The combination of prostate imaging reporting and data system version 2 (PI-RADS v2) and periprostatic fat thickness on multi-parametric MRI to predict the presence of prostate cancer

To evaluate the auxiliary effectiveness of periprostatic fat thickness (PPFT) on multi-parametric magnetic resonance imaging (mp-MRI) to Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) in predicting the presence of prostate cancer (PCa) and high-grade prostate cancer (HGPCa, Gleaso...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Oncotarget Ročník 8; číslo 27; s. 44040
Hlavní autoři: Cao, Yudong, Cao, Min, Chen, Yuke, Yu, Wei, Fan, Yu, Liu, Qing, Gao, Ge, Zhao, Zheng, Wang, Xiaoying, Jin, Jie
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 04.07.2017
Témata:
ISSN:1949-2553, 1949-2553
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To evaluate the auxiliary effectiveness of periprostatic fat thickness (PPFT) on multi-parametric magnetic resonance imaging (mp-MRI) to Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) in predicting the presence of prostate cancer (PCa) and high-grade prostate cancer (HGPCa, Gleason Score ≥ 7). Overall, there were 371 patients (54.3%) with PCa and 292 patients (42.8%) with HGPCa. The mean value of PPFT was 4.04 mm. Multivariate analysis revealed that age, prostatic specific antigen (PSA), volume, PI-RADS score, and PPFT were independent predictors of PCa. All factors plus abnormal digital rectal exam were independent predictors of HGPCa. In addition, the PPFT was the independent predictor of PCa (Odds ratio [OR] 2.56, p = 0.004) and HGPCa (OR 2.70, p = 0.014) for subjects with PI-RADS grade 3. The present two nomograms based on multivariate analysis outperformed the single PI-RADS in aspects of predicting accuracy for PCa (area under the curve: 0.922 vs. 0.883, p = 0.029) and HGPCa (0.919 vs. 0.873, p = 0.007). Decision-curve analysis also indicated the favorable clinical utility of the present two nomograms. The clinical data of 683 patients who received transrectal ultrasound guided biopsy and prior mp-MRI were reviewed. PPFT was measured as the shortest perpendicular distance from the pubic symphysis to the prostate on MRI. Univariate and multivariate analyses were performed to determine the independent predictors of PCa and HGPCa. We also constructed two nomograms for predicting PCa and HGPCa based on the logistic regression. The PPFT on mp-MRI is an independent predictor of PCa and HGPCa, notably for patients with PI-RADS grade 3. The nomograms incorporated predictors of PPFT and PI-RADS demonstrated good predictive performance.
AbstractList To evaluate the auxiliary effectiveness of periprostatic fat thickness (PPFT) on multi-parametric magnetic resonance imaging (mp-MRI) to Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) in predicting the presence of prostate cancer (PCa) and high-grade prostate cancer (HGPCa, Gleason Score ≥ 7). Overall, there were 371 patients (54.3%) with PCa and 292 patients (42.8%) with HGPCa. The mean value of PPFT was 4.04 mm. Multivariate analysis revealed that age, prostatic specific antigen (PSA), volume, PI-RADS score, and PPFT were independent predictors of PCa. All factors plus abnormal digital rectal exam were independent predictors of HGPCa. In addition, the PPFT was the independent predictor of PCa (Odds ratio [OR] 2.56, p = 0.004) and HGPCa (OR 2.70, p = 0.014) for subjects with PI-RADS grade 3. The present two nomograms based on multivariate analysis outperformed the single PI-RADS in aspects of predicting accuracy for PCa (area under the curve: 0.922 vs. 0.883, p = 0.029) and HGPCa (0.919 vs. 0.873, p = 0.007). Decision-curve analysis also indicated the favorable clinical utility of the present two nomograms. The clinical data of 683 patients who received transrectal ultrasound guided biopsy and prior mp-MRI were reviewed. PPFT was measured as the shortest perpendicular distance from the pubic symphysis to the prostate on MRI. Univariate and multivariate analyses were performed to determine the independent predictors of PCa and HGPCa. We also constructed two nomograms for predicting PCa and HGPCa based on the logistic regression. The PPFT on mp-MRI is an independent predictor of PCa and HGPCa, notably for patients with PI-RADS grade 3. The nomograms incorporated predictors of PPFT and PI-RADS demonstrated good predictive performance.
To evaluate the auxiliary effectiveness of periprostatic fat thickness (PPFT) on multi-parametric magnetic resonance imaging (mp-MRI) to Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) in predicting the presence of prostate cancer (PCa) and high-grade prostate cancer (HGPCa, Gleason Score ≥ 7).PURPOSETo evaluate the auxiliary effectiveness of periprostatic fat thickness (PPFT) on multi-parametric magnetic resonance imaging (mp-MRI) to Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) in predicting the presence of prostate cancer (PCa) and high-grade prostate cancer (HGPCa, Gleason Score ≥ 7).Overall, there were 371 patients (54.3%) with PCa and 292 patients (42.8%) with HGPCa. The mean value of PPFT was 4.04 mm. Multivariate analysis revealed that age, prostatic specific antigen (PSA), volume, PI-RADS score, and PPFT were independent predictors of PCa. All factors plus abnormal digital rectal exam were independent predictors of HGPCa. In addition, the PPFT was the independent predictor of PCa (Odds ratio [OR] 2.56, p = 0.004) and HGPCa (OR 2.70, p = 0.014) for subjects with PI-RADS grade 3. The present two nomograms based on multivariate analysis outperformed the single PI-RADS in aspects of predicting accuracy for PCa (area under the curve: 0.922 vs. 0.883, p = 0.029) and HGPCa (0.919 vs. 0.873, p = 0.007). Decision-curve analysis also indicated the favorable clinical utility of the present two nomograms.RESULTSOverall, there were 371 patients (54.3%) with PCa and 292 patients (42.8%) with HGPCa. The mean value of PPFT was 4.04 mm. Multivariate analysis revealed that age, prostatic specific antigen (PSA), volume, PI-RADS score, and PPFT were independent predictors of PCa. All factors plus abnormal digital rectal exam were independent predictors of HGPCa. In addition, the PPFT was the independent predictor of PCa (Odds ratio [OR] 2.56, p = 0.004) and HGPCa (OR 2.70, p = 0.014) for subjects with PI-RADS grade 3. The present two nomograms based on multivariate analysis outperformed the single PI-RADS in aspects of predicting accuracy for PCa (area under the curve: 0.922 vs. 0.883, p = 0.029) and HGPCa (0.919 vs. 0.873, p = 0.007). Decision-curve analysis also indicated the favorable clinical utility of the present two nomograms.The clinical data of 683 patients who received transrectal ultrasound guided biopsy and prior mp-MRI were reviewed. PPFT was measured as the shortest perpendicular distance from the pubic symphysis to the prostate on MRI. Univariate and multivariate analyses were performed to determine the independent predictors of PCa and HGPCa. We also constructed two nomograms for predicting PCa and HGPCa based on the logistic regression.MATERIALS AND METHODSThe clinical data of 683 patients who received transrectal ultrasound guided biopsy and prior mp-MRI were reviewed. PPFT was measured as the shortest perpendicular distance from the pubic symphysis to the prostate on MRI. Univariate and multivariate analyses were performed to determine the independent predictors of PCa and HGPCa. We also constructed two nomograms for predicting PCa and HGPCa based on the logistic regression.The PPFT on mp-MRI is an independent predictor of PCa and HGPCa, notably for patients with PI-RADS grade 3. The nomograms incorporated predictors of PPFT and PI-RADS demonstrated good predictive performance.CONCLUSIONThe PPFT on mp-MRI is an independent predictor of PCa and HGPCa, notably for patients with PI-RADS grade 3. The nomograms incorporated predictors of PPFT and PI-RADS demonstrated good predictive performance.
Author Cao, Yudong
Chen, Yuke
Wang, Xiaoying
Jin, Jie
Yu, Wei
Gao, Ge
Liu, Qing
Cao, Min
Fan, Yu
Zhao, Zheng
Author_xml – sequence: 1
  givenname: Yudong
  surname: Cao
  fullname: Cao, Yudong
  organization: Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
– sequence: 2
  givenname: Min
  surname: Cao
  fullname: Cao, Min
  organization: Department of Radiology, Peking University First Hospital, Beijing, China
– sequence: 3
  givenname: Yuke
  surname: Chen
  fullname: Chen, Yuke
  organization: Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
– sequence: 4
  givenname: Wei
  surname: Yu
  fullname: Yu, Wei
  organization: Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
– sequence: 5
  givenname: Yu
  surname: Fan
  fullname: Fan, Yu
  organization: Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
– sequence: 6
  givenname: Qing
  surname: Liu
  fullname: Liu, Qing
  organization: Department of Radiology, Peking University First Hospital, Beijing, China
– sequence: 7
  givenname: Ge
  surname: Gao
  fullname: Gao, Ge
  organization: Department of Radiology, Peking University First Hospital, Beijing, China
– sequence: 8
  givenname: Zheng
  surname: Zhao
  fullname: Zhao, Zheng
  organization: Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
– sequence: 9
  givenname: Xiaoying
  surname: Wang
  fullname: Wang, Xiaoying
  organization: Department of Radiology, Peking University First Hospital, Beijing, China
– sequence: 10
  givenname: Jie
  surname: Jin
  fullname: Jin, Jie
  organization: Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28476042$$D View this record in MEDLINE/PubMed
BookMark eNpVkMtOwzAQRS1UxPsD2CAvYRHwK068rHhWAoFKWVeOMymGxg62W6lfxu-RQpFgNnM1OvfOaPbRwHkHCB1Tck5LydmFd8YnHWaQzmlBS7aF9qgSKmN5zgd_9C46ivGN9JWLomRqB-2yUhSSCLaHPievgI1vK-t0st5h3-Au-Jh0AmxbPbNuhgN0PqS10q7GtU4ax1VM0OIlhLh2MXz6NMrGw6tnvGRn31gHwW6SrMGNTji9WvPuIEbcO9rFPNms00G3kEJPPIxHOPl-OdTWrGFY6wjOwL-jjO4n4RBtN3oe4WjTD9DLzfXk8i67f7wdXQ7vM8OZShkDqXIhtaREGFB5U9eqNMBVrogELggteC0lV7VoclmZSjRFA1VFCVXE5JwdoNOf3H7_xwJimrY2GpjPtQO_iFNaKkl4IcuyR0826KJqoZ52of9fWE1_n82-ANMwiDg
CitedBy_id crossref_primary_10_4103_aja_aja_51_20
crossref_primary_10_1245_s10434_019_08111_2
crossref_primary_10_1007_s11934_023_01187_0
crossref_primary_10_1016_j_heliyon_2024_e25030
crossref_primary_10_1097_MOU_0000000000000538
crossref_primary_10_3390_cancers14205077
crossref_primary_10_1016_j_asjsur_2025_05_072
crossref_primary_10_3390_ijms22083935
crossref_primary_10_1016_j_urolonc_2024_09_004
crossref_primary_10_1007_s10147_019_01559_y
crossref_primary_10_1111_bju_14173
crossref_primary_10_1016_j_clgc_2019_06_001
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.18632/oncotarget.17182
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1949-2553
ExternalDocumentID 28476042
Genre Journal Article
GroupedDBID ---
53G
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CGR
CUY
CVF
DIK
ECM
EIF
FRJ
GX1
HYE
KQ8
M48
M~E
NPM
OK1
PGMZT
RPM
7X8
ID FETCH-LOGICAL-c329t-2e69546a6104ce95fdd98ce395906e340173d6639d4f56bcb4f7febb10190c532
IEDL.DBID 7X8
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405498000037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-2553
IngestDate Wed Oct 01 14:29:47 EDT 2025
Thu Jan 02 23:10:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 27
Keywords diagnosis
prostate cancer
nomogram
PI-RADS
periprostatic fat
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-2e69546a6104ce95fdd98ce395906e340173d6639d4f56bcb4f7febb10190c532
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=17182&path%5B%5D=55006
PMID 28476042
PQID 1896037688
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1896037688
pubmed_primary_28476042
PublicationCentury 2000
PublicationDate 2017-07-04
PublicationDateYYYYMMDD 2017-07-04
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Oncotarget
PublicationTitleAlternate Oncotarget
PublicationYear 2017
References 23009291 - BMC Med. 2012 Sep 25;10:108
25466942 - Eur Urol. 2015 Jun;67(6):1112-21
26427566 - Eur Urol. 2016 Jan;69(1):16-40
26971415 - Eur J Radiol. 2016 Apr;85(4):726-31
23219374 - Eur Urol. 2013 May;63(5):800-9
23473904 - J Urol. 2013 Aug;190(2):502-8
26756352 - Nat Commun. 2016 Jan 12;7:10230
16413348 - Urology. 2006 Jan;67(1):131-6
23291910 - Asian J Androl. 2013 Jan;15(1):129-33
20580483 - Eur Urol. 2010 Oct;58(4):551-8
22424666 - Eur Urol. 2012 Jun;61(6):1079-92
19007374 - BJU Int. 2009 Mar;103(5):609-14
27861110 - Radiology. 2017 Apr;283(1):130-139
12711737 - N Engl J Med. 2003 Apr 24;348(17):1625-38
27351281 - Oncotarget. 2016 Jul 26;7(30):47650-47662
22759960 - Cell Physiol Biochem. 2012;30(1):113-22
27464612 - Ann Surg Oncol. 2016 Dec;23 (13):4284-4292
20033185 - World J Urol. 2010 Dec;28(6):699-704
22372862 - BJU Int. 2012 Oct;110(7):980-6
23055365 - J Magn Reson Imaging. 2013 Mar;37(3):707-16
24207135 - Eur Urol. 2014 Jan;65(1):124-37
26098458 - Radiology. 2015 Dec;277(3):741-50
21050356 - BJU Int. 2011 Jun;107(11):1775-9
24269373 - Clin Genitourin Cancer. 2014 Feb;12(1):21-6
22322308 - Eur Radiol. 2012 Apr;22(4):746-57
28143868 - Clin Cancer Res. 2017 Jul 15;23 (14 ):3692-3699
26836049 - Radiology. 2016 Jul;280(1):108-16
25194078 - Urol J. 2014 Sep 06;11(4):1793-9
27320841 - J Urol. 2016 Dec;196 (6):1613-1618
19581922 - Prostate Cancer Prostatic Dis. 2009;12(3):259-63
25539273 - AJR Am J Roentgenol. 2015 Jan;204(1):W43-7
26935594 - BJU Int. 2017 Feb;119(2):225-233
References_xml – reference: 27320841 - J Urol. 2016 Dec;196 (6):1613-1618
– reference: 26756352 - Nat Commun. 2016 Jan 12;7:10230
– reference: 22424666 - Eur Urol. 2012 Jun;61(6):1079-92
– reference: 25194078 - Urol J. 2014 Sep 06;11(4):1793-9
– reference: 27351281 - Oncotarget. 2016 Jul 26;7(30):47650-47662
– reference: 12711737 - N Engl J Med. 2003 Apr 24;348(17):1625-38
– reference: 26836049 - Radiology. 2016 Jul;280(1):108-16
– reference: 23473904 - J Urol. 2013 Aug;190(2):502-8
– reference: 23219374 - Eur Urol. 2013 May;63(5):800-9
– reference: 24269373 - Clin Genitourin Cancer. 2014 Feb;12(1):21-6
– reference: 25466942 - Eur Urol. 2015 Jun;67(6):1112-21
– reference: 26098458 - Radiology. 2015 Dec;277(3):741-50
– reference: 23055365 - J Magn Reson Imaging. 2013 Mar;37(3):707-16
– reference: 24207135 - Eur Urol. 2014 Jan;65(1):124-37
– reference: 27464612 - Ann Surg Oncol. 2016 Dec;23 (13):4284-4292
– reference: 19007374 - BJU Int. 2009 Mar;103(5):609-14
– reference: 26935594 - BJU Int. 2017 Feb;119(2):225-233
– reference: 26971415 - Eur J Radiol. 2016 Apr;85(4):726-31
– reference: 22322308 - Eur Radiol. 2012 Apr;22(4):746-57
– reference: 22759960 - Cell Physiol Biochem. 2012;30(1):113-22
– reference: 20033185 - World J Urol. 2010 Dec;28(6):699-704
– reference: 19581922 - Prostate Cancer Prostatic Dis. 2009;12(3):259-63
– reference: 23009291 - BMC Med. 2012 Sep 25;10:108
– reference: 27861110 - Radiology. 2017 Apr;283(1):130-139
– reference: 16413348 - Urology. 2006 Jan;67(1):131-6
– reference: 21050356 - BJU Int. 2011 Jun;107(11):1775-9
– reference: 26427566 - Eur Urol. 2016 Jan;69(1):16-40
– reference: 25539273 - AJR Am J Roentgenol. 2015 Jan;204(1):W43-7
– reference: 22372862 - BJU Int. 2012 Oct;110(7):980-6
– reference: 23291910 - Asian J Androl. 2013 Jan;15(1):129-33
– reference: 28143868 - Clin Cancer Res. 2017 Jul 15;23 (14 ):3692-3699
– reference: 20580483 - Eur Urol. 2010 Oct;58(4):551-8
SSID ssj0000547829
Score 2.2428222
Snippet To evaluate the auxiliary effectiveness of periprostatic fat thickness (PPFT) on multi-parametric magnetic resonance imaging (mp-MRI) to Prostate Imaging...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 44040
SubjectTerms Aged
Biopsy
Decision Support Techniques
Humans
Image Interpretation, Computer-Assisted
Image Processing, Computer-Assisted
Magnetic Resonance Imaging - methods
Male
Middle Aged
Neoplasm Grading
Nomograms
Prognosis
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - pathology
Risk Factors
Title The combination of prostate imaging reporting and data system version 2 (PI-RADS v2) and periprostatic fat thickness on multi-parametric MRI to predict the presence of prostate cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/28476042
https://www.proquest.com/docview/1896037688
Volume 8
WOSCitedRecordID wos000405498000037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBZNnEMufdBHnKZlCj20B9VeaVcrnYJpa2qojXEb8M3s6gEmZNf1Ov5r_Xud0a5TeigEcll0kLQCjT7NS_Mx9r5IxLBQaeAyU5oozFJeZCbB4y4LSQaFDJG15Hs-m-nl0sw7h1vTpVUeMDECtast-cgHiUZdG0-D1pebX5xYoyi62lFoHLEeTm5IqvOlvvOxDKlYVSQqQ1PdcNSeZRfY1EqKQU3lD2K-9acEIVr8X8mMl834yUOX-ZQ97tRMGLVy8Yw98tVz9htlAnAaNIbjfkAdYEOvPlDfhPVN5CuCNohAraJyQAmk0FZ7hn3rWgMBH-YTvhh9-QF78TF2o3LJ3UxrC6HYAaXRXxOMAo6IWYucqozfEIGXheliArsaf05hIursqd0QyvyzKEsyuX3BrsZff37-xjviBm6lMDsuvDJZqgpUzVLrTRacM9p6aTIzVF6iSZdLh6qOcWnIVGnLNOTBl2VCD9ttJsVLdlzVlT9jkHmfo70flAkBLaVQOo246EQINnHBln327rAPKzwYFO0oKl_fNqu_O9Fnr9rNXG3aCh4rupMVwtX5PUa_ZqeCrnJy6aYXrBcQFvwbdmL3u3WzfRslDr-z-fQPTBDkWw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+combination+of+prostate+imaging+reporting+and+data+system+version+2+%28PI-RADS+v2%29+and+periprostatic+fat+thickness+on+multi-parametric+MRI+to+predict+the+presence+of+prostate+cancer&rft.jtitle=Oncotarget&rft.au=Cao%2C+Yudong&rft.au=Cao%2C+Min&rft.au=Chen%2C+Yuke&rft.au=Yu%2C+Wei&rft.date=2017-07-04&rft.issn=1949-2553&rft.eissn=1949-2553&rft.volume=8&rft.issue=27&rft.spage=44040&rft_id=info:doi/10.18632%2Foncotarget.17182&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-2553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-2553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-2553&client=summon