Evaluating the impact and clearance duration of freeway incidents

Transportation agencies use incident duration to report the performance of their incident management programs. Most agencies use the incident clearance duration, which in most cases refers to the duration from the reporting of an incident to the time the incident is cleared. This measure may not nec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Journal of Transportation Science and Technology Ročník 8; číslo 1; s. 13 - 24
Hlavní autoři: Haule, Henrick J., Sando, Thobias, Lentz, Richard, Chuan, Ching-Hua, Alluri, Priyanka
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2019
KeAi Communications Co., Ltd
Témata:
ISSN:2046-0430
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Transportation agencies use incident duration to report the performance of their incident management programs. Most agencies use the incident clearance duration, which in most cases refers to the duration from the reporting of an incident to the time the incident is cleared. This measure may not necessarily reflect how different types of incidents and various factors affect traffic conditions. The duration at which the incident influences traffic conditions could vary – shorter than the incident duration for some incidents and longer for others. This study, for the first time, introduced a performance measure called incident impact duration and demonstrated a method that was used for estimating it. Also, this study investigated the effects of using incident impact duration compared to the traditionally incident clearance duration in incident modeling. Using hazard-based models, the study analyzed factors that affect the estimated incident impact duration and the incident clearance duration. Results indicate that incidents detection methods, the number of responders, Traffic Management Center (TMC) operations, traffic conditions, towing and emergency services influence the duration of an incident. Moreover, the study assessed the predictive accuracy of the models resulted from both durations. It was observed that the incident impact duration provides a better prediction accuracy than the incident clearance duration.
AbstractList Transportation agencies use incident duration to report the performance of their incident management programs. Most agencies use the incident clearance duration, which in most cases refers to the duration from the reporting of an incident to the time the incident is cleared. This measure may not necessarily reflect how different types of incidents and various factors affect traffic conditions. The duration at which the incident influences traffic conditions could vary – shorter than the incident duration for some incidents and longer for others. This study, for the first time, introduced a performance measure called incident impact duration and demonstrated a method that was used for estimating it. Also, this study investigated the effects of using incident impact duration compared to the traditionally incident clearance duration in incident modeling. Using hazard-based models, the study analyzed factors that affect the estimated incident impact duration and the incident clearance duration. Results indicate that incidents detection methods, the number of responders, Traffic Management Center (TMC) operations, traffic conditions, towing and emergency services influence the duration of an incident. Moreover, the study assessed the predictive accuracy of the models resulted from both durations. It was observed that the incident impact duration provides a better prediction accuracy than the incident clearance duration.
Transportation agencies use incident duration to report the performance of their incident management programs. Most agencies use the incident clearance duration, which in most cases refers to the duration from the reporting of an incident to the time the incident is cleared. This measure may not necessarily reflect how different types of incidents and various factors affect traffic conditions. The duration at which the incident influences traffic conditions could vary – shorter than the incident duration for some incidents and longer for others. This study, for the first time, introduced a performance measure called incident impact duration and demonstrated a method that was used for estimating it. Also, this study investigated the effects of using incident impact duration compared to the traditionally incident clearance duration in incident modeling. Using hazard-based models, the study analyzed factors that affect the estimated incident impact duration and the incident clearance duration. Results indicate that incidents detection methods, the number of responders, Traffic Management Center (TMC) operations, traffic conditions, towing and emergency services influence the duration of an incident. Moreover, the study assessed the predictive accuracy of the models resulted from both durations. It was observed that the incident impact duration provides a better prediction accuracy than the incident clearance duration. Keywords: Incident duration, Hazard-based models, Predictive accuracy
Author Haule, Henrick J.
Sando, Thobias
Lentz, Richard
Chuan, Ching-Hua
Alluri, Priyanka
Author_xml – sequence: 1
  givenname: Henrick J.
  surname: Haule
  fullname: Haule, Henrick J.
  email: h.haule@unf.edu
  organization: University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, United States
– sequence: 2
  givenname: Thobias
  surname: Sando
  fullname: Sando, Thobias
  email: t.sando@unf.edu
  organization: University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, United States
– sequence: 3
  givenname: Richard
  surname: Lentz
  fullname: Lentz, Richard
  email: r.lentz@unf.edu
  organization: University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, United States
– sequence: 4
  givenname: Ching-Hua
  surname: Chuan
  fullname: Chuan, Ching-Hua
  email: c.chuan@unf.edu
  organization: University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, United States
– sequence: 5
  givenname: Priyanka
  surname: Alluri
  fullname: Alluri, Priyanka
  email: palluri@fiu.edu
  organization: Department of Civil & Environmental Engineering, Florida International University, 10555 West Flagler Street, EC 3628, Miami, FL 33174, United States
BookMark eNqFkLtOw0AQRbcAiecX0PgHYmbt9T4KiigKDwmJBurVeHYMGwUbrZcg_h4nQRQUUI10Nedq5pyIg37oWYgLCaUEqS9XZVzlMZcVSFuCLgGaA3FcgdIzUDUcifNxjC0oZZQ0oI7FfLnB9Tvm2D8X-YWL-PqGlAvsQ0FrxoQ9cRHe07Qx9MXQFV1i_sDPIvYUA_d5PBOHHa5HPv-ep-Lpevm4uJ3dP9zcLeb3M6or18yUbCUHFdg5R9ZS1zC2bVPr2oXaaiAwgVtSrqqosdg2nVRaWU1mStFSfSru9r1hwJV_S_EV06cfMPpdMKRnjynH6WqvLIAEW6EBUsaRC8aEOrS6M4jYbrvqfRelYRwTdz99EvxWpF_5nUi_FelB-0nkRLlfFMW8E5MTxvU_7NWe5UnRJnLyI0We5IaYmPL0Q_yT_wKfP5Uc
CitedBy_id crossref_primary_10_1080_14680629_2025_2485334
crossref_primary_10_3390_app142310964
crossref_primary_10_1016_j_ets_2025_100016
crossref_primary_10_1155_2022_5272747
crossref_primary_10_1016_j_aap_2021_106303
crossref_primary_10_1016_j_aap_2021_106129
crossref_primary_10_1016_j_trd_2025_104869
crossref_primary_10_1080_15472450_2021_1894936
crossref_primary_10_1016_j_techfore_2024_123621
crossref_primary_10_1016_j_amar_2023_100267
crossref_primary_10_1007_s11750_020_00567_w
crossref_primary_10_1080_08839514_2021_2018643
crossref_primary_10_1155_2021_8812740
crossref_primary_10_1155_atr_3748345
crossref_primary_10_1371_journal_pone_0316289
crossref_primary_10_1007_s13177_024_00451_y
crossref_primary_10_1155_2021_5543698
crossref_primary_10_3390_fire7040110
crossref_primary_10_1155_2021_6671983
crossref_primary_10_1177_03611981251348461
crossref_primary_10_1016_j_aap_2023_107406
crossref_primary_10_1016_j_aap_2019_105391
crossref_primary_10_1016_j_trc_2022_103721
crossref_primary_10_1080_21680566_2022_2063205
crossref_primary_10_1016_j_tust_2022_104894
crossref_primary_10_3390_s22082933
crossref_primary_10_1080_10298436_2022_2138878
crossref_primary_10_1111_mice_12883
crossref_primary_10_3390_su142214859
crossref_primary_10_1080_19439962_2023_2189339
crossref_primary_10_1080_17517575_2024_2448828
crossref_primary_10_1016_j_cstp_2022_01_033
crossref_primary_10_1108_JICV_03_2021_0004
crossref_primary_10_1038_s41598_025_91744_z
Cites_doi 10.1155/2014/723427
10.1007/0-387-29150-4
10.1016/j.ssci.2012.11.009
10.1016/j.sbspro.2012.04.108
10.3141/2178-13
10.1080/15472450.2015.1082428
10.1016/j.aap.2014.06.006
10.3141/2278-11
10.1007/s12205-012-1632-3
10.1016/S0965-8564(98)00065-2
10.1061/(ASCE)0733-947X(1997)123:6(459)
10.1016/j.aap.2009.08.005
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.ijtst.2018.06.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 24
ExternalDocumentID oai_doaj_org_article_48001082a70c479c9d77d3db6f7aaabc
10_1016_j_ijtst_2018_06_005
S2046043018300522
GroupedDBID 6I.
AAFTH
ALMA_UNASSIGNED_HOLDINGS
M~E
AAYXX
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c3295-41b1ed4de999c88cf5eabb53639d3860c07debc4922c58ab5f146486c7ebca8c3
IEDL.DBID DOA
ISSN 2046-0430
IngestDate Fri Oct 03 12:43:44 EDT 2025
Tue Nov 18 20:53:59 EST 2025
Wed Nov 05 20:42:52 EST 2025
Sat Mar 04 13:20:44 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Incident duration
Hazard-based models
Predictive accuracy
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3295-41b1ed4de999c88cf5eabb53639d3860c07debc4922c58ab5f146486c7ebca8c3
OpenAccessLink https://doaj.org/article/48001082a70c479c9d77d3db6f7aaabc
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_48001082a70c479c9d77d3db6f7aaabc
crossref_primary_10_1016_j_ijtst_2018_06_005
crossref_citationtrail_10_1016_j_ijtst_2018_06_005
elsevier_sciencedirect_doi_10_1016_j_ijtst_2018_06_005
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle International Journal of Transportation Science and Technology
PublicationYear 2019
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Li, X., 2017. Large-scale traffic incident duration analysis: the role of multi-agency response and on-scene times. In: 96th Annual Meeting for the Transportation Research Board.
U.S.DOT Federal Highway Administration, 2017. FHWA Operations - Operations Story [WWW Document]. URL
Amer, A., Roberts, E., Mangar, U., Kraft, W.H., Wanat, J.T., Cusolito, P.C., Hogan, J.R., Zhao, X., 2015. Traffic Incident Management: Gap Analysis Primer.
Chung, Yoon (b0020) 2012; 16
Chung (b0015) 2010; 42
Margiotta, R., Dowling, R., Paracha, J., 2012. Analysis, Modeling, and Simulation for Traffic Incident Management Applications.
FDOT, 2014. State of Florida: Open Roads Policy Agreement.
Kaabi, Dissanayake, Bird (b0060) 2012; 2278
Farradyne (b0025) 2006
Li, Shang (b0075) 2014; 2014
Kleinbaum, D.A., Klein, M., 2005. Survival Analysis: A Self_Learning Text, second ed., J. Chem. Inf. Modeling. Springer Science+Business Media, Inc.
Transportation Research Board Highway Capacity Manual, Hcm, 2010. Washington, D.C.
Schrank, Eisele, Lomax, Bak (b0100) 2015; 39
Ghosh (b0040) 2012; 12
USF, 2005. Best Practices for Traffic Incident Management in Florida.
Hojati, Ferreira, Washington, Charles, Shobeirinejad (b0045) 2014; 71
Garib, Radwan, Al-Deek (b0035) 1997; 123
Zeng, Songchitruksa (b0135) 2010; 2178
Jeihani, James, Saka, Ardeshiri (b0050) 2015; 2
Khattak, Schofer, Wang (b0065) 1995; 2
Nam, Mannering (b0090) 2000; 34
Chimba, Kutela, Ogletree, Horne, Tugwell (b0010) 2014
Junhua, Haozhe, Shi (b0055) 2013; 54
Smith, K., Smith, B.L., 2001. Forecasting the Clearance Time of Freeway Accidents. Charlottesville, VA.
Zhou, Tian (b0140) 2012; 43
Wang, Chen, Bell (b0125) 2005; 8
(accessed 7.17.17).
Park, Haghani, Zhang (b0095) 2016; 20
Washington, Karlaftis, Mannering (b0130) 2003
Ghosh (10.1016/j.ijtst.2018.06.005_b0040) 2012; 12
10.1016/j.ijtst.2018.06.005_b0115
Chung (10.1016/j.ijtst.2018.06.005_b0020) 2012; 16
Li (10.1016/j.ijtst.2018.06.005_b0075) 2014; 2014
10.1016/j.ijtst.2018.06.005_b0080
Wang (10.1016/j.ijtst.2018.06.005_b0125) 2005; 8
Washington (10.1016/j.ijtst.2018.06.005_b0130) 2003
Zeng (10.1016/j.ijtst.2018.06.005_b0135) 2010; 2178
10.1016/j.ijtst.2018.06.005_b0085
Farradyne (10.1016/j.ijtst.2018.06.005_b0025) 2006
10.1016/j.ijtst.2018.06.005_b0120
Park (10.1016/j.ijtst.2018.06.005_b0095) 2016; 20
Schrank (10.1016/j.ijtst.2018.06.005_b0100) 2015; 39
10.1016/j.ijtst.2018.06.005_b0105
Zhou (10.1016/j.ijtst.2018.06.005_b0140) 2012; 43
10.1016/j.ijtst.2018.06.005_b0005
Khattak (10.1016/j.ijtst.2018.06.005_b0065) 1995; 2
Kaabi (10.1016/j.ijtst.2018.06.005_b0060) 2012; 2278
Garib (10.1016/j.ijtst.2018.06.005_b0035) 1997; 123
Hojati (10.1016/j.ijtst.2018.06.005_b0045) 2014; 71
Nam (10.1016/j.ijtst.2018.06.005_b0090) 2000; 34
Chimba (10.1016/j.ijtst.2018.06.005_b0010) 2014
Junhua (10.1016/j.ijtst.2018.06.005_b0055) 2013; 54
Chung (10.1016/j.ijtst.2018.06.005_b0015) 2010; 42
10.1016/j.ijtst.2018.06.005_b0030
10.1016/j.ijtst.2018.06.005_b0110
Jeihani (10.1016/j.ijtst.2018.06.005_b0050) 2015; 2
10.1016/j.ijtst.2018.06.005_b0070
References_xml – reference: Smith, K., Smith, B.L., 2001. Forecasting the Clearance Time of Freeway Accidents. Charlottesville, VA.
– volume: 43
  start-page: 349
  year: 2012
  end-page: 355
  ident: b0140
  article-title: Modeling analysis of incident and roadway clearance time
  publication-title: Proc. Soc. Behav. Sci.
– volume: 123
  start-page: 459
  year: 1997
  end-page: 466
  ident: b0035
  article-title: Estimating magnitude and duration of incident delays
  publication-title: J. Transp. Eng.
– volume: 34
  start-page: 85
  year: 2000
  end-page: 102
  ident: b0090
  article-title: An exploratory hazard-based analysis of highway incident duration
  publication-title: Transp. Res. Part A Policy Pract.
– reference: Li, X., 2017. Large-scale traffic incident duration analysis: the role of multi-agency response and on-scene times. In: 96th Annual Meeting for the Transportation Research Board.
– volume: 2
  start-page: 291
  year: 2015
  end-page: 300
  ident: b0050
  article-title: Traffic recovery time estimation under different flow regimes in traffic simulation
  publication-title: J. Traffic Transp. Eng. (English Ed.)
– reference: U.S.DOT Federal Highway Administration, 2017. FHWA Operations - Operations Story [WWW Document]. URL
– volume: 71
  start-page: 296
  year: 2014
  end-page: 305
  ident: b0045
  article-title: Modelling total duration of traffic incidents including incident detection and recovery time
  publication-title: Accid. Anal. Prev.
– reference: FDOT, 2014. State of Florida: Open Roads Policy Agreement.
– volume: 42
  start-page: 282
  year: 2010
  end-page: 289
  ident: b0015
  article-title: Development of an accident duration prediction model on the Korean Freeway Systems
  publication-title: Accid. Anal. Prev.
– volume: 39
  start-page: 5
  year: 2015
  ident: b0100
  article-title: Urban mobility scorecard
  publication-title: Texas A&M Transp. Institute
– volume: 2014
  start-page: 7
  year: 2014
  end-page: 9
  ident: b0075
  article-title: Incident duration modeling using flexible parametric hazard-based models
  publication-title: Comput. Intell. Neurosci.
– year: 2006
  ident: b0025
  article-title: Florida Traffic Incident Management Program: Strategic Plan
– volume: 12
  start-page: 75
  year: 2012
  end-page: 89
  ident: b0040
  article-title: Examination of the factors influencing the clearance time of freeway incidents
  publication-title: J. Transp. Syst. Eng. Inf. Technol.
– volume: 20
  start-page: 385
  year: 2016
  end-page: 400
  ident: b0095
  article-title: Interpretation of Bayesian neural networks for predicting the duration of detected incidents
  publication-title: J. Intell. Transp. Syst.
– reference: Margiotta, R., Dowling, R., Paracha, J., 2012. Analysis, Modeling, and Simulation for Traffic Incident Management Applications.
– reference: (accessed 7.17.17).
– reference: Kleinbaum, D.A., Klein, M., 2005. Survival Analysis: A Self_Learning Text, second ed., J. Chem. Inf. Modeling. Springer Science+Business Media, Inc.
– volume: 2278
  start-page: 95
  year: 2012
  end-page: 103
  ident: b0060
  article-title: Response time of highway traffic accidents in Abu Dhabi
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– reference: USF, 2005. Best Practices for Traffic Incident Management in Florida.
– volume: 2
  start-page: 113
  year: 1995
  end-page: 138
  ident: b0065
  article-title: A simple time sequential procedure for predicting freeway incident duration
  publication-title: IVHSJ
– volume: 2178
  start-page: 119
  year: 2010
  end-page: 127
  ident: b0135
  article-title: Empirical method for estimating traffic incident recovery time
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– volume: 54
  start-page: 43
  year: 2013
  end-page: 50
  ident: b0055
  article-title: Estimating freeway incident duration using accelerated failure time modeling
  publication-title: Saf. Sci.
– reference: Amer, A., Roberts, E., Mangar, U., Kraft, W.H., Wanat, J.T., Cusolito, P.C., Hogan, J.R., Zhao, X., 2015. Traffic Incident Management: Gap Analysis Primer.
– reference: Transportation Research Board Highway Capacity Manual, Hcm, 2010. Washington, D.C.
– start-page: 140
  year: 2014
  ident: b0010
  article-title: Impact of abandoned and disabled vehicles on freeway incident duration
  publication-title: J. Transp. Eng.
– volume: 8
  start-page: 75
  year: 2005
  end-page: 84
  ident: b0125
  article-title: Vehicle breakdown duration modeling
  publication-title: J. Transp. Stat.
– volume: 16
  start-page: 1064
  year: 2012
  end-page: 1070
  ident: b0020
  article-title: Analytical method to estimate accident duration using archived speed profile and its statistical analysis
  publication-title: KSCE J. Civ. Eng.
– year: 2003
  ident: b0130
  article-title: Statistical and Econometric Techniques for Transportation Data Analysis
– volume: 2014
  start-page: 7
  year: 2014
  ident: 10.1016/j.ijtst.2018.06.005_b0075
  article-title: Incident duration modeling using flexible parametric hazard-based models
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2014/723427
– ident: 10.1016/j.ijtst.2018.06.005_b0120
– ident: 10.1016/j.ijtst.2018.06.005_b0070
  doi: 10.1007/0-387-29150-4
– volume: 8
  start-page: 75
  year: 2005
  ident: 10.1016/j.ijtst.2018.06.005_b0125
  article-title: Vehicle breakdown duration modeling
  publication-title: J. Transp. Stat.
– ident: 10.1016/j.ijtst.2018.06.005_b0080
– ident: 10.1016/j.ijtst.2018.06.005_b0105
– volume: 39
  start-page: 5
  year: 2015
  ident: 10.1016/j.ijtst.2018.06.005_b0100
  article-title: Urban mobility scorecard
  publication-title: Texas A&M Transp. Institute
– volume: 54
  start-page: 43
  year: 2013
  ident: 10.1016/j.ijtst.2018.06.005_b0055
  article-title: Estimating freeway incident duration using accelerated failure time modeling
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2012.11.009
– ident: 10.1016/j.ijtst.2018.06.005_b0005
– ident: 10.1016/j.ijtst.2018.06.005_b0030
– volume: 43
  start-page: 349
  year: 2012
  ident: 10.1016/j.ijtst.2018.06.005_b0140
  article-title: Modeling analysis of incident and roadway clearance time
  publication-title: Proc. Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2012.04.108
– volume: 12
  start-page: 75
  year: 2012
  ident: 10.1016/j.ijtst.2018.06.005_b0040
  article-title: Examination of the factors influencing the clearance time of freeway incidents
  publication-title: J. Transp. Syst. Eng. Inf. Technol.
– year: 2003
  ident: 10.1016/j.ijtst.2018.06.005_b0130
– volume: 2178
  start-page: 119
  year: 2010
  ident: 10.1016/j.ijtst.2018.06.005_b0135
  article-title: Empirical method for estimating traffic incident recovery time
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2178-13
– ident: 10.1016/j.ijtst.2018.06.005_b0110
– ident: 10.1016/j.ijtst.2018.06.005_b0085
– year: 2006
  ident: 10.1016/j.ijtst.2018.06.005_b0025
– volume: 2
  start-page: 113
  year: 1995
  ident: 10.1016/j.ijtst.2018.06.005_b0065
  article-title: A simple time sequential procedure for predicting freeway incident duration
  publication-title: IVHSJ
– volume: 20
  start-page: 385
  year: 2016
  ident: 10.1016/j.ijtst.2018.06.005_b0095
  article-title: Interpretation of Bayesian neural networks for predicting the duration of detected incidents
  publication-title: J. Intell. Transp. Syst.
  doi: 10.1080/15472450.2015.1082428
– volume: 71
  start-page: 296
  year: 2014
  ident: 10.1016/j.ijtst.2018.06.005_b0045
  article-title: Modelling total duration of traffic incidents including incident detection and recovery time
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2014.06.006
– start-page: 140
  year: 2014
  ident: 10.1016/j.ijtst.2018.06.005_b0010
  article-title: Impact of abandoned and disabled vehicles on freeway incident duration
  publication-title: J. Transp. Eng.
– volume: 2278
  start-page: 95
  year: 2012
  ident: 10.1016/j.ijtst.2018.06.005_b0060
  article-title: Response time of highway traffic accidents in Abu Dhabi
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2278-11
– volume: 16
  start-page: 1064
  year: 2012
  ident: 10.1016/j.ijtst.2018.06.005_b0020
  article-title: Analytical method to estimate accident duration using archived speed profile and its statistical analysis
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-012-1632-3
– volume: 2
  start-page: 291
  year: 2015
  ident: 10.1016/j.ijtst.2018.06.005_b0050
  article-title: Traffic recovery time estimation under different flow regimes in traffic simulation
  publication-title: J. Traffic Transp. Eng. (English Ed.)
– volume: 34
  start-page: 85
  year: 2000
  ident: 10.1016/j.ijtst.2018.06.005_b0090
  article-title: An exploratory hazard-based analysis of highway incident duration
  publication-title: Transp. Res. Part A Policy Pract.
  doi: 10.1016/S0965-8564(98)00065-2
– ident: 10.1016/j.ijtst.2018.06.005_b0115
– volume: 123
  start-page: 459
  year: 1997
  ident: 10.1016/j.ijtst.2018.06.005_b0035
  article-title: Estimating magnitude and duration of incident delays
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(1997)123:6(459)
– volume: 42
  start-page: 282
  year: 2010
  ident: 10.1016/j.ijtst.2018.06.005_b0015
  article-title: Development of an accident duration prediction model on the Korean Freeway Systems
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2009.08.005
SSID ssib044741704
Score 2.2592707
Snippet Transportation agencies use incident duration to report the performance of their incident management programs. Most agencies use the incident clearance...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Hazard-based models
Incident duration
Predictive accuracy
Title Evaluating the impact and clearance duration of freeway incidents
URI https://dx.doi.org/10.1016/j.ijtst.2018.06.005
https://doaj.org/article/48001082a70c479c9d77d3db6f7aaabc
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2046-0430
  databaseCode: M~E
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib044741704
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBIECUlzwwEpEmdmyPBbVigIoBUDfLT9QKpagPRn47PjupMpWFJUPkR3Tn3MP67juEbspC5yVlItNeVxnxebCD1NpMhfFgM4mOVWnvT2w85pOJeOm0-gJMWKIHToK7IxzSFl4olhvChBGWMVtC8RhTSmkD1jdnopNMhZNESHCULPYOLEICmAGxVUs5FMFd09lqCUjKfmLvhOZ1HbcU2fs73qnjcUaH6KAJFfEgfeIR2nH1MRoMG3ru-gOH2A2nKkesaosNdIAAJWK7TnrFc4_9wsH1GIY7dSjKXZ6gt9Hw9eExa9ogZKYsBM1IX_edJdaFWM5wbjx1SmtahtjClrzKTc6s04aIojCUK019sH6EV4YB0Imb8hTt1vPanSFsCRFeKdunXJPKV8qFhKVyAHN1NPy7PVS0UpCm4QiHVhWfsgWDzWQUnQTRyQiJoz10u5n0lSgytg-_B_FuhgK_dXwRtC4brcu_tN5DVasc2YQKKQQIS0237X7-H7tfoP2wpEhQtEu0u1qs3RXaM9-r6XJxHU9ieD7_DH8BZv7jmA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+impact+and+clearance+duration+of+freeway+incidents&rft.jtitle=International+Journal+of+Transportation+Science+and+Technology&rft.au=Haule%2C+Henrick+J.&rft.au=Sando%2C+Thobias&rft.au=Lentz%2C+Richard&rft.au=Chuan%2C+Ching-Hua&rft.date=2019-03-01&rft.issn=2046-0430&rft.volume=8&rft.issue=1&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1016%2Fj.ijtst.2018.06.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijtst_2018_06_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-0430&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-0430&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-0430&client=summon