
  fullname: Fernández‐Torres, María J.
  organization: Dept. of Chemical Engineering University of Alicante Ap. Correos 99 03080 Alicante Spain
BookMark eNptkE1OwzAQhS1UJNrCghtYYsUire3ETrJEFX9SJRbAOprYTnBpnGC7iLLiCJyRk2BaVojVaEbfmzfzJmhke6sROqVkRglhczByRrlI6QEaU57lCS8JH6ExIYQmcUCP0MT7VexYXrAxer7f2vCkvfEYrML9EExn3iGY3uK-wZ3uagdWYwlegtK46R1uwWOvB3B77NUA7sybVl8fn8YG3WqH41VrYzU4PLi-ddB1xrbH6LCBtdcnv3WKHq8uHxY3yfLu-nZxsUxkysqQMF1LlYKgSoDgrOac1zXLmkxBLdKagBRCpqUiipCmLHha1IUsI0UzzQTP0yk62--N3i8b7UO16jfORsuKFiUnORFZGan5npKu997pppIm7D4KDsy6oqT6SbSKiVa7RKPi_I9icKYDt_2H_QZ8Z3tn
CitedBy_id crossref_primary_10_1016_j_energy_2018_12_160
crossref_primary_10_1016_j_cep_2018_06_024
crossref_primary_10_1016_j_memsci_2018_05_038
crossref_primary_10_1146_annurev_chembioeng_100722_114853
crossref_primary_10_1021_acs_iecr_4c03693
crossref_primary_10_1016_j_memsci_2018_08_024
crossref_primary_10_1016_j_memsci_2019_117796
crossref_primary_10_1016_j_compchemeng_2023_108464
crossref_primary_10_1016_j_memsci_2024_123574
crossref_primary_10_1002_aic_16738
crossref_primary_10_1016_j_ces_2020_116275
crossref_primary_10_1016_j_compchemeng_2023_108501
crossref_primary_10_1016_j_ijggc_2019_02_010
crossref_primary_10_1016_j_jgsce_2024_205479
crossref_primary_10_1016_j_seppur_2023_123682
crossref_primary_10_1002_aic_16588
crossref_primary_10_1016_j_jenvman_2018_09_059
crossref_primary_10_1016_j_memsci_2021_119514
crossref_primary_10_3390_pr9111871
Cites_doi 10.1016/j.ijggc.2012.10.009
10.1016/S0009-2509(96)00376-4
10.1021/ie900499y
10.1016/B978-0-12-386547-2.00011-9
10.1016/j.memsci.2010.08.029
10.1016/j.ijggc.2013.04.012
10.1016/j.fuel.2011.12.074
10.1016/j.memsci.2016.09.011
10.1016/0098-1354(90)85010-8
10.1016/j.compchemeng.2011.08.002
10.1016/0376-7388(95)00273-1
10.1016/S0376-7388(02)00259-4
10.1016/S0009-2509(98)00313-3
10.1016/0376-7388(95)00272-3
10.1021/ie8019032
10.1016/0255-2701(87)80032-6
10.1016/j.memsci.2015.08.023
10.1016/j.memsci.2008.03.040
10.1016/S0098-1354(00)00625-6
10.1016/j.memsci.2012.11.070
10.1016/S1359-4311(02)00006-6
10.1002/0470020393
10.1016/j.apm.2015.02.010
10.1002/9781118938607
10.1021/ie0108088
10.1002/aic.690420806
ContentType Journal Article
Copyright 2017 American Institute of Chemical Engineers
Copyright_xml – notice: 2017 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.15631
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 2006
ExternalDocumentID 10_1002_aic_15631
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFHD
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CITATION
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O8X
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c329t-2ebcd3a61d6a652b555bb24f4dab63b0ac66c39d0d00f98538b8c955514e26573
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400658400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Mon Nov 10 03:09:30 EST 2025
Tue Nov 18 21:16:40 EST 2025
Sat Nov 29 07:16:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-2ebcd3a61d6a652b555bb24f4dab63b0ac66c39d0d00f98538b8c955514e26573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2492-8845
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/aic.15631
PQID 1895070649
PQPubID 7879
PageCount 18
ParticipantIDs proquest_journals_1895070649
crossref_citationtrail_10_1002_aic_15631
crossref_primary_10_1002_aic_15631
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationYear 2017
Publisher American Institute of Chemical Engineers
Publisher_xml – name: American Institute of Chemical Engineers
References e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
Hussain A (e_1_2_11_18_1) 2014; 36
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Turton R (e_1_2_11_24_1) 2012
e_1_2_11_21_1
Smith R. (e_1_2_11_35_1) 2016
e_1_2_11_20_1
Green D (e_1_2_11_30_1) 2007
e_1_2_11_25_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
Drioli E (e_1_2_11_27_1) 2011
e_1_2_11_19_1
References_xml – ident: e_1_2_11_17_1
  doi: 10.1016/j.ijggc.2012.10.009
– ident: e_1_2_11_13_1
  doi: 10.1016/S0009-2509(96)00376-4
