Self-calibration single-lens 3D video extensometer for high-accuracy and real-time strain measurement
The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for experimental applications due to the effect of out-of-plane motion. Although three-dimensional (3D) DIC can measure all three components of displacem...
Uloženo v:
| Vydáno v: | Optics express Ročník 24; číslo 26; s. 30124 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
26.12.2016
|
| ISSN: | 1094-4087, 1094-4087 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for experimental applications due to the effect of out-of-plane motion. Although three-dimensional (3D) DIC can measure all three components of displacement without introducing in-plane displacement errors, 3D-DIC requires the stringent synchronization between two digital cameras and requires complicated system calibration of binocular stereovision, which makes the measurement rather inconvenient. To solve the problems described above, this paper proposes a self-calibration single-lens 3D video extensometer for non-contact, non-destructive and high-accuracy strain measurement. In the established video extensometer, a single-lens 3D imaging system with a prism and two mirrors is constructed to acquire stereo images of the test sample surface, so the problems of synchronization and out-of-plane displacement can be solved easily. Moreover, a speckle-based self-calibration method which calibrates the single-lens stereo system using the reference speckle image of the specimen instead of the calibration targets is proposed, which will make the system more convenient to be used without complicated calibration. Furthermore, an efficient and robust inverse compositional Gauss-Newton algorithm combined with a robust stereo matching stage is employed to achieve high-accuracy and real-time subset-based stereo matching. Tensile tests of an Al-alloy specimen were performed to demonstrate the feasibility and effectiveness of the proposed self-calibration single-lens 3D video extensometer. |
|---|---|
| AbstractList | The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for experimental applications due to the effect of out-of-plane motion. Although three-dimensional (3D) DIC can measure all three components of displacement without introducing in-plane displacement errors, 3D-DIC requires the stringent synchronization between two digital cameras and requires complicated system calibration of binocular stereovision, which makes the measurement rather inconvenient. To solve the problems described above, this paper proposes a self-calibration single-lens 3D video extensometer for non-contact, non-destructive and high-accuracy strain measurement. In the established video extensometer, a single-lens 3D imaging system with a prism and two mirrors is constructed to acquire stereo images of the test sample surface, so the problems of synchronization and out-of-plane displacement can be solved easily. Moreover, a speckle-based self-calibration method which calibrates the single-lens stereo system using the reference speckle image of the specimen instead of the calibration targets is proposed, which will make the system more convenient to be used without complicated calibration. Furthermore, an efficient and robust inverse compositional Gauss-Newton algorithm combined with a robust stereo matching stage is employed to achieve high-accuracy and real-time subset-based stereo matching. Tensile tests of an Al-alloy specimen were performed to demonstrate the feasibility and effectiveness of the proposed self-calibration single-lens 3D video extensometer.The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for experimental applications due to the effect of out-of-plane motion. Although three-dimensional (3D) DIC can measure all three components of displacement without introducing in-plane displacement errors, 3D-DIC requires the stringent synchronization between two digital cameras and requires complicated system calibration of binocular stereovision, which makes the measurement rather inconvenient. To solve the problems described above, this paper proposes a self-calibration single-lens 3D video extensometer for non-contact, non-destructive and high-accuracy strain measurement. In the established video extensometer, a single-lens 3D imaging system with a prism and two mirrors is constructed to acquire stereo images of the test sample surface, so the problems of synchronization and out-of-plane displacement can be solved easily. Moreover, a speckle-based self-calibration method which calibrates the single-lens stereo system using the reference speckle image of the specimen instead of the calibration targets is proposed, which will make the system more convenient to be used without complicated calibration. Furthermore, an efficient and robust inverse compositional Gauss-Newton algorithm combined with a robust stereo matching stage is employed to achieve high-accuracy and real-time subset-based stereo matching. Tensile tests of an Al-alloy specimen were performed to demonstrate the feasibility and effectiveness of the proposed self-calibration single-lens 3D video extensometer. The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for experimental applications due to the effect of out-of-plane motion. Although three-dimensional (3D) DIC can measure all three components of displacement without introducing in-plane displacement errors, 3D-DIC requires the stringent synchronization between two digital cameras and requires complicated system calibration of binocular stereovision, which makes the measurement rather inconvenient. To solve the problems described above, this paper proposes a self-calibration single-lens 3D video extensometer for non-contact, non-destructive and high-accuracy strain measurement. In the established video extensometer, a single-lens 3D imaging system with a prism and two mirrors is constructed to acquire stereo images of the test sample surface, so the problems of synchronization and out-of-plane displacement can be solved easily. Moreover, a speckle-based self-calibration method which calibrates the single-lens stereo system using the reference speckle image of the specimen instead of the calibration targets is proposed, which will make the system more convenient to be used without complicated calibration. Furthermore, an efficient and robust inverse compositional Gauss-Newton algorithm combined with a robust stereo matching stage is employed to achieve high-accuracy and real-time subset-based stereo matching. Tensile tests of an Al-alloy specimen were performed to demonstrate the feasibility and effectiveness of the proposed self-calibration single-lens 3D video extensometer. |
| Author | Dong, Shuai Eisa, Mohammed Mokhtar Shao, Xinxing Chen, Zhenning He, Xiaoyuan |
| Author_xml | – sequence: 1 givenname: Xinxing surname: Shao fullname: Shao, Xinxing – sequence: 2 givenname: Mohammed Mokhtar surname: Eisa fullname: Eisa, Mohammed Mokhtar – sequence: 3 givenname: Zhenning surname: Chen fullname: Chen, Zhenning – sequence: 4 givenname: Shuai surname: Dong fullname: Dong, Shuai – sequence: 5 givenname: Xiaoyuan surname: He fullname: He, Xiaoyuan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28059290$$D View this record in MEDLINE/PubMed |
| BookMark | eNpt0M9PwyAUwHFiZtyc3jwbjh7spEBbOJo5fyRLdlDPDaWvDkPpBGrcf291aozxBCQfXvK-h2jkOgcInaRklrKcX6wWM8pnhJGU8j00SYnkCSeiGP26j9FhCM-EpLyQxQEaU0EySSWZILgH2yRaWVN5FU3ncDDuyUJiwQXMrvCrqaHD8BaHd9dCBI-bzuO1eVonSuveK73FytXYg7JJNC3gEL0yDregQu-hBReP0H6jbIDjr3OKHq8XD_PbZLm6uZtfLhPNqIwJrbTgsoaM1IIAgFQVIYw1eVaBkpmghapYI4phrUYzMUhFMyaqnDOoCXA2RWe7uRvfvfQQYtmaoMFa5aDrQ5mKLM9kLjI60NMv2lct1OXGm1b5bfmdZgDnO6B9F4KH5oekpPwoX64WJeXlrvzA6R-uTfws-lHD_v_pHbZJhoI |
| CitedBy_id | crossref_primary_10_1016_j_optlastec_2023_110303 crossref_primary_10_1007_s11340_021_00694_w crossref_primary_10_1016_j_mtcomm_2020_101309 crossref_primary_10_1016_j_optlaseng_2024_108767 crossref_primary_10_1109_JSEN_2017_2786747 crossref_primary_10_1016_j_optlaseng_2019_105919 crossref_primary_10_1364_AO_58_006569 crossref_primary_10_1016_j_optlaseng_2021_106743 crossref_primary_10_1109_ACCESS_2020_3017236 crossref_primary_10_3390_s19030719 crossref_primary_10_1109_ACCESS_2020_3015978 crossref_primary_10_1016_j_optlaseng_2021_106809 crossref_primary_10_1088_1361_6501_ab1c9c crossref_primary_10_1007_s11431_017_9090_x crossref_primary_10_1016_j_optlaseng_2019_04_016 crossref_primary_10_1007_s11431_017_9078_0 crossref_primary_10_1007_s11340_025_01208_8 crossref_primary_10_1016_j_optlaseng_2021_106854 crossref_primary_10_1364_AO_57_005492 crossref_primary_10_3390_app13032019 crossref_primary_10_1364_AO_405419 crossref_primary_10_3390_computation10070121 crossref_primary_10_1177_1729881420926852 crossref_primary_10_1016_j_ijleo_2021_168195 crossref_primary_10_1088_1361_6501_aac55b crossref_primary_10_1016_j_optlaseng_2022_107372 crossref_primary_10_1016_j_ymssp_2021_108072 crossref_primary_10_3390_ma16072726 crossref_primary_10_3390_rs14061408 crossref_primary_10_1016_j_optlaseng_2019_03_018 crossref_primary_10_1088_1361_6501_abae3b crossref_primary_10_1061__ASCE_SC_1943_5576_0000725 crossref_primary_10_1088_1742_6596_1611_1_012019 crossref_primary_10_1364_AO_450271 crossref_primary_10_1364_AO_57_005583 crossref_primary_10_1016_j_measurement_2018_01_043 crossref_primary_10_1016_j_rineng_2025_105408 crossref_primary_10_1007_s40846_018_0457_z crossref_primary_10_1088_1361_6501_aa75f9 crossref_primary_10_1016_j_optlaseng_2017_09_013 crossref_primary_10_1016_j_optlaseng_2018_06_010 crossref_primary_10_1177_14759217231172297 crossref_primary_10_1016_j_measurement_2024_115450 crossref_primary_10_1088_1361_6501_aa7a6e crossref_primary_10_1016_j_measurement_2020_108209 crossref_primary_10_1364_AO_463023 crossref_primary_10_1016_j_optlaseng_2018_05_016 crossref_primary_10_1016_j_optlaseng_2020_106136 crossref_primary_10_1088_1361_6501_aaab02 crossref_primary_10_1007_s11340_021_00714_9 crossref_primary_10_1016_j_measurement_2018_06_022 |
| Cites_doi | 10.1016/j.optlaseng.2014.05.013 10.1364/OE.24.019082 10.1016/j.media.2008.10.007 10.1016/j.optlaseng.2015.03.005 10.1016/j.optlastec.2008.08.010 10.1115/1.4032799 10.1088/0957-0233/27/12/125010 10.1016/j.optlaseng.2016.05.019 10.1088/0957-0233/27/6/065007 10.1016/j.measurement.2016.01.031 10.1007/s11340-012-9687-0 10.1007/s11340-010-9449-9 10.1016/j.optlaseng.2012.10.001 10.1023/B:VISI.0000011205.11775.fd 10.1364/AO.55.000696 10.1007/BF02428171 10.1007/BF02427976 10.1061/(ASCE)0733-9445(1986)112:11(2462) 10.1023/A:1004824817000 10.1023/B:JMSC.0000034143.30654.b8 10.1007/s11340-013-9774-x 10.1364/AO.49.003418 10.1109/34.888718 10.1016/j.jbiomech.2008.01.004 10.1109/84.896765 10.1364/AO.48.001535 10.1088/0957-0233/25/2/025001 10.1007/s11340-013-9717-6 10.1016/j.optlaseng.2008.05.005 10.1007/s11340-014-9918-7 10.1364/AO.51.007674 10.1007/s11340-016-0133-6 10.1007/s11340-016-0193-7 10.1007/s11340-014-9863-5 10.1016/S1350-4533(01)00062-5 10.1016/j.optlaseng.2014.04.010 10.1088/0957-0233/26/9/095201 10.1007/s11340-015-0080-7 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1364/OE.24.030124 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1094-4087 |
| ExternalDocumentID | 28059290 10_1364_OE_24_030124 |
| Genre | Journal Article |
| GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ABGOQ ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP 7X8 |
| ID | FETCH-LOGICAL-c329t-2bc849de50d80eee9ab0033f65bea95827ab3f87094fc389dea2538b643ed0e43 |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390809100084&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1094-4087 |
| IngestDate | Fri Jul 11 10:36:04 EDT 2025 Wed Feb 19 02:40:57 EST 2025 Tue Nov 18 22:19:53 EST 2025 Sat Nov 29 05:34:26 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 26 |
| Language | English |
| License | https://opg.optica.org/policies/opg-tdm-policy.json https://doi.org/10.1364/OA_License_v1#VOR-OA |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c329t-2bc849de50d80eee9ab0033f65bea95827ab3f87094fc389dea2538b643ed0e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doi.org/10.1364/oe.24.030124 |
| PMID | 28059290 |
| PQID | 1856596852 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1856596852 pubmed_primary_28059290 crossref_primary_10_1364_OE_24_030124 crossref_citationtrail_10_1364_OE_24_030124 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12-26 2016-Dec-26 20161226 |
| PublicationDateYYYYMMDD | 2016-12-26 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-26 day: 26 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Optics express |
| PublicationTitleAlternate | Opt Express |
| PublicationYear | 2016 |
| References | Gao (oe-24-26-30124-R4) 2015; 55 Zhang (oe-24-26-30124-R11) 2004; 39 Bai (oe-24-26-30124-R16) 2015; 65 Pankow (oe-24-26-30124-R21) 2010; 49 Pan (oe-24-26-30124-R19) 2013; 53 Shao (oe-24-26-30124-R31) 2016; 27 Gao (oe-24-26-30124-R30) 2015; 65 Huang (oe-24-26-30124-R12) 2009; 41 Wu (oe-24-26-30124-R24) 2016; 56 Völkl (oe-24-26-30124-R9) 2004; 44 Zhang (oe-24-26-30124-R26) 2000; 22 Namazu (oe-24-26-30124-R2) 2000; 9 Pan (oe-24-26-30124-R14) 2016; 24 Wang (oe-24-26-30124-R32) 2015; 55 Sutton (oe-24-26-30124-R18) 2008; 46 Genovese (oe-24-26-30124-R20) 2013; 51 Zhou (oe-24-26-30124-R27) 2012; 51 Reinhardt (oe-24-26-30124-R1) 1986; 112 Zhu (oe-24-26-30124-R17) 2016; 27 Pan (oe-24-26-30124-R23) 2015; 55 Chen (oe-24-26-30124-R37) 2015; 26 Coimbra (oe-24-26-30124-R10) 2000; 35 Shao (oe-24-26-30124-R36) 2016; 55 Lim (oe-24-26-30124-R7) 2008; 41 Gustafson (oe-24-26-30124-R5) 2016; 138 Boyd (oe-24-26-30124-R8) 2001; 23 Wu (oe-24-26-30124-R13) 2016; 56 Edwards (oe-24-26-30124-R3) 2004; 44 Pan (oe-24-26-30124-R15) 2014; 25 Pan (oe-24-26-30124-R29) 2009; 48 Baker (oe-24-26-30124-R33) 2004; 56 Wang (oe-24-26-30124-R38) 2011; 51 Biswal (oe-24-26-30124-R6) 2016; 83 Pan (oe-24-26-30124-R34) 2013; 53 Chen (oe-24-26-30124-R28) 2009; 13 Xia (oe-24-26-30124-R22) 2013; 53 Shao (oe-24-26-30124-R25) 2015; 71 Su (oe-24-26-30124-R35) 2016; 86 |
| References_xml | – volume: 65 start-page: 73 year: 2015 ident: oe-24-26-30124-R30 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2014.05.013 – volume: 24 start-page: 19082 year: 2016 ident: oe-24-26-30124-R14 publication-title: Opt. Express doi: 10.1364/OE.24.019082 – volume: 13 start-page: 286 year: 2009 ident: oe-24-26-30124-R28 publication-title: Med. Image Anal. doi: 10.1016/j.media.2008.10.007 – volume: 71 start-page: 9 year: 2015 ident: oe-24-26-30124-R25 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2015.03.005 – volume: 41 start-page: 408 year: 2009 ident: oe-24-26-30124-R12 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2008.08.010 – volume: 138 start-page: 054501 year: 2016 ident: oe-24-26-30124-R5 publication-title: J. Biomech. Eng. doi: 10.1115/1.4032799 – volume: 27 start-page: 125010 year: 2016 ident: oe-24-26-30124-R31 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/27/12/125010 – volume: 86 start-page: 132 year: 2016 ident: oe-24-26-30124-R35 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.05.019 – volume: 27 start-page: 065007 year: 2016 ident: oe-24-26-30124-R17 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/27/6/065007 – volume: 83 start-page: 10 year: 2016 ident: oe-24-26-30124-R6 publication-title: Measurement doi: 10.1016/j.measurement.2016.01.031 – volume: 53 start-page: 755 year: 2013 ident: oe-24-26-30124-R22 publication-title: Exp. Mech. doi: 10.1007/s11340-012-9687-0 – volume: 51 start-page: 405 year: 2011 ident: oe-24-26-30124-R38 publication-title: Exp. Mech. doi: 10.1007/s11340-010-9449-9 – volume: 51 start-page: 278 year: 2013 ident: oe-24-26-30124-R20 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2012.10.001 – volume: 56 start-page: 221 year: 2004 ident: oe-24-26-30124-R33 publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000011205.11775.fd – volume: 55 start-page: 696 year: 2016 ident: oe-24-26-30124-R36 publication-title: Appl. Opt. doi: 10.1364/AO.55.000696 – volume: 44 start-page: 121 year: 2004 ident: oe-24-26-30124-R9 publication-title: Exp. Mech. doi: 10.1007/BF02428171 – volume: 44 start-page: 49 year: 2004 ident: oe-24-26-30124-R3 publication-title: Exp. Mech. doi: 10.1007/BF02427976 – volume: 112 start-page: 2462 year: 1986 ident: oe-24-26-30124-R1 publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(1986)112:11(2462) – volume: 35 start-page: 3341 year: 2000 ident: oe-24-26-30124-R10 publication-title: J. Mater. Sci. doi: 10.1023/A:1004824817000 – volume: 39 start-page: 4495 year: 2004 ident: oe-24-26-30124-R11 publication-title: J. Mater. Sci. doi: 10.1023/B:JMSC.0000034143.30654.b8 – volume: 53 start-page: 1719 year: 2013 ident: oe-24-26-30124-R19 publication-title: Exp. Mech. doi: 10.1007/s11340-013-9774-x – volume: 49 start-page: 3418 year: 2010 ident: oe-24-26-30124-R21 publication-title: Appl. Opt. doi: 10.1364/AO.49.003418 – volume: 22 start-page: 1330 year: 2000 ident: oe-24-26-30124-R26 publication-title: IEEE Trans. Pattern Anal. Mach. doi: 10.1109/34.888718 – volume: 41 start-page: 931 year: 2008 ident: oe-24-26-30124-R7 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.01.004 – volume: 9 start-page: 450 year: 2000 ident: oe-24-26-30124-R2 publication-title: J. Microelectromech. Syst. doi: 10.1109/84.896765 – volume: 48 start-page: 1535 year: 2009 ident: oe-24-26-30124-R29 publication-title: Appl. Opt. doi: 10.1364/AO.48.001535 – volume: 25 start-page: 025001 year: 2014 ident: oe-24-26-30124-R15 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/25/2/025001 – volume: 53 start-page: 1277 year: 2013 ident: oe-24-26-30124-R34 publication-title: Exp. Mech. doi: 10.1007/s11340-013-9717-6 – volume: 46 start-page: 746 year: 2008 ident: oe-24-26-30124-R18 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2008.05.005 – volume: 55 start-page: 155 year: 2015 ident: oe-24-26-30124-R23 publication-title: Exp. Mech. doi: 10.1007/s11340-014-9918-7 – volume: 51 start-page: 7674 year: 2012 ident: oe-24-26-30124-R27 publication-title: Appl. Opt. doi: 10.1364/AO.51.007674 – volume: 56 start-page: 833 year: 2016 ident: oe-24-26-30124-R13 publication-title: Exp. Mech. doi: 10.1007/s11340-016-0133-6 – volume: 56 start-page: 1611 year: 2016 ident: oe-24-26-30124-R24 publication-title: Exp. Mech. doi: 10.1007/s11340-016-0193-7 – volume: 55 start-page: 95 year: 2015 ident: oe-24-26-30124-R4 publication-title: Exp. Mech. doi: 10.1007/s11340-014-9863-5 – volume: 23 start-page: 411 year: 2001 ident: oe-24-26-30124-R8 publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(01)00062-5 – volume: 65 start-page: 28 year: 2015 ident: oe-24-26-30124-R16 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2014.04.010 – volume: 26 start-page: 095201 year: 2015 ident: oe-24-26-30124-R37 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/26/9/095201 – volume: 55 start-page: 1717 year: 2015 ident: oe-24-26-30124-R32 publication-title: Exp. Mech. doi: 10.1007/s11340-015-0080-7 |
| SSID | ssj0014797 |
| Score | 2.4784706 |
| Snippet | The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 30124 |
| Title | Self-calibration single-lens 3D video extensometer for high-accuracy and real-time strain measurement |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28059290 https://www.proquest.com/docview/1856596852 |
| Volume | 24 |
| WOSCitedRecordID | wos000390809100084&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6ARKXiW82oDISnCqPxEkc-4i2Ig5sRdqQKi6RkzhqtC6pmnbqiT-Cv5hnx_HSsUnjwCWKHCe28n56X34fCH3gMRc5qOEkB-5Hwkw7mnKWEukzljJgh6IwdWa_xaenfDoV3weD310uzNU8riq-2YjFfyU1jAGxdersP5DbfRQG4B6IDlcgO1zvRfgzNS8I_HltBxviam_AXBEQL80oOB7pxLt6ZJzfTX2po2FMqKGuW0xklq2XugG8iToHHZLo3vM6oUSW1ejy2p_Y12knC1PqWW0WLpzD1HyUxgs7LatNJx615l42Rl09qWfaZ57DzcVsJV2I8JHNFvk5U6aZklO0bejw2Wwty76rwjcNftp8eMtdwZYEg9VKWHXLmGXJbVq1hR7tM1jgR-3Dv1h_wEIgzWR8SMNDz03brrB9Q_K5eERzrMfCZDJOaJi0b--gBzSOhA4TPPk1didTgF7TsKfbtk2mgLc_9dfeVnPusF2MDnP-BO1Z4wN_bkHzFA1U9Qw9MkHAWfMcqZvQwT3o4OAYG-jgPnQwQAdvQQcDdLCDDm6hg3vQeYF-fBmfH30ltg0HyQIqVoSmGQ9FriIv555SSkgtCoKCRamSIuI0lmlQAN8XYZGB_psrSUGMpqDrqtxTYfAS7VZ1pV4jLGEm8ws_jaIiLPJCBMDItByhNPUlpfto1P21JLM16vU258ltFNpHH93sRVub5Y557zsCJMA89YmYrFS9bhJQVlkkGI9g5VctZdyXKAfLgwrv4J6rvEGPrzH_Fu2ulmv1Dj3MrlZlsxyinXjKh8bjMzSA-gOcN5qW |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-calibration+single-lens+3D+video+extensometer+for+high-accuracy+and+real-time+strain+measurement&rft.jtitle=Optics+express&rft.au=Shao%2C+Xinxing&rft.au=Eisa%2C+Mohammed+Mokhtar&rft.au=Chen%2C+Zhenning&rft.au=Dong%2C+Shuai&rft.date=2016-12-26&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=24&rft.issue=26&rft.spage=30124&rft_id=info:doi/10.1364%2FOE.24.030124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_24_030124 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |