Building machine-learning models for reducing the severity of bicyclist road traffic injuries

•Identifying a feature list to enter into a variety of machine-learning classification algorithms that predict the class of bicyclist injury severity.•Identifying the “best” machine-learning algorithm on the basis of having the highest levels of accuracy, precision, recall, and F1 score.•Comparing t...

Full description

Saved in:
Bibliographic Details
Published in:Transportation engineering (Oxford) Vol. 12; p. 100179
Main Authors: Birfir, Slava, Elalouf, Amir, Rosenbloom, Tova
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2023
Elsevier
Subjects:
ISSN:2666-691X, 2666-691X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Identifying a feature list to enter into a variety of machine-learning classification algorithms that predict the class of bicyclist injury severity.•Identifying the “best” machine-learning algorithm on the basis of having the highest levels of accuracy, precision, recall, and F1 score.•Comparing the different models that predict the class of bicyclist injury severity. Predicting the severity of injuries caused by traffic accidents is an important undertaking because it may lead to establishing regulations increasing road-user safety. Bicyclists are a particularly susceptible category of road users, which is especially troubling considering the environmental, financial, and health benefits of this mode of transportation. As a result, this study aims to apply machine learning to identify risk variables that may result in serious biker injuries in the case of an accident. Machine-learning models make no assumptions about the connections between variables. Hence, it has been argued that machine-learning approaches produce better outcomes than statistical procedures. This study selects the “best” machine-learning classification system from a vast pool of similar algorithms to predict the severity of bicycling injuries. Machine learning allows the system to learn from experience and improve without being too programmed. We first use a variety of feature selection algorithms to identify a list of features related to the accident and the environment that have the greatest impact on the severity of bicyclist injuries. This feature list is then used as input data to various machine-learning algorithms that predict the class of bicyclist injury severity at one of three levels (fatal, serious, and slight). The “best” machine-learning algorithm is identified on the basis of having the highest levels of accuracy, precision, recall, and F1 score. The current models were developed and trained based on Israeli road-traffic accident data from 2009 to 2019, meaning that new models would need to be developed for other geographical locations. In addition, the models would need to be updated to take account of the changing relationships between motorists, bicyclists, and the environment. Nevertheless, the proposed methodology has universal applicability.
AbstractList •Identifying a feature list to enter into a variety of machine-learning classification algorithms that predict the class of bicyclist injury severity.•Identifying the “best” machine-learning algorithm on the basis of having the highest levels of accuracy, precision, recall, and F1 score.•Comparing the different models that predict the class of bicyclist injury severity. Predicting the severity of injuries caused by traffic accidents is an important undertaking because it may lead to establishing regulations increasing road-user safety. Bicyclists are a particularly susceptible category of road users, which is especially troubling considering the environmental, financial, and health benefits of this mode of transportation. As a result, this study aims to apply machine learning to identify risk variables that may result in serious biker injuries in the case of an accident. Machine-learning models make no assumptions about the connections between variables. Hence, it has been argued that machine-learning approaches produce better outcomes than statistical procedures. This study selects the “best” machine-learning classification system from a vast pool of similar algorithms to predict the severity of bicycling injuries. Machine learning allows the system to learn from experience and improve without being too programmed. We first use a variety of feature selection algorithms to identify a list of features related to the accident and the environment that have the greatest impact on the severity of bicyclist injuries. This feature list is then used as input data to various machine-learning algorithms that predict the class of bicyclist injury severity at one of three levels (fatal, serious, and slight). The “best” machine-learning algorithm is identified on the basis of having the highest levels of accuracy, precision, recall, and F1 score. The current models were developed and trained based on Israeli road-traffic accident data from 2009 to 2019, meaning that new models would need to be developed for other geographical locations. In addition, the models would need to be updated to take account of the changing relationships between motorists, bicyclists, and the environment. Nevertheless, the proposed methodology has universal applicability.
Predicting the severity of injuries caused by traffic accidents is an important undertaking because it may lead to establishing regulations increasing road-user safety. Bicyclists are a particularly susceptible category of road users, which is especially troubling considering the environmental, financial, and health benefits of this mode of transportation. As a result, this study aims to apply machine learning to identify risk variables that may result in serious biker injuries in the case of an accident.Machine-learning models make no assumptions about the connections between variables. Hence, it has been argued that machine-learning approaches produce better outcomes than statistical procedures. This study selects the “best” machine-learning classification system from a vast pool of similar algorithms to predict the severity of bicycling injuries. Machine learning allows the system to learn from experience and improve without being too programmed.We first use a variety of feature selection algorithms to identify a list of features related to the accident and the environment that have the greatest impact on the severity of bicyclist injuries. This feature list is then used as input data to various machine-learning algorithms that predict the class of bicyclist injury severity at one of three levels (fatal, serious, and slight). The “best” machine-learning algorithm is identified on the basis of having the highest levels of accuracy, precision, recall, and F1 score. The current models were developed and trained based on Israeli road-traffic accident data from 2009 to 2019, meaning that new models would need to be developed for other geographical locations. In addition, the models would need to be updated to take account of the changing relationships between motorists, bicyclists, and the environment. Nevertheless, the proposed methodology has universal applicability.
ArticleNumber 100179
Author Rosenbloom, Tova
Elalouf, Amir
Birfir, Slava
Author_xml – sequence: 1
  givenname: Slava
  surname: Birfir
  fullname: Birfir, Slava
– sequence: 2
  givenname: Amir
  surname: Elalouf
  fullname: Elalouf, Amir
  email: amir.elalouf@biu.ac.il
– sequence: 3
  givenname: Tova
  surname: Rosenbloom
  fullname: Rosenbloom, Tova
BookMark eNp9kE2LFDEQhhtZwXXdX-Cl_0CP-ehOTw4edNF1YcGLghcJ1ZXKbDW9iSSZhfn39swoiIc9pXjheSv1vG4uYorUNG-l2Eghzbt5UzPF3UYJpddEyNG-aC6VMaYzVv64-Gd-1VyXMgsh1FaKrR4vm58f97x4jrv2EfCBI3ULQY6nIHlaShtSbjP5PR6z-kBtoSfKXA9tCu3EeMCFS21zAt_WDCEwthznfWYqb5qXAZZC13_eq-b750_fbr50919v724-3HeolbWd194GC3KEfvIAA0xKUu-3QSkzDdhLFGD1SKjBGOFHAk2IRGhVb71BfdXcnXt9gtn9yvwI-eASsDsFKe8c5Mq4kJuUGgIRaY2hn4Zxa6SRCAMKFOtWWLvsuQtzKiVTcMgVKqe4XseLk8IdtbvZnbS7o3Z31r6y-j_271-ep96fqVU3PTFlV5ApInnOhHW9gZ_lfwOuoaIF
CitedBy_id crossref_primary_10_1007_s11116_024_10468_7
crossref_primary_10_1139_cjce_2023_0503
crossref_primary_10_1016_j_aap_2024_107677
crossref_primary_10_1080_17457300_2024_2335478
crossref_primary_10_1080_19427867_2024_2408920
crossref_primary_10_1680_jmuen_25_00005
crossref_primary_10_1016_j_treng_2025_100318
crossref_primary_10_3390_app14093570
crossref_primary_10_1061_JCCEE5_CPENG_5980
crossref_primary_10_1016_j_tbs_2024_100962
crossref_primary_10_1080_19439962_2025_2471300
Cites_doi 10.3141/2083-13
10.1016/j.autcon.2015.11.003
10.1016/j.ergon.2015.09.012
10.1016/j.aap.2016.02.011
10.1016/j.trf.2015.12.016
10.1016/j.tra.2010.02.001
10.1016/j.jsr.2019.04.008
10.1016/j.jsr.2021.09.005
10.1016/j.aap.2015.09.003
10.1016/j.patcog.2012.10.001
10.1016/j.aap.2020.105597
10.1016/j.cor.2018.02.021
10.1016/j.jsr.2021.02.009
10.1016/j.ssci.2008.01.006
10.1016/j.jsr.2020.02.006
10.1016/j.jprocont.2014.01.012
10.1109/TKDE.2009.191
10.1016/j.aap.2008.11.002
10.1016/j.aap.2011.03.025
10.1038/nature14539
10.1016/j.trf.2013.12.009
10.3390/en15030791
10.1016/j.jns.2013.08.004
10.1016/j.aap.2018.08.025
10.1016/j.ress.2011.03.006
10.1016/j.aap.2008.02.003
10.3390/su142316048
10.1016/j.aap.2021.106510
10.1016/j.autcon.2016.05.016
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.treng.2023.100179
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-691X
ExternalDocumentID oai_doaj_org_article_b225feee33cf4b5786161ca5c0c021ea
10_1016_j_treng_2023_100179
S2666691X23000192
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
ACLIJ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c3299-d3d9f9a17a4bdaa5ab21e4d8f226b5c41c0a937ec3a660d7ea3ecceec9249d6c3
IEDL.DBID DOA
ISSN 2666-691X
IngestDate Fri Oct 03 12:51:58 EDT 2025
Thu Nov 20 00:54:43 EST 2025
Tue Nov 18 21:47:10 EST 2025
Tue Jul 25 20:54:06 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Machine-learning classification algorithms
Bicyclist injury severity
Transportation engineering
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3299-d3d9f9a17a4bdaa5ab21e4d8f226b5c41c0a937ec3a660d7ea3ecceec9249d6c3
OpenAccessLink https://doaj.org/article/b225feee33cf4b5786161ca5c0c021ea
ParticipantIDs doaj_primary_oai_doaj_org_article_b225feee33cf4b5786161ca5c0c021ea
crossref_citationtrail_10_1016_j_treng_2023_100179
crossref_primary_10_1016_j_treng_2023_100179
elsevier_sciencedirect_doi_10_1016_j_treng_2023_100179
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Transportation engineering (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References NHTSA. Traffic Safety facts. National Highway Traffic Safety Administration, Washington (DC). Report No.: DOT HS 812 681.
Zhang, Cai (bib0013) 2014; 23
W. Yi, A.P.C. Chan, X. Wang, J. Wang, 2016. Development of an early-warning system for site work in hot and humid environments: automation in construction 62, February 2016, Pages 101–113. doi
LeCun, Bengio, Hinton (bib0023) 2015; 521
Kaitlin Kirasich, Trace Smith, Bivin Sadler, 2018. Random forest vs logistic regression: binary classification for heterogeneous datasets random forest vs logistic regression: binary classification for heterogeneous datasets, Volume 1, 3.
Kawada (bib0033) 2013; 334
Ciarapica, Giacchetta (bib0027) 2009; 47
Jeong, Jang, Bowman, Masoud (bib0036) 2018; 120
Macioszek, Granà (bib0044) 2022; 14
Chen, Zhang, Qian, Tarefder, Tian (bib0021) 2016; 90
Bahrololoom, Young, Loganc (bib0011) 2020; 144
Rivas, Paz, Martín, Matías, García, Taboada (bib0031) 2011; 96
Zhou, Roshandeh, Zhang, Ma (bib0017) 2016; 137
Lopez, Glickman, Soumerai, Hemenway (bib0018) 2017
Cun, Bengio, Hinton (bib0035) 2015; 521
Sarkar, Vinay, Raj, Maiti, Mitra (bib0026) 2019; 106
Tay, Kattan, Sun (bib0009) 2010; 4
Pan, Yang (bib0034) 2010; 22
Macioszek, Granà (bib0045) 2022; 15
Tay, Rifaat, Chin (bib0010) 2008; 40
Roshandeh, Zhou, Behnood (bib0016) 2016; 38
Jiang, Lu, Chen, Lu (bib0015) 2016; 95
Sanchez, Iglesias-Rodríguez, Riesgo, de Cos Juez (bib0024) 2016; 52
Tay, Barua, Kattan (bib0008) 2009; 41
Lord, Mannering (bib0019) 2010; 44
Tixier, Hallowell, Rajagopalan, Bowman (bib0022) 2016; 69
Dongab (bib0030) 2021; 176
Kim, Pant, Yamashita (bib0007) 2008; 2083
.
Hosseinpour, Madsen, Vingaard Olesen, Lahrmann (bib0006) 2021; 77
NHTSA, 2020. Fatality data show increased traffic fatalities during pandemic.
Samerei, Aghabay, Shiwakoti, Mohammadi (bib0005) 2021; 79
Yuan, Zhai, Ji, Yang, Yu, Yu (bib0046) 2022; 14
Liu, Pan, Dezert (bib0025) 2013; 46
Rahman, Abdel-Aty (bib0002) 2019; 70
Bahrololoom, Moridpour, Tay, Young (bib0014) 2017
Shang, Yang, Huang, Lyu (bib0029) 2014; 24
Liu, Khattak, Li, Nie, Ling (bib0012) 2020; 73
Savolainen, Mannering, Lord, Quddus (bib0020) 2011; 43
Eriksson, Niska, Forsman (bib0043) 2022; 165
Zhang (10.1016/j.treng.2023.100179_bib0013) 2014; 23
Eriksson (10.1016/j.treng.2023.100179_bib0043) 2022; 165
Ciarapica (10.1016/j.treng.2023.100179_bib0027) 2009; 47
Liu (10.1016/j.treng.2023.100179_bib0025) 2013; 46
Rahman (10.1016/j.treng.2023.100179_bib0002) 2019; 70
Tay (10.1016/j.treng.2023.100179_bib0008) 2009; 41
Sarkar (10.1016/j.treng.2023.100179_bib0026) 2019; 106
Savolainen (10.1016/j.treng.2023.100179_bib0020) 2011; 43
Jiang (10.1016/j.treng.2023.100179_bib0015) 2016; 95
Yuan (10.1016/j.treng.2023.100179_bib0046) 2022; 14
Pan (10.1016/j.treng.2023.100179_bib0034) 2010; 22
Dongab (10.1016/j.treng.2023.100179_bib0030) 2021; 176
Bahrololoom (10.1016/j.treng.2023.100179_bib0014) 2017
Macioszek (10.1016/j.treng.2023.100179_bib0044) 2022; 14
Bahrololoom (10.1016/j.treng.2023.100179_bib0011) 2020; 144
Sanchez (10.1016/j.treng.2023.100179_bib0024) 2016; 52
LeCun (10.1016/j.treng.2023.100179_bib0023) 2015; 521
10.1016/j.treng.2023.100179_bib0004
Jeong (10.1016/j.treng.2023.100179_bib0036) 2018; 120
10.1016/j.treng.2023.100179_bib0003
10.1016/j.treng.2023.100179_bib0001
10.1016/j.treng.2023.100179_bib0028
Lopez (10.1016/j.treng.2023.100179_bib0018) 2017
10.1016/j.treng.2023.100179_bib0040
Cun (10.1016/j.treng.2023.100179_bib0035) 2015; 521
Liu (10.1016/j.treng.2023.100179_bib0012) 2020; 73
Roshandeh (10.1016/j.treng.2023.100179_bib0016) 2016; 38
Tixier (10.1016/j.treng.2023.100179_bib0022) 2016; 69
10.1016/j.treng.2023.100179_bib0042
10.1016/j.treng.2023.100179_bib0041
Kawada (10.1016/j.treng.2023.100179_bib0033) 2013; 334
Samerei (10.1016/j.treng.2023.100179_bib0005) 2021; 79
Macioszek (10.1016/j.treng.2023.100179_bib0045) 2022; 15
Tay (10.1016/j.treng.2023.100179_bib0010) 2008; 40
Shang (10.1016/j.treng.2023.100179_bib0029) 2014; 24
Kim (10.1016/j.treng.2023.100179_bib0007) 2008; 2083
Zhou (10.1016/j.treng.2023.100179_bib0017) 2016; 137
Tay (10.1016/j.treng.2023.100179_bib0009) 2010; 4
Rivas (10.1016/j.treng.2023.100179_bib0031) 2011; 96
Chen (10.1016/j.treng.2023.100179_bib0021) 2016; 90
10.1016/j.treng.2023.100179_bib0039
Lord (10.1016/j.treng.2023.100179_bib0019) 2010; 44
Hosseinpour (10.1016/j.treng.2023.100179_bib0006) 2021; 77
10.1016/j.treng.2023.100179_bib0038
References_xml – volume: 79
  start-page: 246
  year: 2021
  end-page: 256
  ident: bib0005
  article-title: Using latent class clustering and binary logistic regression to model Australian cyclist injury severity in motor vehicle–bicycle crashes
  publication-title: J. Safety Res.
– volume: 41
  start-page: 227
  year: 2009
  end-page: 233
  ident: bib0008
  article-title: Factors contributing to hit-and-run in fatal crashes
  publication-title: Accid. Anal. Prev.
– volume: 23
  start-page: 113
  year: 2014
  end-page: 124
  ident: bib0013
  article-title: Factors contributing to hit-and-run crashes in China
  publication-title: Transp. Res. Part F Traffic Psychol. Behav.
– volume: 95
  start-page: 373
  year: 2016
  end-page: 380
  ident: bib0015
  article-title: Hit-and-run crashes in urban river-crossing road tunnels
  publication-title: Accid. Anal. Prev. Traffic Saf. China
– volume: 43
  start-page: 1666
  year: 2011
  end-page: 1676
  ident: bib0020
  article-title: The statistical analysis of highway crash-injury severities: a review and assessment of methodological alternatives
  publication-title: Accid. Anal. Prev.
– volume: 176
  year: 2021
  ident: bib0030
  article-title: Multi class SVM algorithm with active learning for network traffic classification
  publication-title: Expert Syst. Appl.
– reference: NHTSA, 2020. Fatality data show increased traffic fatalities during pandemic.
– volume: 24
  start-page: 223
  year: 2014
  end-page: 233
  ident: bib0029
  article-title: Data-driven soft sensor development based on deep learning technique
  publication-title: J. Process Control
– volume: 4
  year: 2010
  ident: bib0009
  article-title: Logistic model of hit and run crashes in Calgary
  publication-title: Can. J. Transport.
– volume: 120
  start-page: 250
  year: 2018
  end-page: 261
  ident: bib0036
  article-title: Classification of motor vehicle crash injury severity: a hybrid approach for imbalanced data
  publication-title: Accid. Anal. Prev.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0035
  article-title: Deep learning
  publication-title: Nature
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0023
  article-title: Deep learning
  publication-title: Nature
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib0034
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 144
  year: 2020
  ident: bib0011
  article-title: Modelling injury severity of bicyclists in bicycle-car crashes at intersections
  publication-title: Accid. Anal. Prev
– volume: 38
  start-page: 22
  year: 2016
  end-page: 28
  ident: bib0016
  article-title: Comparison of contributing factors in hit-and-run crashes with distracted and non-distracted drivers
  publication-title: Transp. Res. Part F Traffic Psychol. Behav.
– volume: 14
  year: 2022
  ident: bib0044
  article-title: The analysis of the factors influencing the severity of bicyclist injury in bicyclist-vehicle crashes. The analysis of the factors influencing the severity of bicyclist injury in bicyclist-vehicle crashes
  publication-title: Sustainability
– year: 2017
  ident: bib0014
  article-title: Factors affecting hit and run bicycle crashes in Victoria
  publication-title: Australia. Presented at the Australasian Road Safety Conference, 2017, Perth, Western Australia, Australia
– volume: 70
  start-page: 275
  year: 2019
  end-page: 288
  ident: bib0002
  article-title: Applying machine learning approaches to analyze the vulnerable road users crashes at statewide traffic analysis zones
  publication-title: J. Saf. Res.
– volume: 96
  start-page: 739
  year: 2011
  end-page: 747
  ident: bib0031
  article-title: Explaining and predicting workplace accidents using data-mining techniques
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 77
  start-page: 114
  year: 2021
  end-page: 124
  ident: bib0006
  article-title: An in-depth analysis of self-reported cycling injuries in single and multiparty bicycle crashes in Denmark
  publication-title: J. Saf. Res.
– volume: 2083
  start-page: 114
  year: 2008
  end-page: 121
  ident: bib0007
  article-title: Hit-and-run crashes: use of rough set analysis with logistic regression to capture critical attributes and determinants
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– reference: W. Yi, A.P.C. Chan, X. Wang, J. Wang, 2016. Development of an early-warning system for site work in hot and humid environments: automation in construction 62, February 2016, Pages 101–113. doi:
– volume: 69
  start-page: 102
  year: 2016
  end-page: 114
  ident: bib0022
  article-title: Application of machine learning to construction injury prediction
  publication-title: Autom. Constr.
– volume: 137
  start-page: 554
  year: 2016
  end-page: 562
  ident: bib0017
  article-title: Analysis of factors contributing to hit-and-run crashes involved with improper driving behaviors
  publication-title: Procedia Eng Green Intelligent Transp. Syst. Saf.
– volume: 46
  start-page: 834
  year: 2013
  end-page: 844
  ident: bib0025
  article-title: A new belief-based K-nearest neighbor classification method
  publication-title: Pattern Recognit.
– volume: 40
  start-page: 1330
  year: 2008
  end-page: 1336
  ident: bib0010
  article-title: A logistic model of the effects of roadway, environmental, vehicle, crash and driver characteristics on hit-and-run crashes
  publication-title: Accid. Anal. Prev.
– year: 2017
  ident: bib0018
  article-title: Identifying factors related to a hit-and-run after a vehicle-bicycle collision
  publication-title: J. Transp. Health.
– volume: 106
  start-page: 210
  year: 2019
  end-page: 224
  ident: bib0026
  article-title: Application of optimized machine learning techniques for prediction of occupational accidents
  publication-title: Comput. Operations Res.
– volume: 47
  start-page: 36
  year: 2009
  end-page: 49
  ident: bib0027
  article-title: Classification and prediction of occupational injury risk using soft computing techniques
  publication-title: Saf. Sci.
– volume: 73
  start-page: 25
  year: 2020
  end-page: 35
  ident: bib0012
  article-title: Bicyclist injury severity in traffic crashes: a spatial approach for geo-referenced crash data to uncover non-stationary correlates
  publication-title: J. Saf. Res.
– reference: .
– volume: 52
  start-page: 92
  year: 2016
  end-page: 99
  ident: bib0024
  article-title: Applying the K-nearest neighbor technique to the classification of workers according to their risk of suffering musculoskeletal disorders
  publication-title: Int. J. Ind. Ergon.
– volume: 165
  year: 2022
  ident: bib0043
  article-title: Injured cyclists with focus on single-bicycle crashes and differences in injury severity in Sweden
  publication-title: Accid. Anal. Prev
– volume: 15
  start-page: 791
  year: 2022
  ident: bib0045
  article-title: External environmental analysis for sustainable bike-sharing system development. external environmental analysis for sustainable bike-sharing system development
  publication-title: Energies
– volume: 14
  start-page: 16048
  year: 2022
  ident: bib0046
  article-title: Correlation analysis on accident injury and risky behavior of vulnerable road users based on bayesian general ordinal logit model
  publication-title: Sustainability
– reference: /.
– volume: 334
  start-page: 197
  year: 2013
  ident: bib0033
  article-title: The number of independent variables and events for multiple logistic regression analysis
  publication-title: J. Neurol. Sci.
– volume: 90
  start-page: 128
  year: 2016
  end-page: 139
  ident: bib0021
  article-title: Investigating driver injury severity patterns in rollover crashes using support vector machine models
  publication-title: Accid. Anal. Prev.
– reference: Kaitlin Kirasich, Trace Smith, Bivin Sadler, 2018. Random forest vs logistic regression: binary classification for heterogeneous datasets random forest vs logistic regression: binary classification for heterogeneous datasets, Volume 1, 3.
– reference: NHTSA. Traffic Safety facts. National Highway Traffic Safety Administration, Washington (DC). Report No.: DOT HS 812 681.
– volume: 44
  start-page: 291
  year: 2010
  end-page: 305
  ident: bib0019
  article-title: The statistical analysis of crash-frequency data: a review and assessment of methodological alternatives
  publication-title: Transp. Res. Part Policy Pract.
– volume: 2083
  start-page: 114
  year: 2008
  ident: 10.1016/j.treng.2023.100179_bib0007
  article-title: Hit-and-run crashes: use of rough set analysis with logistic regression to capture critical attributes and determinants
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2083-13
– ident: 10.1016/j.treng.2023.100179_bib0028
  doi: 10.1016/j.autcon.2015.11.003
– ident: 10.1016/j.treng.2023.100179_bib0004
– volume: 52
  start-page: 92
  year: 2016
  ident: 10.1016/j.treng.2023.100179_bib0024
  article-title: Applying the K-nearest neighbor technique to the classification of workers according to their risk of suffering musculoskeletal disorders
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2015.09.012
– year: 2017
  ident: 10.1016/j.treng.2023.100179_bib0014
  article-title: Factors affecting hit and run bicycle crashes in Victoria
– volume: 90
  start-page: 128
  issue: Supplement C
  year: 2016
  ident: 10.1016/j.treng.2023.100179_bib0021
  article-title: Investigating driver injury severity patterns in rollover crashes using support vector machine models
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2016.02.011
– volume: 38
  start-page: 22
  year: 2016
  ident: 10.1016/j.treng.2023.100179_bib0016
  article-title: Comparison of contributing factors in hit-and-run crashes with distracted and non-distracted drivers
  publication-title: Transp. Res. Part F Traffic Psychol. Behav.
  doi: 10.1016/j.trf.2015.12.016
– volume: 137
  start-page: 554
  year: 2016
  ident: 10.1016/j.treng.2023.100179_bib0017
  article-title: Analysis of factors contributing to hit-and-run crashes involved with improper driving behaviors
  publication-title: Procedia Eng Green Intelligent Transp. Syst. Saf.
– volume: 44
  start-page: 291
  issue: 5
  year: 2010
  ident: 10.1016/j.treng.2023.100179_bib0019
  article-title: The statistical analysis of crash-frequency data: a review and assessment of methodological alternatives
  publication-title: Transp. Res. Part Policy Pract.
  doi: 10.1016/j.tra.2010.02.001
– volume: 70
  start-page: 275
  year: 2019
  ident: 10.1016/j.treng.2023.100179_bib0002
  article-title: Applying machine learning approaches to analyze the vulnerable road users crashes at statewide traffic analysis zones
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2019.04.008
– volume: 79
  start-page: 246
  year: 2021
  ident: 10.1016/j.treng.2023.100179_bib0005
  article-title: Using latent class clustering and binary logistic regression to model Australian cyclist injury severity in motor vehicle–bicycle crashes
  publication-title: J. Safety Res.
  doi: 10.1016/j.jsr.2021.09.005
– volume: 95
  start-page: 373
  year: 2016
  ident: 10.1016/j.treng.2023.100179_bib0015
  article-title: Hit-and-run crashes in urban river-crossing road tunnels
  publication-title: Accid. Anal. Prev. Traffic Saf. China
  doi: 10.1016/j.aap.2015.09.003
– volume: 46
  start-page: 834
  issue: 3
  year: 2013
  ident: 10.1016/j.treng.2023.100179_bib0025
  article-title: A new belief-based K-nearest neighbor classification method
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.10.001
– ident: 10.1016/j.treng.2023.100179_bib0039
– volume: 144
  year: 2020
  ident: 10.1016/j.treng.2023.100179_bib0011
  article-title: Modelling injury severity of bicyclists in bicycle-car crashes at intersections
  publication-title: Accid. Anal. Prev
  doi: 10.1016/j.aap.2020.105597
– volume: 106
  start-page: 210
  year: 2019
  ident: 10.1016/j.treng.2023.100179_bib0026
  article-title: Application of optimized machine learning techniques for prediction of occupational accidents
  publication-title: Comput. Operations Res.
  doi: 10.1016/j.cor.2018.02.021
– ident: 10.1016/j.treng.2023.100179_bib0042
– volume: 77
  start-page: 114
  year: 2021
  ident: 10.1016/j.treng.2023.100179_bib0006
  article-title: An in-depth analysis of self-reported cycling injuries in single and multiparty bicycle crashes in Denmark
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2021.02.009
– volume: 47
  start-page: 36
  issue: 1
  year: 2009
  ident: 10.1016/j.treng.2023.100179_bib0027
  article-title: Classification and prediction of occupational injury risk using soft computing techniques
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2008.01.006
– year: 2017
  ident: 10.1016/j.treng.2023.100179_bib0018
  article-title: Identifying factors related to a hit-and-run after a vehicle-bicycle collision
  publication-title: J. Transp. Health.
– ident: 10.1016/j.treng.2023.100179_bib0040
– volume: 73
  start-page: 25
  year: 2020
  ident: 10.1016/j.treng.2023.100179_bib0012
  article-title: Bicyclist injury severity in traffic crashes: a spatial approach for geo-referenced crash data to uncover non-stationary correlates
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2020.02.006
– volume: 24
  start-page: 223
  issue: 3
  year: 2014
  ident: 10.1016/j.treng.2023.100179_bib0029
  article-title: Data-driven soft sensor development based on deep learning technique
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2014.01.012
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.treng.2023.100179_bib0034
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– ident: 10.1016/j.treng.2023.100179_bib0003
– volume: 41
  start-page: 227
  issue: 2
  year: 2009
  ident: 10.1016/j.treng.2023.100179_bib0008
  article-title: Factors contributing to hit-and-run in fatal crashes
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2008.11.002
– volume: 43
  start-page: 1666
  issue: 5
  year: 2011
  ident: 10.1016/j.treng.2023.100179_bib0020
  article-title: The statistical analysis of highway crash-injury severities: a review and assessment of methodological alternatives
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2011.03.025
– volume: 521
  start-page: 436
  issue: 2015
  year: 2015
  ident: 10.1016/j.treng.2023.100179_bib0023
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 23
  start-page: 113
  year: 2014
  ident: 10.1016/j.treng.2023.100179_bib0013
  article-title: Factors contributing to hit-and-run crashes in China
  publication-title: Transp. Res. Part F Traffic Psychol. Behav.
  doi: 10.1016/j.trf.2013.12.009
– ident: 10.1016/j.treng.2023.100179_bib0038
– volume: 15
  start-page: 791
  year: 2022
  ident: 10.1016/j.treng.2023.100179_bib0045
  article-title: External environmental analysis for sustainable bike-sharing system development. external environmental analysis for sustainable bike-sharing system development
  publication-title: Energies
  doi: 10.3390/en15030791
– volume: 176
  year: 2021
  ident: 10.1016/j.treng.2023.100179_bib0030
  article-title: Multi class SVM algorithm with active learning for network traffic classification
  publication-title: Expert Syst. Appl.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.treng.2023.100179_bib0035
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 334
  start-page: 197
  issue: 1–2
  year: 2013
  ident: 10.1016/j.treng.2023.100179_bib0033
  article-title: The number of independent variables and events for multiple logistic regression analysis
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2013.08.004
– volume: 120
  start-page: 250
  year: 2018
  ident: 10.1016/j.treng.2023.100179_bib0036
  article-title: Classification of motor vehicle crash injury severity: a hybrid approach for imbalanced data
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2018.08.025
– volume: 96
  start-page: 739
  issue: 7
  year: 2011
  ident: 10.1016/j.treng.2023.100179_bib0031
  article-title: Explaining and predicting workplace accidents using data-mining techniques
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2011.03.006
– volume: 40
  start-page: 1330
  issue: 4
  year: 2008
  ident: 10.1016/j.treng.2023.100179_bib0010
  article-title: A logistic model of the effects of roadway, environmental, vehicle, crash and driver characteristics on hit-and-run crashes
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2008.02.003
– volume: 14
  start-page: 16048
  year: 2022
  ident: 10.1016/j.treng.2023.100179_bib0046
  article-title: Correlation analysis on accident injury and risky behavior of vulnerable road users based on bayesian general ordinal logit model
  publication-title: Sustainability
  doi: 10.3390/su142316048
– volume: 165
  year: 2022
  ident: 10.1016/j.treng.2023.100179_bib0043
  article-title: Injured cyclists with focus on single-bicycle crashes and differences in injury severity in Sweden
  publication-title: Accid. Anal. Prev
  doi: 10.1016/j.aap.2021.106510
– ident: 10.1016/j.treng.2023.100179_bib0001
– volume: 4
  issue: 1
  year: 2010
  ident: 10.1016/j.treng.2023.100179_bib0009
  article-title: Logistic model of hit and run crashes in Calgary
  publication-title: Can. J. Transport.
– volume: 69
  start-page: 102
  year: 2016
  ident: 10.1016/j.treng.2023.100179_bib0022
  article-title: Application of machine learning to construction injury prediction
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.05.016
– volume: 14
  issue: 215
  year: 2022
  ident: 10.1016/j.treng.2023.100179_bib0044
  article-title: The analysis of the factors influencing the severity of bicyclist injury in bicyclist-vehicle crashes. The analysis of the factors influencing the severity of bicyclist injury in bicyclist-vehicle crashes
  publication-title: Sustainability
– ident: 10.1016/j.treng.2023.100179_bib0041
SSID ssj0002810837
Score 2.2206774
Snippet •Identifying a feature list to enter into a variety of machine-learning classification algorithms that predict the class of bicyclist injury...
Predicting the severity of injuries caused by traffic accidents is an important undertaking because it may lead to establishing regulations increasing...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100179
SubjectTerms Bicyclist injury severity
Machine-learning classification algorithms
Transportation engineering
Title Building machine-learning models for reducing the severity of bicyclist road traffic injuries
URI https://dx.doi.org/10.1016/j.treng.2023.100179
https://doaj.org/article/b225feee33cf4b5786161ca5c0c021ea
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-691X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810837
  issn: 2666-691X
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-691X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810837
  issn: 2666-691X
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV0xT90wELYQ6kCHqgWqPtoiD4y4JHFixyNUIAZADIDeUkW2c67eE81DeSkSC7-dOydBmejSJcPJ8UV3J93n6Px9jB2U2jmdghbBpUrkISTCgZLCSQNZrossRCLtuwt9dVXO5-Z6IvVFM2E9PXAfuCOHBRcAQEofcof1pRCjeFv4xGN7ggiNEm0mh6ll_GWUIragu9LYgJRQJp2PlENxuKtrofn9g6TDIwkRDXJN2lJk7590p0nHOfvIPgxQkR_3n_iJbUCzzd5PCAR32K-TQdWa_4lDkSAGFQg0kMTNmiMm5S3Rs5INwR5HX0CCdXwVuFv4J3-Piebtyta8ay0RSvBFsyQhu_Uuuz07vfl5LgbBBOElthVRy9oEY1Ntc1dbW1iHEcrrMiDGcoXPU59YhCPgpVUqqTVYiRkE8HQIq5WXn9lms2rgC-N0BShTvjAhqXNvU6NBaQ1F6UySQIAZy8Z4VX5gEydRi_tqHBtbVjHIFQW56oM8Y4evLz30ZBpvLz-hRLwuJSbsaMD6qIb6qP5VHzOmxjRWA6jowQJutXjL-97_8P6VbdGW_WzZN7bZtX_hO3vnH7vFut2PNYvPy-fTF1O487E
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+machine-learning+models+for+reducing+the+severity+of+bicyclist+road+traffic+injuries&rft.jtitle=Transportation+engineering+%28Oxford%29&rft.au=Birfir%2C+Slava&rft.au=Elalouf%2C+Amir&rft.au=Rosenbloom%2C+Tova&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=2666-691X&rft.eissn=2666-691X&rft.volume=12&rft_id=info:doi/10.1016%2Fj.treng.2023.100179&rft.externalDocID=S2666691X23000192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-691X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-691X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-691X&client=summon