– ident: e_1_2_11_34_1
  doi: 10.1021/ie900499y
– ident: e_1_2_11_5_1
  doi: 10.1016/B978-0-12-386547-2.00011-9
– ident: e_1_2_11_9_1
  doi: 10.1016/j.memsci.2010.08.029
– ident: e_1_2_11_16_1
  doi: 10.1016/j.ijggc.2013.04.012
– ident: e_1_2_11_19_1
  doi: 10.1016/j.fuel.2011.12.074
– ident: e_1_2_11_33_1
  doi: 10.1016/j.memsci.2016.09.011
– volume-title: Chemical Process Design and Integration
  year: 2016
  ident: e_1_2_11_35_1
– ident: e_1_2_11_23_1
  doi: 10.1016/0098-1354(90)85010-8
– ident: e_1_2_11_14_1
  doi: 10.1016/j.compchemeng.2011.08.002
– ident: e_1_2_11_12_1
  doi: 10.1016/0376-7388(95)00273-1
– volume-title: Analysis, Synthesis, and Design of Chemical Processes
  year: 2012
  ident: e_1_2_11_24_1
– ident: e_1_2_11_2_1
  doi: 10.1016/S0376-7388(02)00259-4
– volume-title: Perry's Chemical Engineers' Handbook
  year: 2007
  ident: e_1_2_11_30_1
– ident: e_1_2_11_7_1
  doi: 10.1016/S0009-2509(98)00313-3
– volume-title: Membrane Engineering for the Treatment of Gases
  year: 2011
  ident: e_1_2_11_27_1
– ident: e_1_2_11_11_1
  doi: 10.1016/0376-7388(95)00272-3
– ident: e_1_2_11_3_1
  doi: 10.1021/ie8019032
– ident: e_1_2_11_21_1
  doi: 10.1016/0255-2701(87)80032-6
– ident: e_1_2_11_20_1
– ident: e_1_2_11_31_1
  doi: 10.1016/j.memsci.2015.08.023
– ident: e_1_2_11_15_1
  doi: 10.1016/j.memsci.2008.03.040
– ident: e_1_2_11_26_1
– ident: e_1_2_11_8_1
  doi: 10.1016/S0098-1354(00)00625-6
– ident: e_1_2_11_22_1
  doi: 10.1016/j.memsci.2012.11.070
– volume: 36
  start-page: 11
  issue: 3
  year: 2014
  ident: e_1_2_11_18_1
  article-title: Process design analyses of CO2 capture from natural gas by polymer membrane
  publication-title: J Chem Soc Pak.
– ident: e_1_2_11_4_1
  doi: 10.1016/S1359-4311(02)00006-6
– ident: e_1_2_11_25_1
– ident: e_1_2_11_6_1
  doi: 10.1002/0470020393
– ident: e_1_2_11_32_1
  doi: 10.1016/j.apm.2015.02.010
– ident: e_1_2_11_28_1
  doi: 10.1002/9781118938607
– ident: e_1_2_11_29_1
  doi: 10.1021/ie0108088
– ident: e_1_2_11_10_1
  doi: 10.1002/aic.690420806
SSID ssj0012782
Score 2.3415408
Snippet Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1989
SubjectTerms Carbon dioxide
Configurations
Cross flow
Energy recovery
Gas membrane separation
Gas separation
High pressure
Membranes
Modules
Multistage
Nonlinear programming
Objective function
Optimization
Organic chemistry
Superstructures
Title Synthesis and optimization of membrane cascade for gas separation via mixed‐integer nonlinear programming
URI https://www.proquest.com/docview/1895070649
Volume 63
WOSCitedRecordID wos000400658400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaWLQc4IH5FoSALcUCKUhI7duJj1R9BhSoEW9RbZCfeNmI3W22W1XLjEXgj3oUnYfyTbJb2UA5cosjrOJvMl_HMePwNQq_BSeaFVOOQS0bCRFMaqkgloSpVIgs2LlUkbbGJ9OQkOzsTHweDX-1emOUkretstRKX_1XU0AbCNltn_0Hc3aDQAOcgdDiC2OF4I8F__l6DUWd4RkxMfAYqYer3Wrq19Cn4x7XJ9mpMarxNMzyXTdBoxwIO3ZaVDKbVSpddJoQlldDzoHbEGoYe2-V1TduZryWyfb9_cRj0_6e0Za_luewG-1KZjFAXSJ2YqMp6HUSZyi5u583xrHGL-MHebj_obRtjG_luBxzZCiN-55H9_UAGx7v9gEacrhOvOiUdh2DZuSbt9XKShkxErK-4vWasrmhhkwfWm9FN1OTa2cKxz8qq2AUv1k9GG4zcf82UXf6i43omOVya20tvoS2SMpEN0dbBp6PTD91CFkkzR1jvn6klt4rI2-6-mybRpkVgzZzRfXTP-yd4z-HqARro-iG622OtfIS-dgjDgDDcRxiejXGLMOwRhgFhGBCG1wjDgDBsEfb7x0-PLdxhC_ew9RidHh2O9t-FvmZHWFAiFiHRqiip5HHJJWdEMcaUIsk4KaXiFD78gvOCijIqo2gswFbMVFYIZux2TThL6RM0hPvppwhTDq5LpESSSJYkJVVKpzrOOCU6lmlBt9Gb9rXlhSe0N3VVJvkV8WyjV13XS8ficl2nnfbd5_47afI4E-Axgd0unt1kjOfozhrSO2i4mH_TL9DtYrmomvlLD44_8cOb1A
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+optimization+of+membrane+cascade+for+gas+separation+via+mixed%E2%80%90integer+nonlinear+programming&rft.jtitle=AIChE+journal&rft.au=Aliaga%E2%80%90Vicente%2C+Alicia&rft.au=Caballero%2C+Jos%C3%A9+A.&rft.au=Fern%C3%A1ndez%E2%80%90Torres%2C+Mar%C3%ADa+J.&rft.date=2017-06-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=63&rft.issue=6&rft.spage=1989&rft.epage=2006&rft_id=info:doi/10.1002%2Faic.15631&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_15631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon