Self-calibration single-lens 3D video extensometer for high-accuracy and real-time strain measurement

The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for experimental applications due to the effect of out-of-plane motion. Although three-dimensional (3D) DIC can measure all three components of displacem...

Full description

Saved in:
Bibliographic Details
Published in:Optics express Vol. 24; no. 26; p. 30124
Main Authors: Shao, Xinxing, Eisa, Mohammed Mokhtar, Chen, Zhenning, Dong, Shuai, He, Xiaoyuan
Format: Journal Article
Language:English
Published: United States 26.12.2016
ISSN:1094-4087, 1094-4087
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for experimental applications due to the effect of out-of-plane motion. Although three-dimensional (3D) DIC can measure all three components of displacement without introducing in-plane displacement errors, 3D-DIC requires the stringent synchronization between two digital cameras and requires complicated system calibration of binocular stereovision, which makes the measurement rather inconvenient. To solve the problems described above, this paper proposes a self-calibration single-lens 3D video extensometer for non-contact, non-destructive and high-accuracy strain measurement. In the established video extensometer, a single-lens 3D imaging system with a prism and two mirrors is constructed to acquire stereo images of the test sample surface, so the problems of synchronization and out-of-plane displacement can be solved easily. Moreover, a speckle-based self-calibration method which calibrates the single-lens stereo system using the reference speckle image of the specimen instead of the calibration targets is proposed, which will make the system more convenient to be used without complicated calibration. Furthermore, an efficient and robust inverse compositional Gauss-Newton algorithm combined with a robust stereo matching stage is employed to achieve high-accuracy and real-time subset-based stereo matching. Tensile tests of an Al-alloy specimen were performed to demonstrate the feasibility and effectiveness of the proposed self-calibration single-lens 3D video extensometer.
AbstractList The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for experimental applications due to the effect of out-of-plane motion. Although three-dimensional (3D) DIC can measure all three components of displacement without introducing in-plane displacement errors, 3D-DIC requires the stringent synchronization between two digital cameras and requires complicated system calibration of binocular stereovision, which makes the measurement rather inconvenient. To solve the problems described above, this paper proposes a self-calibration single-lens 3D video extensometer for non-contact, non-destructive and high-accuracy strain measurement. In the established video extensometer, a single-lens 3D imaging system with a prism and two mirrors is constructed to acquire stereo images of the test sample surface, so the problems of synchronization and out-of-plane displacement can be solved easily. Moreover, a speckle-based self-calibration method which calibrates the single-lens stereo system using the reference speckle image of the specimen instead of the calibration targets is proposed, which will make the system more convenient to be used without complicated calibration. Furthermore, an efficient and robust inverse compositional Gauss-Newton algorithm combined with a robust stereo matching stage is employed to achieve high-accuracy and real-time subset-based stereo matching. Tensile tests of an Al-alloy specimen were performed to demonstrate the feasibility and effectiveness of the proposed self-calibration single-lens 3D video extensometer.
The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for experimental applications due to the effect of out-of-plane motion. Although three-dimensional (3D) DIC can measure all three components of displacement without introducing in-plane displacement errors, 3D-DIC requires the stringent synchronization between two digital cameras and requires complicated system calibration of binocular stereovision, which makes the measurement rather inconvenient. To solve the problems described above, this paper proposes a self-calibration single-lens 3D video extensometer for non-contact, non-destructive and high-accuracy strain measurement. In the established video extensometer, a single-lens 3D imaging system with a prism and two mirrors is constructed to acquire stereo images of the test sample surface, so the problems of synchronization and out-of-plane displacement can be solved easily. Moreover, a speckle-based self-calibration method which calibrates the single-lens stereo system using the reference speckle image of the specimen instead of the calibration targets is proposed, which will make the system more convenient to be used without complicated calibration. Furthermore, an efficient and robust inverse compositional Gauss-Newton algorithm combined with a robust stereo matching stage is employed to achieve high-accuracy and real-time subset-based stereo matching. Tensile tests of an Al-alloy specimen were performed to demonstrate the feasibility and effectiveness of the proposed self-calibration single-lens 3D video extensometer.The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for experimental applications due to the effect of out-of-plane motion. Although three-dimensional (3D) DIC can measure all three components of displacement without introducing in-plane displacement errors, 3D-DIC requires the stringent synchronization between two digital cameras and requires complicated system calibration of binocular stereovision, which makes the measurement rather inconvenient. To solve the problems described above, this paper proposes a self-calibration single-lens 3D video extensometer for non-contact, non-destructive and high-accuracy strain measurement. In the established video extensometer, a single-lens 3D imaging system with a prism and two mirrors is constructed to acquire stereo images of the test sample surface, so the problems of synchronization and out-of-plane displacement can be solved easily. Moreover, a speckle-based self-calibration method which calibrates the single-lens stereo system using the reference speckle image of the specimen instead of the calibration targets is proposed, which will make the system more convenient to be used without complicated calibration. Furthermore, an efficient and robust inverse compositional Gauss-Newton algorithm combined with a robust stereo matching stage is employed to achieve high-accuracy and real-time subset-based stereo matching. Tensile tests of an Al-alloy specimen were performed to demonstrate the feasibility and effectiveness of the proposed self-calibration single-lens 3D video extensometer.
Author Dong, Shuai
Eisa, Mohammed Mokhtar
Shao, Xinxing
Chen, Zhenning
He, Xiaoyuan
Author_xml – sequence: 1
  givenname: Xinxing
  surname: Shao
  fullname: Shao, Xinxing
– sequence: 2
  givenname: Mohammed Mokhtar
  surname: Eisa
  fullname: Eisa, Mohammed Mokhtar
– sequence: 3
  givenname: Zhenning
  surname: Chen
  fullname: Chen, Zhenning
– sequence: 4
  givenname: Shuai
  surname: Dong
  fullname: Dong, Shuai
– sequence: 5
  givenname: Xiaoyuan
  surname: He
  fullname: He, Xiaoyuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28059290$$D View this record in MEDLINE/PubMed
BookMark eNpt0M9PwyAUwHFiZtyc3jwbjh7spEBbOJo5fyRLdlDPDaWvDkPpBGrcf291aozxBCQfXvK-h2jkOgcInaRklrKcX6wWM8pnhJGU8j00SYnkCSeiGP26j9FhCM-EpLyQxQEaU0EySSWZILgH2yRaWVN5FU3ncDDuyUJiwQXMrvCrqaHD8BaHd9dCBI-bzuO1eVonSuveK73FytXYg7JJNC3gEL0yDregQu-hBReP0H6jbIDjr3OKHq8XD_PbZLm6uZtfLhPNqIwJrbTgsoaM1IIAgFQVIYw1eVaBkpmghapYI4phrUYzMUhFMyaqnDOoCXA2RWe7uRvfvfQQYtmaoMFa5aDrQ5mKLM9kLjI60NMv2lct1OXGm1b5bfmdZgDnO6B9F4KH5oekpPwoX64WJeXlrvzA6R-uTfws-lHD_v_pHbZJhoI
CitedBy_id crossref_primary_10_1016_j_optlastec_2023_110303
crossref_primary_10_1007_s11340_021_00694_w
crossref_primary_10_1016_j_mtcomm_2020_101309
crossref_primary_10_1016_j_optlaseng_2024_108767
crossref_primary_10_1109_JSEN_2017_2786747
crossref_primary_10_1016_j_optlaseng_2019_105919
crossref_primary_10_1364_AO_58_006569
crossref_primary_10_1016_j_optlaseng_2021_106743
crossref_primary_10_1109_ACCESS_2020_3017236
crossref_primary_10_3390_s19030719
crossref_primary_10_1109_ACCESS_2020_3015978
crossref_primary_10_1016_j_optlaseng_2021_106809
crossref_primary_10_1088_1361_6501_ab1c9c
crossref_primary_10_1007_s11431_017_9090_x
crossref_primary_10_1016_j_optlaseng_2019_04_016
crossref_primary_10_1007_s11431_017_9078_0
crossref_primary_10_1007_s11340_025_01208_8
crossref_primary_10_1016_j_optlaseng_2021_106854
crossref_primary_10_1364_AO_57_005492
crossref_primary_10_3390_app13032019
crossref_primary_10_1364_AO_405419
crossref_primary_10_3390_computation10070121
crossref_primary_10_1177_1729881420926852
crossref_primary_10_1016_j_ijleo_2021_168195
crossref_primary_10_1088_1361_6501_aac55b
crossref_primary_10_1016_j_optlaseng_2022_107372
crossref_primary_10_1016_j_ymssp_2021_108072
crossref_primary_10_3390_ma16072726
crossref_primary_10_3390_rs14061408
crossref_primary_10_1016_j_optlaseng_2019_03_018
crossref_primary_10_1088_1361_6501_abae3b
crossref_primary_10_1061__ASCE_SC_1943_5576_0000725
crossref_primary_10_1088_1742_6596_1611_1_012019
crossref_primary_10_1364_AO_450271
crossref_primary_10_1364_AO_57_005583
crossref_primary_10_1016_j_measurement_2018_01_043
crossref_primary_10_1016_j_rineng_2025_105408
crossref_primary_10_1007_s40846_018_0457_z
crossref_primary_10_1088_1361_6501_aa75f9
crossref_primary_10_1016_j_optlaseng_2017_09_013
crossref_primary_10_1016_j_optlaseng_2018_06_010
crossref_primary_10_1177_14759217231172297
crossref_primary_10_1016_j_measurement_2024_115450
crossref_primary_10_1088_1361_6501_aa7a6e
crossref_primary_10_1016_j_measurement_2020_108209
crossref_primary_10_1364_AO_463023
crossref_primary_10_1016_j_optlaseng_2018_05_016
crossref_primary_10_1016_j_optlaseng_2020_106136
crossref_primary_10_1088_1361_6501_aaab02
crossref_primary_10_1007_s11340_021_00714_9
crossref_primary_10_1016_j_measurement_2018_06_022
Cites_doi 10.1016/j.optlaseng.2014.05.013
10.1364/OE.24.019082
10.1016/j.media.2008.10.007
10.1016/j.optlaseng.2015.03.005
10.1016/j.optlastec.2008.08.010
10.1115/1.4032799
10.1088/0957-0233/27/12/125010
10.1016/j.optlaseng.2016.05.019
10.1088/0957-0233/27/6/065007
10.1016/j.measurement.2016.01.031
10.1007/s11340-012-9687-0
10.1007/s11340-010-9449-9
10.1016/j.optlaseng.2012.10.001
10.1023/B:VISI.0000011205.11775.fd
10.1364/AO.55.000696
10.1007/BF02428171
10.1007/BF02427976
10.1061/(ASCE)0733-9445(1986)112:11(2462)
10.1023/A:1004824817000
10.1023/B:JMSC.0000034143.30654.b8
10.1007/s11340-013-9774-x
10.1364/AO.49.003418
10.1109/34.888718
10.1016/j.jbiomech.2008.01.004
10.1109/84.896765
10.1364/AO.48.001535
10.1088/0957-0233/25/2/025001
10.1007/s11340-013-9717-6
10.1016/j.optlaseng.2008.05.005
10.1007/s11340-014-9918-7
10.1364/AO.51.007674
10.1007/s11340-016-0133-6
10.1007/s11340-016-0193-7
10.1007/s11340-014-9863-5
10.1016/S1350-4533(01)00062-5
10.1016/j.optlaseng.2014.04.010
10.1088/0957-0233/26/9/095201
10.1007/s11340-015-0080-7
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.24.030124
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 28059290
10_1364_OE_24_030124
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ABGOQ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ID FETCH-LOGICAL-c329t-2bc849de50d80eee9ab0033f65bea95827ab3f87094fc389dea2538b643ed0e43
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390809100084&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1094-4087
IngestDate Fri Jul 11 10:36:04 EDT 2025
Wed Feb 19 02:40:57 EST 2025
Tue Nov 18 22:19:53 EST 2025
Sat Nov 29 05:34:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
License https://opg.optica.org/policies/opg-tdm-policy.json
https://doi.org/10.1364/OA_License_v1#VOR-OA
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-2bc849de50d80eee9ab0033f65bea95827ab3f87094fc389dea2538b643ed0e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/oe.24.030124
PMID 28059290
PQID 1856596852
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1856596852
pubmed_primary_28059290
crossref_primary_10_1364_OE_24_030124
crossref_citationtrail_10_1364_OE_24_030124
PublicationCentury 2000
PublicationDate 2016-12-26
2016-Dec-26
20161226
PublicationDateYYYYMMDD 2016-12-26
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2016
References Gao (oe-24-26-30124-R4) 2015; 55
Zhang (oe-24-26-30124-R11) 2004; 39
Bai (oe-24-26-30124-R16) 2015; 65
Pankow (oe-24-26-30124-R21) 2010; 49
Pan (oe-24-26-30124-R19) 2013; 53
Shao (oe-24-26-30124-R31) 2016; 27
Gao (oe-24-26-30124-R30) 2015; 65
Huang (oe-24-26-30124-R12) 2009; 41
Wu (oe-24-26-30124-R24) 2016; 56
Völkl (oe-24-26-30124-R9) 2004; 44
Zhang (oe-24-26-30124-R26) 2000; 22
Namazu (oe-24-26-30124-R2) 2000; 9
Pan (oe-24-26-30124-R14) 2016; 24
Wang (oe-24-26-30124-R32) 2015; 55
Sutton (oe-24-26-30124-R18) 2008; 46
Genovese (oe-24-26-30124-R20) 2013; 51
Zhou (oe-24-26-30124-R27) 2012; 51
Reinhardt (oe-24-26-30124-R1) 1986; 112
Zhu (oe-24-26-30124-R17) 2016; 27
Pan (oe-24-26-30124-R23) 2015; 55
Chen (oe-24-26-30124-R37) 2015; 26
Coimbra (oe-24-26-30124-R10) 2000; 35
Shao (oe-24-26-30124-R36) 2016; 55
Lim (oe-24-26-30124-R7) 2008; 41
Gustafson (oe-24-26-30124-R5) 2016; 138
Boyd (oe-24-26-30124-R8) 2001; 23
Wu (oe-24-26-30124-R13) 2016; 56
Edwards (oe-24-26-30124-R3) 2004; 44
Pan (oe-24-26-30124-R15) 2014; 25
Pan (oe-24-26-30124-R29) 2009; 48
Baker (oe-24-26-30124-R33) 2004; 56
Wang (oe-24-26-30124-R38) 2011; 51
Biswal (oe-24-26-30124-R6) 2016; 83
Pan (oe-24-26-30124-R34) 2013; 53
Chen (oe-24-26-30124-R28) 2009; 13
Xia (oe-24-26-30124-R22) 2013; 53
Shao (oe-24-26-30124-R25) 2015; 71
Su (oe-24-26-30124-R35) 2016; 86
References_xml – volume: 65
  start-page: 73
  year: 2015
  ident: oe-24-26-30124-R30
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2014.05.013
– volume: 24
  start-page: 19082
  year: 2016
  ident: oe-24-26-30124-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.24.019082
– volume: 13
  start-page: 286
  year: 2009
  ident: oe-24-26-30124-R28
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2008.10.007
– volume: 71
  start-page: 9
  year: 2015
  ident: oe-24-26-30124-R25
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2015.03.005
– volume: 41
  start-page: 408
  year: 2009
  ident: oe-24-26-30124-R12
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2008.08.010
– volume: 138
  start-page: 054501
  year: 2016
  ident: oe-24-26-30124-R5
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4032799
– volume: 27
  start-page: 125010
  year: 2016
  ident: oe-24-26-30124-R31
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/27/12/125010
– volume: 86
  start-page: 132
  year: 2016
  ident: oe-24-26-30124-R35
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2016.05.019
– volume: 27
  start-page: 065007
  year: 2016
  ident: oe-24-26-30124-R17
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/27/6/065007
– volume: 83
  start-page: 10
  year: 2016
  ident: oe-24-26-30124-R6
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.01.031
– volume: 53
  start-page: 755
  year: 2013
  ident: oe-24-26-30124-R22
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-012-9687-0
– volume: 51
  start-page: 405
  year: 2011
  ident: oe-24-26-30124-R38
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-010-9449-9
– volume: 51
  start-page: 278
  year: 2013
  ident: oe-24-26-30124-R20
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2012.10.001
– volume: 56
  start-page: 221
  year: 2004
  ident: oe-24-26-30124-R33
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000011205.11775.fd
– volume: 55
  start-page: 696
  year: 2016
  ident: oe-24-26-30124-R36
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.000696
– volume: 44
  start-page: 121
  year: 2004
  ident: oe-24-26-30124-R9
  publication-title: Exp. Mech.
  doi: 10.1007/BF02428171
– volume: 44
  start-page: 49
  year: 2004
  ident: oe-24-26-30124-R3
  publication-title: Exp. Mech.
  doi: 10.1007/BF02427976
– volume: 112
  start-page: 2462
  year: 1986
  ident: oe-24-26-30124-R1
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(1986)112:11(2462)
– volume: 35
  start-page: 3341
  year: 2000
  ident: oe-24-26-30124-R10
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1004824817000
– volume: 39
  start-page: 4495
  year: 2004
  ident: oe-24-26-30124-R11
  publication-title: J. Mater. Sci.
  doi: 10.1023/B:JMSC.0000034143.30654.b8
– volume: 53
  start-page: 1719
  year: 2013
  ident: oe-24-26-30124-R19
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-013-9774-x
– volume: 49
  start-page: 3418
  year: 2010
  ident: oe-24-26-30124-R21
  publication-title: Appl. Opt.
  doi: 10.1364/AO.49.003418
– volume: 22
  start-page: 1330
  year: 2000
  ident: oe-24-26-30124-R26
  publication-title: IEEE Trans. Pattern Anal. Mach.
  doi: 10.1109/34.888718
– volume: 41
  start-page: 931
  year: 2008
  ident: oe-24-26-30124-R7
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.01.004
– volume: 9
  start-page: 450
  year: 2000
  ident: oe-24-26-30124-R2
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.896765
– volume: 48
  start-page: 1535
  year: 2009
  ident: oe-24-26-30124-R29
  publication-title: Appl. Opt.
  doi: 10.1364/AO.48.001535
– volume: 25
  start-page: 025001
  year: 2014
  ident: oe-24-26-30124-R15
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/25/2/025001
– volume: 53
  start-page: 1277
  year: 2013
  ident: oe-24-26-30124-R34
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-013-9717-6
– volume: 46
  start-page: 746
  year: 2008
  ident: oe-24-26-30124-R18
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2008.05.005
– volume: 55
  start-page: 155
  year: 2015
  ident: oe-24-26-30124-R23
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-014-9918-7
– volume: 51
  start-page: 7674
  year: 2012
  ident: oe-24-26-30124-R27
  publication-title: Appl. Opt.
  doi: 10.1364/AO.51.007674
– volume: 56
  start-page: 833
  year: 2016
  ident: oe-24-26-30124-R13
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-016-0133-6
– volume: 56
  start-page: 1611
  year: 2016
  ident: oe-24-26-30124-R24
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-016-0193-7
– volume: 55
  start-page: 95
  year: 2015
  ident: oe-24-26-30124-R4
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-014-9863-5
– volume: 23
  start-page: 411
  year: 2001
  ident: oe-24-26-30124-R8
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(01)00062-5
– volume: 65
  start-page: 28
  year: 2015
  ident: oe-24-26-30124-R16
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2014.04.010
– volume: 26
  start-page: 095201
  year: 2015
  ident: oe-24-26-30124-R37
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/26/9/095201
– volume: 55
  start-page: 1717
  year: 2015
  ident: oe-24-26-30124-R32
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-015-0080-7
SSID ssj0014797
Score 2.4783952
Snippet The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 30124
Title Self-calibration single-lens 3D video extensometer for high-accuracy and real-time strain measurement
URI https://www.ncbi.nlm.nih.gov/pubmed/28059290
https://www.proquest.com/docview/1856596852
Volume 24
WOSCitedRecordID wos000390809100084&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ DIrectory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6ARIXxG_Kj8pIcKoyUjuJ4yPaijiwFWkDVVwix3lRK9o0atqp4sDfzrPjZNmmSnDgEkWxm1T-Pj1_fn7vmZB3PAsDiGLl5UJJLwDJvZRrcxGQgx9lI-uH_P5FnJ3F06n82uv9anJhLheiKOLdTpb_FWp8hmCb1Nl_gLt9KT7AewQdrwg7Xv8K-HNY5B6OvFkHW3CNN2ABHk4v1ZCfDE3i3Wpond_VammiYWyooalb7Cmtt2tzALyNOkcN6Zmz501CiZoXw-WVP7GraSelLfUMu7IN57A1H5X1wk7nxa6ZHo1yn1dWrp6uZsZnnuHNz9lGtSHCxy5b5McM7GFKrdB2ocPns62ad10VI3vAD3OFrmvziotJXLG6KdbZ3zqH2vGMda0pGp-68Zad51GAOEzGRyw48m91Q0DKpYWXxSgfWX0g6Y262k3TAbnDRChNOODp73G7AxUIKVyiBH7sQ_dTpoC0-_F1NbNniWKlysVD8sCtMejHmhuPSA-Kx-SejfXV1RMCNxlCOwyh_IRahtAuQygyhF5jCEWG0JYhtGYI7TDkKfn2aXxx_Nlzp214mjO58Viq40BmEPpZ7AOAVMbi8zwKU1AyjJlQKc_RvMsg1yhzM1AMZ8sUJS1kPgT8GTksVgW8IBSHL9UgRqi_RJBHuUl-9lkeCi7CMMt0nwybUUu0K0Vv_uYisfurUZBMxgkLknq4--R927usS7Ds6fe2ASBBG2k2vlQBq22VoCaNQhnFIeuT5zUy7ZsaJF_ubXlF7l-R-TU53Ky38Ibc1ZebebUekAMxjQfWlTOwDPoDiXiPiQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-calibration+single-lens+3D+video+extensometer+for+high-accuracy+and+real-time+strain+measurement&rft.jtitle=Optics+express&rft.au=Shao%2C+Xinxing&rft.au=Eisa%2C+Mohammed+Mokhtar&rft.au=Chen%2C+Zhenning&rft.au=Dong%2C+Shuai&rft.date=2016-12-26&rft.eissn=1094-4087&rft.volume=24&rft.issue=26&rft.spage=30124&rft_id=info:doi/10.1364%2FOE.24.030124&rft_id=info%3Apmid%2F28059290&rft.externalDocID=28059290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon