Radiative thermal analysis for four types of hybrid nanoparticles subject to non-uniform heat source: Keller box numerical approach

The advancement in the thermal engineering presented the idea of nanomaterials with stable thermal consequences and performances. The importance of hybrid nanomaterials attributes importance in solar energy production, electronics devices, heating systems, mechanical processes etc. The hybrid model...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in thermal engineering Vol. 40; p. 102474
Main Authors: Chu, Yu-Ming, Khan, M. Ijaz, Abbas, Tasawar, Sidi, Maawiya Ould, Alharbi, Khalid Abdulkhaliq M, Alqsair, Umar F., Khan, Sami Ullah, Khan, M. Riaz, Malik, M.Y.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2022
Elsevier
Subjects:
ISSN:2214-157X, 2214-157X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The advancement in the thermal engineering presented the idea of nanomaterials with stable thermal consequences and performances. The importance of hybrid nanomaterials attributes importance in solar energy production, electronics devices, heating systems, mechanical processes etc. The hybrid model is classified as a distinct thermal phenomenon with different tiny particles. The thermal evaluation of hybrid nanofluid containing four types of nanoparticles subject to the non-uniform heat source/sink and inclined magnetic field for two-dimensional unsteady flow due to permeable stretched surface has been numerically investigated. Four different types of nanoparticles, copper, titanium dioxide, silver and aluminum oxide have been considered with water base fluid. With the help of similarity transformation, we convert the governing partial differential equation into the ordinary differential equation. To solve these similarity equations a numerical technique known as Keller box method is used. The results are shown graphically and in tabular form. For special cases, comparison of numerical results to the previous results is presented with excellent agreement. The physical onset of parameters due to fluctuated heat transfer rate, wall shear force and Nusselt number is observed. It is observed that change in magnetic field inclination angle declines the velocity profile. The temperature profile can be effectively controlled with interaction of titanium oxide nanoparticles. The presence of heat source enhanced the nanoparticles temperature more effectively.
AbstractList The advancement in the thermal engineering presented the idea of nanomaterials with stable thermal consequences and performances. The importance of hybrid nanomaterials attributes importance in solar energy production, electronics devices, heating systems, mechanical processes etc. The hybrid model is classified as a distinct thermal phenomenon with different tiny particles. The thermal evaluation of hybrid nanofluid containing four types of nanoparticles subject to the non-uniform heat source/sink and inclined magnetic field for two-dimensional unsteady flow due to permeable stretched surface has been numerically investigated. Four different types of nanoparticles, copper, titanium dioxide, silver and aluminum oxide have been considered with water base fluid. With the help of similarity transformation, we convert the governing partial differential equation into the ordinary differential equation. To solve these similarity equations a numerical technique known as Keller box method is used. The results are shown graphically and in tabular form. For special cases, comparison of numerical results to the previous results is presented with excellent agreement. The physical onset of parameters due to fluctuated heat transfer rate, wall shear force and Nusselt number is observed. It is observed that change in magnetic field inclination angle declines the velocity profile. The temperature profile can be effectively controlled with interaction of titanium oxide nanoparticles. The presence of heat source enhanced the nanoparticles temperature more effectively.
ArticleNumber 102474
Author Sidi, Maawiya Ould
Chu, Yu-Ming
Khan, M. Riaz
Khan, M. Ijaz
Abbas, Tasawar
Malik, M.Y.
Alqsair, Umar F.
Alharbi, Khalid Abdulkhaliq M
Khan, Sami Ullah
Author_xml – sequence: 1
  givenname: Yu-Ming
  surname: Chu
  fullname: Chu, Yu-Ming
  organization: School of Science, Hunan City University, Yiyang, 413000, PR China
– sequence: 2
  givenname: M. Ijaz
  surname: Khan
  fullname: Khan, M. Ijaz
  organization: Department of Mathematics and Statistics, Riphah International University I-14, Islamabad, 44000, Pakistan
– sequence: 3
  givenname: Tasawar
  surname: Abbas
  fullname: Abbas, Tasawar
  organization: Department of Mathematics, University of Wah, Wah Cantt, 47040, Pakistan
– sequence: 4
  givenname: Maawiya Ould
  surname: Sidi
  fullname: Sidi, Maawiya Ould
  organization: RT-M2A Laboratory, Mathematics Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
– sequence: 5
  givenname: Khalid Abdulkhaliq M
  orcidid: 0000-0002-7290-8398
  surname: Alharbi
  fullname: Alharbi, Khalid Abdulkhaliq M
  organization: Mechanical Engineering Department, College of Engineering, Umm Al-Qura University, Makkah, Saudi Arabia
– sequence: 6
  givenname: Umar F.
  surname: Alqsair
  fullname: Alqsair, Umar F.
  organization: College of Engineering, Department of Mechanical Engineering, Prince Sattam bin Abdulaziz University, Alkharj, 16273, Saudi Arabia
– sequence: 7
  givenname: Sami Ullah
  surname: Khan
  fullname: Khan, Sami Ullah
  organization: Department of Mathematics, COMSATS University Islamabad, Sahiwal, 57000, Pakistan
– sequence: 8
  givenname: M. Riaz
  surname: Khan
  fullname: Khan, M. Riaz
  email: mrkhan.math@gmail.com
  organization: Department of Mathematics, Quaid-I-Azam University 45320, Islamabad, 44000, Pakistan
– sequence: 9
  givenname: M.Y.
  surname: Malik
  fullname: Malik, M.Y.
  organization: Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia
BookMark eNqFkV9rFDEUxYNUsNZ-Al_yBWbNv8nMCD5I0VosCKLgW7iT3LgZZidDki3uc7-42W4R8aE-hFwO_E5yz3lJzpa4ICGvOdtwxvWbaWNzKLgRTIiqCNWpZ-RcCK4a3nY_zv6aX5DLnCfGGO9kz5U6J_dfwQUo4Q5p2WLawUxhgfmQQ6Y-pnr2iZbDiplGT7eHMQVHF1jiCqkEO1c978cJbaEl0vqzZr-ECu7oFqHQXHGLb-lnnGdMdIy_6LLfYQr2-NC6pgh2-4o89zBnvHy8L8j3jx--XX1qbr9c31y9v22sFINqpECJUgOOo9Wd7oXvvebadeCsZE4M4EY7-Bbd0ErvNHA5cM8FgO4H5Xt5QW5Ovi7CZNYUdpAOJkIwD0JMP83jUsZ5rlULgmuPqo69V553o2JSt33f6eolT142xZwT-j9-nJljLWYyD7WYYy3mVEulhn8oG0pNPy4lQZj_w747sVgjuguYTLYBF4supBp_3SE8yf8GspSufA
CitedBy_id crossref_primary_10_1007_s40571_022_00547_w
crossref_primary_10_1140_epjs_s11734_024_01319_8
crossref_primary_10_1002_zamm_202400194
crossref_primary_10_1016_j_jmmm_2023_170443
crossref_primary_10_1155_2024_9306915
crossref_primary_10_1016_j_ijhydene_2023_05_036
crossref_primary_10_1063_5_0201939
crossref_primary_10_1016_j_rinp_2025_108176
crossref_primary_10_1080_10407782_2023_2201483
crossref_primary_10_1038_s41598_023_28379_5
crossref_primary_10_1142_S0217979225501772
crossref_primary_10_1016_j_tsep_2023_101790
crossref_primary_10_1007_s42823_023_00562_8
crossref_primary_10_1016_j_tsep_2022_101596
crossref_primary_10_1016_j_asej_2023_102227
crossref_primary_10_3390_mi13122196
crossref_primary_10_1016_j_mseb_2022_116221
crossref_primary_10_1016_j_rineng_2024_101842
crossref_primary_10_1515_phys_2023_0131
crossref_primary_10_1016_j_jics_2023_100954
crossref_primary_10_1080_17455030_2023_2234047
crossref_primary_10_1177_01445987241276261
crossref_primary_10_1002_zamm_202300733
crossref_primary_10_1016_j_jics_2023_100915
crossref_primary_10_1080_10407790_2024_2341084
crossref_primary_10_1016_j_cjph_2025_05_014
crossref_primary_10_1016_j_matcom_2023_07_031
crossref_primary_10_1142_S0217984925500198
crossref_primary_10_1080_01430750_2023_2181869
crossref_primary_10_1038_s41598_023_29702_w
crossref_primary_10_1080_02286203_2023_2286420
crossref_primary_10_1016_j_mseb_2023_116518
crossref_primary_10_3390_en18071660
crossref_primary_10_1016_j_heliyon_2023_e17641
crossref_primary_10_1016_j_sajce_2023_01_010
crossref_primary_10_1142_S0129183124502358
crossref_primary_10_1016_j_cjph_2023_01_001
crossref_primary_10_3390_bioengineering9100588
crossref_primary_10_1080_10407790_2024_2363502
crossref_primary_10_1142_S0217979224502084
crossref_primary_10_1080_10407782_2024_2363498
crossref_primary_10_1080_02286203_2023_2216049
crossref_primary_10_1142_S0217979224502795
crossref_primary_10_3390_mi14030559
crossref_primary_10_1515_phys_2024_0075
crossref_primary_10_1080_02286203_2022_2151965
crossref_primary_10_1080_10407782_2024_2357578
crossref_primary_10_1016_j_triboint_2023_108610
crossref_primary_10_1016_j_ijft_2025_101166
crossref_primary_10_1177_16878132231206922
crossref_primary_10_1016_j_heliyon_2023_e14781
crossref_primary_10_1016_j_jmmm_2023_170673
crossref_primary_10_1016_j_jmmm_2023_170353
crossref_primary_10_3390_math11081892
crossref_primary_10_1016_j_jmmm_2023_170710
crossref_primary_10_3390_bioengineering10010073
crossref_primary_10_1002_zamm_202300799
crossref_primary_10_3390_catal12111386
crossref_primary_10_1002_zamm_202200466
crossref_primary_10_1038_s41598_024_65642_9
crossref_primary_10_1016_j_jics_2022_100875
crossref_primary_10_1016_j_jics_2022_100873
crossref_primary_10_1080_10407782_2023_2187903
Cites_doi 10.1016/j.physa.2019.123959
10.1166/jon.2017.1349
10.1016/j.ijheatmasstransfer.2009.05.022
10.1166/jon.2016.1260
10.1166/jon.2017.1292
10.1007/s10973-019-08977-0
10.1166/jon.2017.1380
10.1088/1402-4896/ab0973
10.1016/j.csite.2021.101468
10.1016/j.aej.2016.11.013
10.3390/fractalfract5030119
10.1080/01457630701850851
10.1016/j.apt.2017.01.005
10.1007/s40430-018-1482-0
10.1016/j.aej.2020.11.033
10.1088/1402-4896/ab1eb6
10.1016/j.physleta.2008.03.066
10.1016/j.molliq.2017.03.078
10.1007/s10973-019-08694-8
10.1002/htj.21912
10.1016/j.cplett.2021.139041
10.1016/j.cplett.2021.139172
10.1166/jon.2018.1453
10.1016/j.icheatmasstransfer.2021.105871
10.2478/ijame-2013-0027
10.1007/s10973-019-08477-1
10.1016/j.cplett.2021.139277
10.1016/j.jart.2017.05.007
10.1115/1.3247387
10.1016/j.cnsns.2009.03.027
10.1016/j.icheatmasstransfer.2006.01.005
10.1007/s12043-018-1634-x
10.1016/j.ijheatmasstransfer.2009.02.006
10.1016/j.ijthermalsci.2008.03.009
10.1007/s13204-019-01067-5
10.1016/j.icheatmasstransfer.2021.105832
10.1016/j.nucengdes.2011.08.057
10.1002/ceat.200500184
10.3390/sym11091070
10.1016/j.csite.2021.100975
10.1016/j.rser.2009.10.004
10.1063/1.2902483
10.1016/j.icheatmasstransfer.2021.105843
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2022.102474
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_df1645a216fe41648f4f17b403658876
10_1016_j_csite_2022_102474
S2214157X22007109
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c3294-32e3e36aebbc67682f8f616d7adc30d29adbc9f5ed953fd6a1391f12aa6894f83
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Fri Oct 03 12:53:06 EDT 2025
Tue Nov 18 21:54:31 EST 2025
Wed Nov 05 20:57:04 EST 2025
Tue Jul 25 20:57:35 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Non-uniform heat sink/source
Keller box method
Inclined magnetic field
Hybrid nanofluid
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3294-32e3e36aebbc67682f8f616d7adc30d29adbc9f5ed953fd6a1391f12aa6894f83
ORCID 0000-0002-7290-8398
OpenAccessLink https://doaj.org/article/df1645a216fe41648f4f17b403658876
ParticipantIDs doaj_primary_oai_doaj_org_article_df1645a216fe41648f4f17b403658876
crossref_primary_10_1016_j_csite_2022_102474
crossref_citationtrail_10_1016_j_csite_2022_102474
elsevier_sciencedirect_doi_10_1016_j_csite_2022_102474
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Godson, Raja, Lal, Wongwises (bib11) 2009; 14
Grubka, Booba (bib52) 1985; 107
Ramadevi, Anantha Kumar, Sugunamma, Ramana Reddy, Sandeep (bib35) 2020; 139
Anantha Kumar, Sugunamma, Sandeep (bib37) 2020; 140
Kumaran, Vanav Kumar, Pop (bib3) 2010; 15
Chu, Nazir, Sohail, Selim, Lee (bib42) 2021; 5
Garg, Poudel, Chiesa, Chen (bib7) 2008; 103
Minsta, Roy, Nguyen, Doucet (bib13) 2009; 48
Abbasi, Al-Khaled, Ijaz Khan, Farooq, Farooq, Khan, Mabood, Muhammad (bib49) 2021
Choi (bib8) 1995; 231
Zhao, Khan, Chu (bib41) 2021
Mukhopadhyay (bib4) 2011; 241
Li, Khan, Khan, Nadeem, Khan (bib19) 2019; 11
Zhao, Castillo, Jahanshahi, Yusuf, Alassafi, Alsaadi, Chu (bib40) 2021; 20
Khan, Ali, Irfan, Khan, Shahzad, Sultan (bib27) 2020; 10
Yu, France, Routbort, Choi (bib9) 2008; 29
Sreedevi, Reddy, Rao, Chamkha (bib16) 2017; 6
Anantha Kumar, Sugunamma, Sandeep (bib36) 2020; 139
Chu, Khan, Khan, Al-Khaled, Abbas, Khan, Hashmi, Qayyum, Kadry (bib25) 2021; 60
Hayat, Saif, Abbas (bib1) 2008; 372
Abbasi, Farooq, Muhammad, Ijaz Khan, Khan, Mabood, BiBi (bib48) 16 November 2021; 783
Prabhavathi, Reddy, Vijaya, Chamkha (bib17) 2017; 6
Khan, Irfan, Khan, Alshomrani, Alzahrani, Alghamdi (bib23) 2017; 234
Anantha Kumar, Ramana Reddy, Sugunamma, Sandeep (bib38) March 2018; 57
Khan, Al-Johani, Elsiddieg, Saeed, Abd Allah (bib45) 2022; 130
Kemparaju, Subhas Abel, Nandeppanavar (bib31) 2015; 49
Anantha Kumar, Sugunamma, Sandeep, Mustafa (bib34) 2019; 9
Ali (bib53) 1994; 29
Nazeer, Hussain, Khan, Rehman, El-Zahar, Chu, Malik (bib44) 2022; 420
Khan, Mao, Deebani, Elsiddieg (bib46) 2022; 131
Liu, Lin, Wang, IT (bib6) 2006; 29
Heris, Etemad, Esfahany (bib12) 2006; 33
Ahmad, Irfan, Javed, Khan, Khan, Niazi, El-Zahar (bib47) 2022; 131
Abbasi, Khan, Ijaz Khan, Farooq, Javid (bib50) January 2022; 786
Daniel, Aziz, Salah (bib14) 2017; 15
Nandeppanavar, Kemparaju, Abel (bib30) April 2018; 7
Nadeem, Khan (bib39) 2019; 94
Nandeppanavar, Abel, Kemparaju (bib29) February 2017; 6
Nadeem, Khan, Khan (bib20) 2019; 94
Li, Alshbool, PeiLv, Khan, Khan, Issakhov (bib22) 2021; 26
Khan, Alshomrani, Alzahrani, Khan, Irfan (bib28) 2018; 91
R, Pan, Khan, Ullah (bib18) 2020; 116
Kakac, Pramuanjaroenkij (bib10) 2009; 52
Khan, Pan, Khan, Nadeem (bib21) 2020; 547
Raza, Khan, Al-Khaled, Khan, Haq, Alotaibi, Mousa, AAA amd Qayyum (bib5) 2022; 787
Nandeppanavar, Shakunthala (bib32) October 2016; 5
Nandeppanavar, Siddalingappa (bib33) 2013; 18
Kolsi, Abbasi, Alqsair, Farooq, Omri, Khan (bib51) 2021; 28
Ahmad, Aziz, Ali, Khan (bib26) 2021; 50
Reddy, Chamkha, Al-Mudhaf (bib15) 2017; 28
Prasad, Vajravelu (bib2) 2009; 52
Khan, Sultan, Ali, Shahzad, Khan, Irfan (bib24) 2019; 41
Chu, Shankaralingappa, Gireesha, Alzahrani, Khan, Khan (bib43) 2022; 419
Ishak, Nazar, Pop (bib54) 2009; 44
Sreedevi (10.1016/j.csite.2022.102474_bib16) 2017; 6
Chu (10.1016/j.csite.2022.102474_bib42) 2021; 5
Anantha Kumar (10.1016/j.csite.2022.102474_bib37) 2020; 140
Nadeem (10.1016/j.csite.2022.102474_bib20) 2019; 94
Li (10.1016/j.csite.2022.102474_bib19) 2019; 11
Abbasi (10.1016/j.csite.2022.102474_bib48) 2021; 783
Ahmad (10.1016/j.csite.2022.102474_bib26) 2021; 50
Raza (10.1016/j.csite.2022.102474_bib5) 2022; 787
Abbasi (10.1016/j.csite.2022.102474_bib50) 2022; 786
Nadeem (10.1016/j.csite.2022.102474_bib39) 2019; 94
Ahmad (10.1016/j.csite.2022.102474_bib47) 2022; 131
Khan (10.1016/j.csite.2022.102474_bib46) 2022; 131
R (10.1016/j.csite.2022.102474_bib18) 2020; 116
Anantha Kumar (10.1016/j.csite.2022.102474_bib34) 2019; 9
Prasad (10.1016/j.csite.2022.102474_bib2) 2009; 52
Garg (10.1016/j.csite.2022.102474_bib7) 2008; 103
Reddy (10.1016/j.csite.2022.102474_bib15) 2017; 28
Mukhopadhyay (10.1016/j.csite.2022.102474_bib4) 2011; 241
Nandeppanavar (10.1016/j.csite.2022.102474_bib29) 2017; 6
Grubka (10.1016/j.csite.2022.102474_bib52) 1985; 107
Khan (10.1016/j.csite.2022.102474_bib28) 2018; 91
Khan (10.1016/j.csite.2022.102474_bib45) 2022; 130
Hayat (10.1016/j.csite.2022.102474_bib1) 2008; 372
Minsta (10.1016/j.csite.2022.102474_bib13) 2009; 48
Ramadevi (10.1016/j.csite.2022.102474_bib35) 2020; 139
Heris (10.1016/j.csite.2022.102474_bib12) 2006; 33
Zhao (10.1016/j.csite.2022.102474_bib41) 2021
Chu (10.1016/j.csite.2022.102474_bib43) 2022; 419
Nandeppanavar (10.1016/j.csite.2022.102474_bib30) 2018; 7
Zhao (10.1016/j.csite.2022.102474_bib40) 2021; 20
Anantha Kumar (10.1016/j.csite.2022.102474_bib38) 2018; 57
Choi (10.1016/j.csite.2022.102474_bib8) 1995; 231
Anantha Kumar (10.1016/j.csite.2022.102474_bib36) 2020; 139
Kumaran (10.1016/j.csite.2022.102474_bib3) 2010; 15
Yu (10.1016/j.csite.2022.102474_bib9) 2008; 29
Kemparaju (10.1016/j.csite.2022.102474_bib31) 2015; 49
Daniel (10.1016/j.csite.2022.102474_bib14) 2017; 15
Khan (10.1016/j.csite.2022.102474_bib23) 2017; 234
Abbasi (10.1016/j.csite.2022.102474_bib49) 2021
Nandeppanavar (10.1016/j.csite.2022.102474_bib32) 2016; 5
Kolsi (10.1016/j.csite.2022.102474_bib51) 2021; 28
Kakac (10.1016/j.csite.2022.102474_bib10) 2009; 52
Prabhavathi (10.1016/j.csite.2022.102474_bib17) 2017; 6
Li (10.1016/j.csite.2022.102474_bib22) 2021; 26
Khan (10.1016/j.csite.2022.102474_bib24) 2019; 41
Chu (10.1016/j.csite.2022.102474_bib25) 2021; 60
Nandeppanavar (10.1016/j.csite.2022.102474_bib33) 2013; 18
Ishak (10.1016/j.csite.2022.102474_bib54) 2009; 44
Nazeer (10.1016/j.csite.2022.102474_bib44) 2022; 420
Khan (10.1016/j.csite.2022.102474_bib27) 2020; 10
Godson (10.1016/j.csite.2022.102474_bib11) 2009; 14
Khan (10.1016/j.csite.2022.102474_bib21) 2020; 547
Ali (10.1016/j.csite.2022.102474_bib53) 1994; 29
Liu (10.1016/j.csite.2022.102474_bib6) 2006; 29
References_xml – volume: 116
  year: 2020
  ident: bib18
  article-title: Comparative study on heat transfer in CNTs-water nanofluid over a curved surface
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 20
  start-page: 160
  year: 2021
  end-page: 176
  ident: bib40
  article-title: A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak
  publication-title: Appl. Comput. Math.
– volume: 15
  start-page: 300
  year: 2010
  end-page: 311
  ident: bib3
  article-title: Transition of MHD boundary layer flow past a stretching sheet
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 52
  start-page: 3187
  year: 2009
  end-page: 3196
  ident: bib10
  article-title: Review of convectiveheat transfer enhancement with nanofluids
  publication-title: Int. J. Heat Mass Tran.
– volume: 15
  start-page: 464
  year: 2017
  end-page: 476
  ident: bib14
  article-title: Double straification effects on unsteady electrical MHD mixed convection flow of nanofluid with viscous dissipation and Joule heating
  publication-title: J. Appl. Res. Technol.
– volume: 6
  start-page: 883
  year: 2017
  end-page: 891
  ident: bib17
  article-title: MHD boundary layer heat and mass transfer flow over a verticle cone through nanofluid cone embedded in porous media filled with Al2O3-water and Cu-water nanofluid
  publication-title: J Nanofluid
– volume: 140
  start-page: 2377
  year: 2020
  end-page: 2385
  ident: bib37
  article-title: Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet
  publication-title: J. Therm. Anal. Calorim.
– volume: 11
  start-page: 1070
  year: 2019
  ident: bib19
  article-title: Oblique stagnation point flow of nanofluids over stretching/shrinking sheet with cattaneo-christov heat flux model: existence of dual solution
  publication-title: Symmetry
– volume: 94
  year: 2019
  ident: bib20
  article-title: MHD stagnation point flow of viscous nanofluid over a curved surface
  publication-title: Phys. Scripta
– volume: 6
  start-page: 38
  year: February 2017
  end-page: 47
  ident: bib29
  article-title: Stagnation point flow, heat and mass transfer of MHD nanofluid due to porous stretching sheet through porous media with effect of thermal radiation
  publication-title: J. Nanofluids
– volume: 241
  start-page: 4835
  year: 2011
  end-page: 4839
  ident: bib4
  article-title: Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface
  publication-title: Nucl. Eng. Des.
– volume: 5
  start-page: 736
  year: October 2016
  end-page: 742
  ident: bib32
  article-title: Blasius flow and heat transfer of a nanofluid due to flat plate
  publication-title: J. Nanofluids
– volume: 10
  start-page: 3161
  year: 2020
  end-page: 3170
  ident: bib27
  article-title: A rheological analysis of nanofluid subjected to melting heat transport characteristics
  publication-title: Appl. Nanosci.
– volume: 29
  start-page: 227
  year: 1994
  end-page: 234
  ident: bib53
  article-title: Heat transfer characteristics of a continuous stretching surface
  publication-title: Heat Mass Tran.
– volume: 9
  year: 2019
  ident: bib34
  article-title: Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink
  publication-title: Sci. Rep.
– volume: 50
  start-page: 942
  year: 2021
  end-page: 966
  ident: bib26
  article-title: Radiative unsteady hydromagnetic 3D flow model for Jeffrey nanofluid configured by an accelerated surface with chemical reaction
  publication-title: Heat Tran. Asian Res.
– volume: 28
  year: 2021
  ident: bib51
  article-title: Thermal enhancement of Ethylene glycol base material with hybrid nanofluid for oblique stagnation point slip flow, Case Studies in Thermal Engineering
  publication-title: Case Stud. Therm. Eng.
– volume: 5
  start-page: 17
  year: 2021
  ident: bib42
  article-title: Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach
  publication-title: Fractal Fract.
– volume: 787
  year: 2022
  ident: bib5
  article-title: A fractional model for the kerosene oil and water-based Casson nanofluid with inclined magnetic force
  publication-title: Chem. Phys. Lett.
– volume: 419
  year: 2022
  ident: bib43
  article-title: Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface
  publication-title: Appl. Math. Comput.
– volume: 14
  start-page: 629
  year: 2009
  end-page: 641
  ident: bib11
  article-title: Enhancement of heat transfer using nanofluids-an overview
  publication-title: Renew. Sustain. Energy Rev.
– volume: 91
  start-page: 63
  year: 2018
  ident: bib28
  article-title: Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring-Powell magneto-nanofluid flow
  publication-title: Pramana - J. Phys.
– volume: 94
  year: 2019
  ident: bib39
  article-title: MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions
  publication-title: Phys. Scripta
– year: 2021
  ident: bib41
  article-title: Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks
  publication-title: Math. Methods Appl. Sci.
– volume: 103
  year: 2008
  ident: bib7
  article-title: Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid
  publication-title: J. Appl. Phys.
– volume: 41
  start-page: 4
  year: 2019
  ident: bib24
  article-title: Consequences of activation energy and binary chemical reaction for 3D flow of Cross-nanofluid with radiative heat transfer
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 33
  start-page: 529
  year: 2006
  end-page: 535
  ident: bib12
  article-title: Experimental investigation of oxide nanofluids laminar flow convective heat transfer
  publication-title: Int. J. Heat Mass Tran.
– volume: 57
  start-page: 435
  year: March 2018
  end-page: 443
  ident: bib38
  article-title: Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink
  publication-title: Alex. Eng. J.
– volume: 131
  year: 2022
  ident: bib47
  article-title: Influential study of novel microorganism and nanoparticles during heat and mass transport in Homann flow of visco-elastic materials
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 26
  year: 2021
  ident: bib22
  article-title: Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface
  publication-title: Case Stud. Therm. Eng.
– volume: 60
  start-page: 1851
  year: 2021
  end-page: 1860
  ident: bib25
  article-title: Thermophoresis particle deposition analysis for nonlinear thermally developed flow of Magneto-Walter’s B nanofluid with buoyancy forces
  publication-title: Alex. Eng. J.
– volume: 44
  start-page: 369
  year: 2009
  end-page: 375
  ident: bib54
  article-title: Boundary layer flow and heat transfer over an unsteady stretching vertical surface
  publication-title: Int. J. Theor. Appl. Mech.
– volume: 28
  start-page: 1008
  year: 2017
  end-page: 1017
  ident: bib15
  article-title: MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption
  publication-title: Adv. Powder Technol.
– volume: 420
  year: 2022
  ident: bib44
  article-title: Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel
  publication-title: Appl. Math. Comput.
– volume: 29
  start-page: 432
  year: 2008
  end-page: 460
  ident: bib9
  article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancement
  publication-title: Heat Tran. Eng.
– volume: 130
  year: 2022
  ident: bib45
  article-title: The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 52
  start-page: 4956
  year: 2009
  end-page: 4965
  ident: bib2
  article-title: Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet
  publication-title: Int. J. Heat Mass Tran.
– volume: 231
  start-page: 99
  year: 1995
  end-page: 106
  ident: bib8
  article-title: Enhancing thermal conductivity of fluids with nanoparticles
  publication-title: ASME-Publications-Fed
– volume: 783
  year: 16 November 2021
  ident: bib48
  article-title: Implications of the third-grade nanomaterials lubrication problem in terms of radiative heat flux: a Keller box analysis
  publication-title: Chem. Phys. Lett.
– volume: 18
  start-page: 461
  year: 2013
  end-page: 474
  ident: bib33
  article-title: Effect of viscous dissipation and thermal radiation on heat transfer over a non-linearly stretching sheet through porous medium
  publication-title: Int. J. Appl. Mech. Eng.
– volume: 372
  start-page: 5037
  year: 2008
  end-page: 5045
  ident: bib1
  article-title: The influence of heat transfer in an MHD second grade fluid flim over an unsteady stretching sheet
  publication-title: Phys. Lett.
– year: 2021
  ident: bib49
  article-title: Electro-osmotic flow of Prandtl nanofluids with thermal and solutal slip flow constraints: keller box simulations
  publication-title: Arabian J. Sci. Eng.
– volume: 547
  year: 2020
  ident: bib21
  article-title: Dual solutions for mixed convection flow of SiO2-Al2O3/water hybrid nanofluid near the stagnation point over a curved surface
  publication-title: Physica A
– volume: 49
  start-page: 25
  year: 2015
  end-page: 33
  ident: bib31
  article-title: Heat transfer in MHD flow over A stretching sheet with velocity and thermal slip condition
  publication-title: Adv. Phys. Theor. Appl.
– volume: 48
  start-page: 363
  year: 2009
  end-page: 371
  ident: bib13
  article-title: New temperature dependent thermal conductivity data for water based nanofluids
  publication-title: Int. J. Therm. Sci.
– volume: 139
  start-page: pages1379
  year: 2020
  end-page: 1393
  ident: bib35
  article-title: Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier's heat flux model
  publication-title: J. Therm. Anal. Calorim.
– volume: 7
  start-page: 350
  year: April 2018
  end-page: 357
  ident: bib30
  article-title: Thermal radiative MHD stagnation point slip flow and heat transfer due to a stretching sheet
  publication-title: J. Nanofluids
– volume: 107
  start-page: 248
  year: 1985
  end-page: 250
  ident: bib52
  article-title: Heat transfer characteristics of a continuous, stretching surface with variable temperature
  publication-title: J. Heat Tran.
– volume: 131
  year: 2022
  ident: bib46
  article-title: Numerical analysis of heat transfer and friction drag relating to the effect of Joule heating, viscous dissipation and heat generation/absorption in aligned MHD slip flow of a nanofluid
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 6
  start-page: 883
  year: 2017
  end-page: 891
  ident: bib16
  article-title: Heat and mass transfer flow over a vertical cone through nanofluid saturated porous medium under convective boundary conditions with suction/injection
  publication-title: J Nanofluid
– volume: 786
  year: January 2022
  ident: bib50
  article-title: Thermal prospective of Casson nano-materials in radiative binary reactive flow near oblique stagnation point flow with activation energy applications
  publication-title: Chem. Phys. Lett.
– volume: 139
  start-page: 3661
  year: 2020
  end-page: 3674
  ident: bib36
  article-title: Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model
  publication-title: J. Therm. Anal. Calorim.
– volume: 29
  start-page: 72
  year: 2006
  end-page: 77
  ident: bib6
  article-title: Enhancement of thermal conductivity with CuO for nanofluid
  publication-title: Chem. Eng. Technol.
– volume: 234
  start-page: 201
  year: 2017
  end-page: 208
  ident: bib23
  article-title: Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid
  publication-title: J. Mol. Liq.
– volume: 547
  year: 2020
  ident: 10.1016/j.csite.2022.102474_bib21
  article-title: Dual solutions for mixed convection flow of SiO2-Al2O3/water hybrid nanofluid near the stagnation point over a curved surface
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123959
– volume: 6
  start-page: 883
  year: 2017
  ident: 10.1016/j.csite.2022.102474_bib16
  article-title: Heat and mass transfer flow over a vertical cone through nanofluid saturated porous medium under convective boundary conditions with suction/injection
  publication-title: J Nanofluid
  doi: 10.1166/jon.2017.1349
– volume: 52
  start-page: 4956
  year: 2009
  ident: 10.1016/j.csite.2022.102474_bib2
  article-title: Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2009.05.022
– volume: 5
  start-page: 736
  issue: 7
  year: 2016
  ident: 10.1016/j.csite.2022.102474_bib32
  article-title: Blasius flow and heat transfer of a nanofluid due to flat plate
  publication-title: J. Nanofluids
  doi: 10.1166/jon.2016.1260
– volume: 6
  start-page: 38
  issue: 10
  year: 2017
  ident: 10.1016/j.csite.2022.102474_bib29
  article-title: Stagnation point flow, heat and mass transfer of MHD nanofluid due to porous stretching sheet through porous media with effect of thermal radiation
  publication-title: J. Nanofluids
  doi: 10.1166/jon.2017.1292
– volume: 140
  start-page: 2377
  year: 2020
  ident: 10.1016/j.csite.2022.102474_bib37
  article-title: Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08977-0
– volume: 6
  start-page: 883
  year: 2017
  ident: 10.1016/j.csite.2022.102474_bib17
  article-title: MHD boundary layer heat and mass transfer flow over a verticle cone through nanofluid cone embedded in porous media filled with Al2O3-water and Cu-water nanofluid
  publication-title: J Nanofluid
  doi: 10.1166/jon.2017.1380
– volume: 94
  issue: 7
  year: 2019
  ident: 10.1016/j.csite.2022.102474_bib39
  article-title: MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions
  publication-title: Phys. Scripta
  doi: 10.1088/1402-4896/ab0973
– volume: 28
  year: 2021
  ident: 10.1016/j.csite.2022.102474_bib51
  article-title: Thermal enhancement of Ethylene glycol base material with hybrid nanofluid for oblique stagnation point slip flow, Case Studies in Thermal Engineering
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101468
– volume: 57
  start-page: 435
  issue: Issue 1
  year: 2018
  ident: 10.1016/j.csite.2022.102474_bib38
  article-title: Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2016.11.013
– volume: 231
  start-page: 99
  year: 1995
  ident: 10.1016/j.csite.2022.102474_bib8
  article-title: Enhancing thermal conductivity of fluids with nanoparticles
  publication-title: ASME-Publications-Fed
– volume: 5
  start-page: 17
  issue: 3
  year: 2021
  ident: 10.1016/j.csite.2022.102474_bib42
  article-title: Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract5030119
– year: 2021
  ident: 10.1016/j.csite.2022.102474_bib49
  article-title: Electro-osmotic flow of Prandtl nanofluids with thermal and solutal slip flow constraints: keller box simulations
  publication-title: Arabian J. Sci. Eng.
– volume: 29
  start-page: 432
  year: 2008
  ident: 10.1016/j.csite.2022.102474_bib9
  article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancement
  publication-title: Heat Tran. Eng.
  doi: 10.1080/01457630701850851
– volume: 29
  start-page: 227
  year: 1994
  ident: 10.1016/j.csite.2022.102474_bib53
  article-title: Heat transfer characteristics of a continuous stretching surface
  publication-title: Heat Mass Tran.
– volume: 28
  start-page: 1008
  issue: 3
  year: 2017
  ident: 10.1016/j.csite.2022.102474_bib15
  article-title: MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2017.01.005
– volume: 41
  start-page: 4
  year: 2019
  ident: 10.1016/j.csite.2022.102474_bib24
  article-title: Consequences of activation energy and binary chemical reaction for 3D flow of Cross-nanofluid with radiative heat transfer
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-018-1482-0
– volume: 60
  start-page: 1851
  issue: 1
  year: 2021
  ident: 10.1016/j.csite.2022.102474_bib25
  article-title: Thermophoresis particle deposition analysis for nonlinear thermally developed flow of Magneto-Walter’s B nanofluid with buoyancy forces
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.11.033
– volume: 49
  start-page: 25
  year: 2015
  ident: 10.1016/j.csite.2022.102474_bib31
  article-title: Heat transfer in MHD flow over A stretching sheet with velocity and thermal slip condition
  publication-title: Adv. Phys. Theor. Appl.
– volume: 94
  year: 2019
  ident: 10.1016/j.csite.2022.102474_bib20
  article-title: MHD stagnation point flow of viscous nanofluid over a curved surface
  publication-title: Phys. Scripta
  doi: 10.1088/1402-4896/ab1eb6
– volume: 372
  start-page: 5037
  year: 2008
  ident: 10.1016/j.csite.2022.102474_bib1
  article-title: The influence of heat transfer in an MHD second grade fluid flim over an unsteady stretching sheet
  publication-title: Phys. Lett.
  doi: 10.1016/j.physleta.2008.03.066
– volume: 234
  start-page: 201
  year: 2017
  ident: 10.1016/j.csite.2022.102474_bib23
  article-title: Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.03.078
– volume: 139
  start-page: 3661
  year: 2020
  ident: 10.1016/j.csite.2022.102474_bib36
  article-title: Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08694-8
– volume: 50
  start-page: 942
  issue: 1
  year: 2021
  ident: 10.1016/j.csite.2022.102474_bib26
  article-title: Radiative unsteady hydromagnetic 3D flow model for Jeffrey nanofluid configured by an accelerated surface with chemical reaction
  publication-title: Heat Tran. Asian Res.
  doi: 10.1002/htj.21912
– volume: 783
  year: 2021
  ident: 10.1016/j.csite.2022.102474_bib48
  article-title: Implications of the third-grade nanomaterials lubrication problem in terms of radiative heat flux: a Keller box analysis
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2021.139041
– volume: 786
  year: 2022
  ident: 10.1016/j.csite.2022.102474_bib50
  article-title: Thermal prospective of Casson nano-materials in radiative binary reactive flow near oblique stagnation point flow with activation energy applications
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2021.139172
– volume: 419
  year: 2022
  ident: 10.1016/j.csite.2022.102474_bib43
  article-title: Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface
  publication-title: Appl. Math. Comput.
– volume: 7
  start-page: 350
  issue: 8
  year: 2018
  ident: 10.1016/j.csite.2022.102474_bib30
  article-title: Thermal radiative MHD stagnation point slip flow and heat transfer due to a stretching sheet
  publication-title: J. Nanofluids
  doi: 10.1166/jon.2018.1453
– volume: 131
  year: 2022
  ident: 10.1016/j.csite.2022.102474_bib47
  article-title: Influential study of novel microorganism and nanoparticles during heat and mass transport in Homann flow of visco-elastic materials
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2021.105871
– volume: 18
  start-page: 461
  issue: 2
  year: 2013
  ident: 10.1016/j.csite.2022.102474_bib33
  article-title: Effect of viscous dissipation and thermal radiation on heat transfer over a non-linearly stretching sheet through porous medium
  publication-title: Int. J. Appl. Mech. Eng.
  doi: 10.2478/ijame-2013-0027
– volume: 139
  start-page: pages1379
  year: 2020
  ident: 10.1016/j.csite.2022.102474_bib35
  article-title: Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier's heat flux model
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08477-1
– volume: 420
  year: 2022
  ident: 10.1016/j.csite.2022.102474_bib44
  article-title: Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel
  publication-title: Appl. Math. Comput.
– volume: 787
  year: 2022
  ident: 10.1016/j.csite.2022.102474_bib5
  article-title: A fractional model for the kerosene oil and water-based Casson nanofluid with inclined magnetic force
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2021.139277
– volume: 15
  start-page: 464
  issue: 5
  year: 2017
  ident: 10.1016/j.csite.2022.102474_bib14
  article-title: Double straification effects on unsteady electrical MHD mixed convection flow of nanofluid with viscous dissipation and Joule heating
  publication-title: J. Appl. Res. Technol.
  doi: 10.1016/j.jart.2017.05.007
– volume: 107
  start-page: 248
  year: 1985
  ident: 10.1016/j.csite.2022.102474_bib52
  article-title: Heat transfer characteristics of a continuous, stretching surface with variable temperature
  publication-title: J. Heat Tran.
  doi: 10.1115/1.3247387
– volume: 15
  start-page: 300
  year: 2010
  ident: 10.1016/j.csite.2022.102474_bib3
  article-title: Transition of MHD boundary layer flow past a stretching sheet
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2009.03.027
– volume: 33
  start-page: 529
  issue: 4
  year: 2006
  ident: 10.1016/j.csite.2022.102474_bib12
  article-title: Experimental investigation of oxide nanofluids laminar flow convective heat transfer
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2006.01.005
– volume: 116
  year: 2020
  ident: 10.1016/j.csite.2022.102474_bib18
  article-title: Comparative study on heat transfer in CNTs-water nanofluid over a curved surface
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 91
  start-page: 63
  year: 2018
  ident: 10.1016/j.csite.2022.102474_bib28
  article-title: Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring-Powell magneto-nanofluid flow
  publication-title: Pramana - J. Phys.
  doi: 10.1007/s12043-018-1634-x
– volume: 20
  start-page: 160
  issue: 1
  year: 2021
  ident: 10.1016/j.csite.2022.102474_bib40
  article-title: A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak
  publication-title: Appl. Comput. Math.
– volume: 52
  start-page: 3187
  year: 2009
  ident: 10.1016/j.csite.2022.102474_bib10
  article-title: Review of convectiveheat transfer enhancement with nanofluids
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2009.02.006
– volume: 48
  start-page: 363
  year: 2009
  ident: 10.1016/j.csite.2022.102474_bib13
  article-title: New temperature dependent thermal conductivity data for water based nanofluids
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2008.03.009
– volume: 10
  start-page: 3161
  year: 2020
  ident: 10.1016/j.csite.2022.102474_bib27
  article-title: A rheological analysis of nanofluid subjected to melting heat transport characteristics
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-019-01067-5
– volume: 130
  year: 2022
  ident: 10.1016/j.csite.2022.102474_bib45
  article-title: The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2021.105832
– volume: 241
  start-page: 4835
  year: 2011
  ident: 10.1016/j.csite.2022.102474_bib4
  article-title: Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2011.08.057
– volume: 44
  start-page: 369
  year: 2009
  ident: 10.1016/j.csite.2022.102474_bib54
  article-title: Boundary layer flow and heat transfer over an unsteady stretching vertical surface
  publication-title: Int. J. Theor. Appl. Mech.
– volume: 29
  start-page: 72
  year: 2006
  ident: 10.1016/j.csite.2022.102474_bib6
  article-title: Enhancement of thermal conductivity with CuO for nanofluid
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.200500184
– volume: 11
  start-page: 1070
  issue: 9
  year: 2019
  ident: 10.1016/j.csite.2022.102474_bib19
  article-title: Oblique stagnation point flow of nanofluids over stretching/shrinking sheet with cattaneo-christov heat flux model: existence of dual solution
  publication-title: Symmetry
  doi: 10.3390/sym11091070
– volume: 9
  year: 2019
  ident: 10.1016/j.csite.2022.102474_bib34
  article-title: Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink
  publication-title: Sci. Rep.
– volume: 26
  year: 2021
  ident: 10.1016/j.csite.2022.102474_bib22
  article-title: Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.100975
– volume: 14
  start-page: 629
  issue: 2
  year: 2009
  ident: 10.1016/j.csite.2022.102474_bib11
  article-title: Enhancement of heat transfer using nanofluids-an overview
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2009.10.004
– volume: 103
  year: 2008
  ident: 10.1016/j.csite.2022.102474_bib7
  article-title: Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2902483
– year: 2021
  ident: 10.1016/j.csite.2022.102474_bib41
  article-title: Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks
  publication-title: Math. Methods Appl. Sci.
– volume: 131
  year: 2022
  ident: 10.1016/j.csite.2022.102474_bib46
  article-title: Numerical analysis of heat transfer and friction drag relating to the effect of Joule heating, viscous dissipation and heat generation/absorption in aligned MHD slip flow of a nanofluid
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2021.105843
SSID ssj0001738144
Score 2.5524087
Snippet The advancement in the thermal engineering presented the idea of nanomaterials with stable thermal consequences and performances. The importance of hybrid...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102474
SubjectTerms Hybrid nanofluid
Inclined magnetic field
Keller box method
Non-uniform heat sink/source
Title Radiative thermal analysis for four types of hybrid nanoparticles subject to non-uniform heat source: Keller box numerical approach
URI https://dx.doi.org/10.1016/j.csite.2022.102474
https://doaj.org/article/df1645a216fe41648f4f17b403658876
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQiQIKxFMsL7mgxGJjO3Z83YHuhAScEAJpu2j8Eoe47Gl3g6Ch4Y8zY2dPoTkaiqSInNjyODPfjMffMPbctTY460BAgiy080H4aIzwoDIEiA2oclD4nT097VYr92FW6otywio9cJ24lzEjoG9BNiYnBA-6yzo31mvUvC3-IIVse2ndzJkq0RWLlqhUcpWy0aJp7WpPOVSSu0LZmkXHXxJ3gbb6L7NU2Ptn1mlmcU5us1sTVORHdYh32LU03GU3ZwSC99jvj0QtQBqLE5A7x-YwsYxwRKN4jRtOUdYtX2f-5Scdz-IDDOgpTwlxfDt6CsXw3ZoP60GMAx3VOueko3mN7B_ytxTd33C__sGHsW7xYEcTG_l99vnk-NPrN2IqqyCCkk4LJZNKykDyPhj0NmTusmlMtBCDWkbpIPrgcpuia1WOBhAkNrmRAKZzOnfqATvAAaWHjC9T9KaN1gTi7YoAAfVVdsFFSVXVw4LJ_az2YeIcp9IX3_p9ctnXvoiiJ1H0VRQL9uLypYtKuXF181ckrsumxJddHuAq6qfJ7P-1ihbM7IXdT9CjQgr81NlVvT_6H70_ZjfokzVL5gk72G3G9JRdD993Z9vNs7Ky8f7-1_EfdXT_YQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiative+thermal+analysis+for+four+types+of+hybrid+nanoparticles+subject+to+non-uniform+heat+source%3A+Keller+box+numerical+approach&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Chu%2C+Yu-Ming&rft.au=Khan%2C+M.+Ijaz&rft.au=Abbas%2C+Tasawar&rft.au=Sidi%2C+Maawiya+Ould&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=40&rft_id=info:doi/10.1016%2Fj.csite.2022.102474&rft.externalDocID=S2214157X22007109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon