Radiative thermal analysis for four types of hybrid nanoparticles subject to non-uniform heat source: Keller box numerical approach
The advancement in the thermal engineering presented the idea of nanomaterials with stable thermal consequences and performances. The importance of hybrid nanomaterials attributes importance in solar energy production, electronics devices, heating systems, mechanical processes etc. The hybrid model...
Saved in:
| Published in: | Case studies in thermal engineering Vol. 40; p. 102474 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.12.2022
Elsevier |
| Subjects: | |
| ISSN: | 2214-157X, 2214-157X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The advancement in the thermal engineering presented the idea of nanomaterials with stable thermal consequences and performances. The importance of hybrid nanomaterials attributes importance in solar energy production, electronics devices, heating systems, mechanical processes etc. The hybrid model is classified as a distinct thermal phenomenon with different tiny particles. The thermal evaluation of hybrid nanofluid containing four types of nanoparticles subject to the non-uniform heat source/sink and inclined magnetic field for two-dimensional unsteady flow due to permeable stretched surface has been numerically investigated. Four different types of nanoparticles, copper, titanium dioxide, silver and aluminum oxide have been considered with water base fluid. With the help of similarity transformation, we convert the governing partial differential equation into the ordinary differential equation. To solve these similarity equations a numerical technique known as Keller box method is used. The results are shown graphically and in tabular form. For special cases, comparison of numerical results to the previous results is presented with excellent agreement. The physical onset of parameters due to fluctuated heat transfer rate, wall shear force and Nusselt number is observed. It is observed that change in magnetic field inclination angle declines the velocity profile. The temperature profile can be effectively controlled with interaction of titanium oxide nanoparticles. The presence of heat source enhanced the nanoparticles temperature more effectively. |
|---|---|
| AbstractList | The advancement in the thermal engineering presented the idea of nanomaterials with stable thermal consequences and performances. The importance of hybrid nanomaterials attributes importance in solar energy production, electronics devices, heating systems, mechanical processes etc. The hybrid model is classified as a distinct thermal phenomenon with different tiny particles. The thermal evaluation of hybrid nanofluid containing four types of nanoparticles subject to the non-uniform heat source/sink and inclined magnetic field for two-dimensional unsteady flow due to permeable stretched surface has been numerically investigated. Four different types of nanoparticles, copper, titanium dioxide, silver and aluminum oxide have been considered with water base fluid. With the help of similarity transformation, we convert the governing partial differential equation into the ordinary differential equation. To solve these similarity equations a numerical technique known as Keller box method is used. The results are shown graphically and in tabular form. For special cases, comparison of numerical results to the previous results is presented with excellent agreement. The physical onset of parameters due to fluctuated heat transfer rate, wall shear force and Nusselt number is observed. It is observed that change in magnetic field inclination angle declines the velocity profile. The temperature profile can be effectively controlled with interaction of titanium oxide nanoparticles. The presence of heat source enhanced the nanoparticles temperature more effectively. |
| ArticleNumber | 102474 |
| Author | Sidi, Maawiya Ould Chu, Yu-Ming Khan, M. Riaz Khan, M. Ijaz Abbas, Tasawar Malik, M.Y. Alqsair, Umar F. Alharbi, Khalid Abdulkhaliq M Khan, Sami Ullah |
| Author_xml | – sequence: 1 givenname: Yu-Ming surname: Chu fullname: Chu, Yu-Ming organization: School of Science, Hunan City University, Yiyang, 413000, PR China – sequence: 2 givenname: M. Ijaz surname: Khan fullname: Khan, M. Ijaz organization: Department of Mathematics and Statistics, Riphah International University I-14, Islamabad, 44000, Pakistan – sequence: 3 givenname: Tasawar surname: Abbas fullname: Abbas, Tasawar organization: Department of Mathematics, University of Wah, Wah Cantt, 47040, Pakistan – sequence: 4 givenname: Maawiya Ould surname: Sidi fullname: Sidi, Maawiya Ould organization: RT-M2A Laboratory, Mathematics Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia – sequence: 5 givenname: Khalid Abdulkhaliq M orcidid: 0000-0002-7290-8398 surname: Alharbi fullname: Alharbi, Khalid Abdulkhaliq M organization: Mechanical Engineering Department, College of Engineering, Umm Al-Qura University, Makkah, Saudi Arabia – sequence: 6 givenname: Umar F. surname: Alqsair fullname: Alqsair, Umar F. organization: College of Engineering, Department of Mechanical Engineering, Prince Sattam bin Abdulaziz University, Alkharj, 16273, Saudi Arabia – sequence: 7 givenname: Sami Ullah surname: Khan fullname: Khan, Sami Ullah organization: Department of Mathematics, COMSATS University Islamabad, Sahiwal, 57000, Pakistan – sequence: 8 givenname: M. Riaz surname: Khan fullname: Khan, M. Riaz email: mrkhan.math@gmail.com organization: Department of Mathematics, Quaid-I-Azam University 45320, Islamabad, 44000, Pakistan – sequence: 9 givenname: M.Y. surname: Malik fullname: Malik, M.Y. organization: Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia |
| BookMark | eNqFkV9rFDEUxYNUsNZ-Al_yBWbNv8nMCD5I0VosCKLgW7iT3LgZZidDki3uc7-42W4R8aE-hFwO_E5yz3lJzpa4ICGvOdtwxvWbaWNzKLgRTIiqCNWpZ-RcCK4a3nY_zv6aX5DLnCfGGO9kz5U6J_dfwQUo4Q5p2WLawUxhgfmQQ6Y-pnr2iZbDiplGT7eHMQVHF1jiCqkEO1c978cJbaEl0vqzZr-ECu7oFqHQXHGLb-lnnGdMdIy_6LLfYQr2-NC6pgh2-4o89zBnvHy8L8j3jx--XX1qbr9c31y9v22sFINqpECJUgOOo9Wd7oXvvebadeCsZE4M4EY7-Bbd0ErvNHA5cM8FgO4H5Xt5QW5Ovi7CZNYUdpAOJkIwD0JMP83jUsZ5rlULgmuPqo69V553o2JSt33f6eolT142xZwT-j9-nJljLWYyD7WYYy3mVEulhn8oG0pNPy4lQZj_w747sVgjuguYTLYBF4supBp_3SE8yf8GspSufA |
| CitedBy_id | crossref_primary_10_1007_s40571_022_00547_w crossref_primary_10_1140_epjs_s11734_024_01319_8 crossref_primary_10_1002_zamm_202400194 crossref_primary_10_1016_j_jmmm_2023_170443 crossref_primary_10_1155_2024_9306915 crossref_primary_10_1016_j_ijhydene_2023_05_036 crossref_primary_10_1063_5_0201939 crossref_primary_10_1016_j_rinp_2025_108176 crossref_primary_10_1080_10407782_2023_2201483 crossref_primary_10_1038_s41598_023_28379_5 crossref_primary_10_1142_S0217979225501772 crossref_primary_10_1016_j_tsep_2023_101790 crossref_primary_10_1007_s42823_023_00562_8 crossref_primary_10_1016_j_tsep_2022_101596 crossref_primary_10_1016_j_asej_2023_102227 crossref_primary_10_3390_mi13122196 crossref_primary_10_1016_j_mseb_2022_116221 crossref_primary_10_1016_j_rineng_2024_101842 crossref_primary_10_1515_phys_2023_0131 crossref_primary_10_1016_j_jics_2023_100954 crossref_primary_10_1080_17455030_2023_2234047 crossref_primary_10_1177_01445987241276261 crossref_primary_10_1002_zamm_202300733 crossref_primary_10_1016_j_jics_2023_100915 crossref_primary_10_1080_10407790_2024_2341084 crossref_primary_10_1016_j_cjph_2025_05_014 crossref_primary_10_1016_j_matcom_2023_07_031 crossref_primary_10_1142_S0217984925500198 crossref_primary_10_1080_01430750_2023_2181869 crossref_primary_10_1038_s41598_023_29702_w crossref_primary_10_1080_02286203_2023_2286420 crossref_primary_10_1016_j_mseb_2023_116518 crossref_primary_10_3390_en18071660 crossref_primary_10_1016_j_heliyon_2023_e17641 crossref_primary_10_1016_j_sajce_2023_01_010 crossref_primary_10_1142_S0129183124502358 crossref_primary_10_1016_j_cjph_2023_01_001 crossref_primary_10_3390_bioengineering9100588 crossref_primary_10_1080_10407790_2024_2363502 crossref_primary_10_1142_S0217979224502084 crossref_primary_10_1080_10407782_2024_2363498 crossref_primary_10_1080_02286203_2023_2216049 crossref_primary_10_1142_S0217979224502795 crossref_primary_10_3390_mi14030559 crossref_primary_10_1515_phys_2024_0075 crossref_primary_10_1080_02286203_2022_2151965 crossref_primary_10_1080_10407782_2024_2357578 crossref_primary_10_1016_j_triboint_2023_108610 crossref_primary_10_1016_j_ijft_2025_101166 crossref_primary_10_1177_16878132231206922 crossref_primary_10_1016_j_heliyon_2023_e14781 crossref_primary_10_1016_j_jmmm_2023_170673 crossref_primary_10_1016_j_jmmm_2023_170353 crossref_primary_10_3390_math11081892 crossref_primary_10_1016_j_jmmm_2023_170710 crossref_primary_10_3390_bioengineering10010073 crossref_primary_10_1002_zamm_202300799 crossref_primary_10_3390_catal12111386 crossref_primary_10_1002_zamm_202200466 crossref_primary_10_1038_s41598_024_65642_9 crossref_primary_10_1016_j_jics_2022_100875 crossref_primary_10_1016_j_jics_2022_100873 crossref_primary_10_1080_10407782_2023_2187903 |
| Cites_doi | 10.1016/j.physa.2019.123959 10.1166/jon.2017.1349 10.1016/j.ijheatmasstransfer.2009.05.022 10.1166/jon.2016.1260 10.1166/jon.2017.1292 10.1007/s10973-019-08977-0 10.1166/jon.2017.1380 10.1088/1402-4896/ab0973 10.1016/j.csite.2021.101468 10.1016/j.aej.2016.11.013 10.3390/fractalfract5030119 10.1080/01457630701850851 10.1016/j.apt.2017.01.005 10.1007/s40430-018-1482-0 10.1016/j.aej.2020.11.033 10.1088/1402-4896/ab1eb6 10.1016/j.physleta.2008.03.066 10.1016/j.molliq.2017.03.078 10.1007/s10973-019-08694-8 10.1002/htj.21912 10.1016/j.cplett.2021.139041 10.1016/j.cplett.2021.139172 10.1166/jon.2018.1453 10.1016/j.icheatmasstransfer.2021.105871 10.2478/ijame-2013-0027 10.1007/s10973-019-08477-1 10.1016/j.cplett.2021.139277 10.1016/j.jart.2017.05.007 10.1115/1.3247387 10.1016/j.cnsns.2009.03.027 10.1016/j.icheatmasstransfer.2006.01.005 10.1007/s12043-018-1634-x 10.1016/j.ijheatmasstransfer.2009.02.006 10.1016/j.ijthermalsci.2008.03.009 10.1007/s13204-019-01067-5 10.1016/j.icheatmasstransfer.2021.105832 10.1016/j.nucengdes.2011.08.057 10.1002/ceat.200500184 10.3390/sym11091070 10.1016/j.csite.2021.100975 10.1016/j.rser.2009.10.004 10.1063/1.2902483 10.1016/j.icheatmasstransfer.2021.105843 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors |
| Copyright_xml | – notice: 2022 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.csite.2022.102474 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2214-157X |
| ExternalDocumentID | oai_doaj_org_article_df1645a216fe41648f4f17b403658876 10_1016_j_csite_2022_102474 S2214157X22007109 |
| GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
| ID | FETCH-LOGICAL-c3294-32e3e36aebbc67682f8f616d7adc30d29adbc9f5ed953fd6a1391f12aa6894f83 |
| IEDL.DBID | DOA |
| ISSN | 2214-157X |
| IngestDate | Fri Oct 03 12:53:06 EDT 2025 Tue Nov 18 21:54:31 EST 2025 Wed Nov 05 20:57:04 EST 2025 Tue Jul 25 20:57:35 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Non-uniform heat sink/source Keller box method Inclined magnetic field Hybrid nanofluid |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3294-32e3e36aebbc67682f8f616d7adc30d29adbc9f5ed953fd6a1391f12aa6894f83 |
| ORCID | 0000-0002-7290-8398 |
| OpenAccessLink | https://doaj.org/article/df1645a216fe41648f4f17b403658876 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_df1645a216fe41648f4f17b403658876 crossref_primary_10_1016_j_csite_2022_102474 crossref_citationtrail_10_1016_j_csite_2022_102474 elsevier_sciencedirect_doi_10_1016_j_csite_2022_102474 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Case studies in thermal engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Godson, Raja, Lal, Wongwises (bib11) 2009; 14 Grubka, Booba (bib52) 1985; 107 Ramadevi, Anantha Kumar, Sugunamma, Ramana Reddy, Sandeep (bib35) 2020; 139 Anantha Kumar, Sugunamma, Sandeep (bib37) 2020; 140 Kumaran, Vanav Kumar, Pop (bib3) 2010; 15 Chu, Nazir, Sohail, Selim, Lee (bib42) 2021; 5 Garg, Poudel, Chiesa, Chen (bib7) 2008; 103 Minsta, Roy, Nguyen, Doucet (bib13) 2009; 48 Abbasi, Al-Khaled, Ijaz Khan, Farooq, Farooq, Khan, Mabood, Muhammad (bib49) 2021 Choi (bib8) 1995; 231 Zhao, Khan, Chu (bib41) 2021 Mukhopadhyay (bib4) 2011; 241 Li, Khan, Khan, Nadeem, Khan (bib19) 2019; 11 Zhao, Castillo, Jahanshahi, Yusuf, Alassafi, Alsaadi, Chu (bib40) 2021; 20 Khan, Ali, Irfan, Khan, Shahzad, Sultan (bib27) 2020; 10 Yu, France, Routbort, Choi (bib9) 2008; 29 Sreedevi, Reddy, Rao, Chamkha (bib16) 2017; 6 Anantha Kumar, Sugunamma, Sandeep (bib36) 2020; 139 Chu, Khan, Khan, Al-Khaled, Abbas, Khan, Hashmi, Qayyum, Kadry (bib25) 2021; 60 Hayat, Saif, Abbas (bib1) 2008; 372 Abbasi, Farooq, Muhammad, Ijaz Khan, Khan, Mabood, BiBi (bib48) 16 November 2021; 783 Prabhavathi, Reddy, Vijaya, Chamkha (bib17) 2017; 6 Khan, Irfan, Khan, Alshomrani, Alzahrani, Alghamdi (bib23) 2017; 234 Anantha Kumar, Ramana Reddy, Sugunamma, Sandeep (bib38) March 2018; 57 Khan, Al-Johani, Elsiddieg, Saeed, Abd Allah (bib45) 2022; 130 Kemparaju, Subhas Abel, Nandeppanavar (bib31) 2015; 49 Anantha Kumar, Sugunamma, Sandeep, Mustafa (bib34) 2019; 9 Ali (bib53) 1994; 29 Nazeer, Hussain, Khan, Rehman, El-Zahar, Chu, Malik (bib44) 2022; 420 Khan, Mao, Deebani, Elsiddieg (bib46) 2022; 131 Liu, Lin, Wang, IT (bib6) 2006; 29 Heris, Etemad, Esfahany (bib12) 2006; 33 Ahmad, Irfan, Javed, Khan, Khan, Niazi, El-Zahar (bib47) 2022; 131 Abbasi, Khan, Ijaz Khan, Farooq, Javid (bib50) January 2022; 786 Daniel, Aziz, Salah (bib14) 2017; 15 Nandeppanavar, Kemparaju, Abel (bib30) April 2018; 7 Nadeem, Khan (bib39) 2019; 94 Nandeppanavar, Abel, Kemparaju (bib29) February 2017; 6 Nadeem, Khan, Khan (bib20) 2019; 94 Li, Alshbool, PeiLv, Khan, Khan, Issakhov (bib22) 2021; 26 Khan, Alshomrani, Alzahrani, Khan, Irfan (bib28) 2018; 91 R, Pan, Khan, Ullah (bib18) 2020; 116 Kakac, Pramuanjaroenkij (bib10) 2009; 52 Khan, Pan, Khan, Nadeem (bib21) 2020; 547 Raza, Khan, Al-Khaled, Khan, Haq, Alotaibi, Mousa, AAA amd Qayyum (bib5) 2022; 787 Nandeppanavar, Shakunthala (bib32) October 2016; 5 Nandeppanavar, Siddalingappa (bib33) 2013; 18 Kolsi, Abbasi, Alqsair, Farooq, Omri, Khan (bib51) 2021; 28 Ahmad, Aziz, Ali, Khan (bib26) 2021; 50 Reddy, Chamkha, Al-Mudhaf (bib15) 2017; 28 Prasad, Vajravelu (bib2) 2009; 52 Khan, Sultan, Ali, Shahzad, Khan, Irfan (bib24) 2019; 41 Chu, Shankaralingappa, Gireesha, Alzahrani, Khan, Khan (bib43) 2022; 419 Ishak, Nazar, Pop (bib54) 2009; 44 Sreedevi (10.1016/j.csite.2022.102474_bib16) 2017; 6 Chu (10.1016/j.csite.2022.102474_bib42) 2021; 5 Anantha Kumar (10.1016/j.csite.2022.102474_bib37) 2020; 140 Nadeem (10.1016/j.csite.2022.102474_bib20) 2019; 94 Li (10.1016/j.csite.2022.102474_bib19) 2019; 11 Abbasi (10.1016/j.csite.2022.102474_bib48) 2021; 783 Ahmad (10.1016/j.csite.2022.102474_bib26) 2021; 50 Raza (10.1016/j.csite.2022.102474_bib5) 2022; 787 Abbasi (10.1016/j.csite.2022.102474_bib50) 2022; 786 Nadeem (10.1016/j.csite.2022.102474_bib39) 2019; 94 Ahmad (10.1016/j.csite.2022.102474_bib47) 2022; 131 Khan (10.1016/j.csite.2022.102474_bib46) 2022; 131 R (10.1016/j.csite.2022.102474_bib18) 2020; 116 Anantha Kumar (10.1016/j.csite.2022.102474_bib34) 2019; 9 Prasad (10.1016/j.csite.2022.102474_bib2) 2009; 52 Garg (10.1016/j.csite.2022.102474_bib7) 2008; 103 Reddy (10.1016/j.csite.2022.102474_bib15) 2017; 28 Mukhopadhyay (10.1016/j.csite.2022.102474_bib4) 2011; 241 Nandeppanavar (10.1016/j.csite.2022.102474_bib29) 2017; 6 Grubka (10.1016/j.csite.2022.102474_bib52) 1985; 107 Khan (10.1016/j.csite.2022.102474_bib28) 2018; 91 Khan (10.1016/j.csite.2022.102474_bib45) 2022; 130 Hayat (10.1016/j.csite.2022.102474_bib1) 2008; 372 Minsta (10.1016/j.csite.2022.102474_bib13) 2009; 48 Ramadevi (10.1016/j.csite.2022.102474_bib35) 2020; 139 Heris (10.1016/j.csite.2022.102474_bib12) 2006; 33 Zhao (10.1016/j.csite.2022.102474_bib41) 2021 Chu (10.1016/j.csite.2022.102474_bib43) 2022; 419 Nandeppanavar (10.1016/j.csite.2022.102474_bib30) 2018; 7 Zhao (10.1016/j.csite.2022.102474_bib40) 2021; 20 Anantha Kumar (10.1016/j.csite.2022.102474_bib38) 2018; 57 Choi (10.1016/j.csite.2022.102474_bib8) 1995; 231 Anantha Kumar (10.1016/j.csite.2022.102474_bib36) 2020; 139 Kumaran (10.1016/j.csite.2022.102474_bib3) 2010; 15 Yu (10.1016/j.csite.2022.102474_bib9) 2008; 29 Kemparaju (10.1016/j.csite.2022.102474_bib31) 2015; 49 Daniel (10.1016/j.csite.2022.102474_bib14) 2017; 15 Khan (10.1016/j.csite.2022.102474_bib23) 2017; 234 Abbasi (10.1016/j.csite.2022.102474_bib49) 2021 Nandeppanavar (10.1016/j.csite.2022.102474_bib32) 2016; 5 Kolsi (10.1016/j.csite.2022.102474_bib51) 2021; 28 Kakac (10.1016/j.csite.2022.102474_bib10) 2009; 52 Prabhavathi (10.1016/j.csite.2022.102474_bib17) 2017; 6 Li (10.1016/j.csite.2022.102474_bib22) 2021; 26 Khan (10.1016/j.csite.2022.102474_bib24) 2019; 41 Chu (10.1016/j.csite.2022.102474_bib25) 2021; 60 Nandeppanavar (10.1016/j.csite.2022.102474_bib33) 2013; 18 Ishak (10.1016/j.csite.2022.102474_bib54) 2009; 44 Nazeer (10.1016/j.csite.2022.102474_bib44) 2022; 420 Khan (10.1016/j.csite.2022.102474_bib27) 2020; 10 Godson (10.1016/j.csite.2022.102474_bib11) 2009; 14 Khan (10.1016/j.csite.2022.102474_bib21) 2020; 547 Ali (10.1016/j.csite.2022.102474_bib53) 1994; 29 Liu (10.1016/j.csite.2022.102474_bib6) 2006; 29 |
| References_xml | – volume: 116 year: 2020 ident: bib18 article-title: Comparative study on heat transfer in CNTs-water nanofluid over a curved surface publication-title: Int. Commun. Heat Mass Tran. – volume: 20 start-page: 160 year: 2021 end-page: 176 ident: bib40 article-title: A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak publication-title: Appl. Comput. Math. – volume: 15 start-page: 300 year: 2010 end-page: 311 ident: bib3 article-title: Transition of MHD boundary layer flow past a stretching sheet publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 52 start-page: 3187 year: 2009 end-page: 3196 ident: bib10 article-title: Review of convectiveheat transfer enhancement with nanofluids publication-title: Int. J. Heat Mass Tran. – volume: 15 start-page: 464 year: 2017 end-page: 476 ident: bib14 article-title: Double straification effects on unsteady electrical MHD mixed convection flow of nanofluid with viscous dissipation and Joule heating publication-title: J. Appl. Res. Technol. – volume: 6 start-page: 883 year: 2017 end-page: 891 ident: bib17 article-title: MHD boundary layer heat and mass transfer flow over a verticle cone through nanofluid cone embedded in porous media filled with Al2O3-water and Cu-water nanofluid publication-title: J Nanofluid – volume: 140 start-page: 2377 year: 2020 end-page: 2385 ident: bib37 article-title: Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet publication-title: J. Therm. Anal. Calorim. – volume: 11 start-page: 1070 year: 2019 ident: bib19 article-title: Oblique stagnation point flow of nanofluids over stretching/shrinking sheet with cattaneo-christov heat flux model: existence of dual solution publication-title: Symmetry – volume: 94 year: 2019 ident: bib20 article-title: MHD stagnation point flow of viscous nanofluid over a curved surface publication-title: Phys. Scripta – volume: 6 start-page: 38 year: February 2017 end-page: 47 ident: bib29 article-title: Stagnation point flow, heat and mass transfer of MHD nanofluid due to porous stretching sheet through porous media with effect of thermal radiation publication-title: J. Nanofluids – volume: 241 start-page: 4835 year: 2011 end-page: 4839 ident: bib4 article-title: Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface publication-title: Nucl. Eng. Des. – volume: 5 start-page: 736 year: October 2016 end-page: 742 ident: bib32 article-title: Blasius flow and heat transfer of a nanofluid due to flat plate publication-title: J. Nanofluids – volume: 10 start-page: 3161 year: 2020 end-page: 3170 ident: bib27 article-title: A rheological analysis of nanofluid subjected to melting heat transport characteristics publication-title: Appl. Nanosci. – volume: 29 start-page: 227 year: 1994 end-page: 234 ident: bib53 article-title: Heat transfer characteristics of a continuous stretching surface publication-title: Heat Mass Tran. – volume: 9 year: 2019 ident: bib34 article-title: Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink publication-title: Sci. Rep. – volume: 50 start-page: 942 year: 2021 end-page: 966 ident: bib26 article-title: Radiative unsteady hydromagnetic 3D flow model for Jeffrey nanofluid configured by an accelerated surface with chemical reaction publication-title: Heat Tran. Asian Res. – volume: 28 year: 2021 ident: bib51 article-title: Thermal enhancement of Ethylene glycol base material with hybrid nanofluid for oblique stagnation point slip flow, Case Studies in Thermal Engineering publication-title: Case Stud. Therm. Eng. – volume: 5 start-page: 17 year: 2021 ident: bib42 article-title: Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach publication-title: Fractal Fract. – volume: 787 year: 2022 ident: bib5 article-title: A fractional model for the kerosene oil and water-based Casson nanofluid with inclined magnetic force publication-title: Chem. Phys. Lett. – volume: 419 year: 2022 ident: bib43 article-title: Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface publication-title: Appl. Math. Comput. – volume: 14 start-page: 629 year: 2009 end-page: 641 ident: bib11 article-title: Enhancement of heat transfer using nanofluids-an overview publication-title: Renew. Sustain. Energy Rev. – volume: 91 start-page: 63 year: 2018 ident: bib28 article-title: Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring-Powell magneto-nanofluid flow publication-title: Pramana - J. Phys. – volume: 94 year: 2019 ident: bib39 article-title: MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions publication-title: Phys. Scripta – year: 2021 ident: bib41 article-title: Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks publication-title: Math. Methods Appl. Sci. – volume: 103 year: 2008 ident: bib7 article-title: Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid publication-title: J. Appl. Phys. – volume: 41 start-page: 4 year: 2019 ident: bib24 article-title: Consequences of activation energy and binary chemical reaction for 3D flow of Cross-nanofluid with radiative heat transfer publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 33 start-page: 529 year: 2006 end-page: 535 ident: bib12 article-title: Experimental investigation of oxide nanofluids laminar flow convective heat transfer publication-title: Int. J. Heat Mass Tran. – volume: 57 start-page: 435 year: March 2018 end-page: 443 ident: bib38 article-title: Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink publication-title: Alex. Eng. J. – volume: 131 year: 2022 ident: bib47 article-title: Influential study of novel microorganism and nanoparticles during heat and mass transport in Homann flow of visco-elastic materials publication-title: Int. Commun. Heat Mass Tran. – volume: 26 year: 2021 ident: bib22 article-title: Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface publication-title: Case Stud. Therm. Eng. – volume: 60 start-page: 1851 year: 2021 end-page: 1860 ident: bib25 article-title: Thermophoresis particle deposition analysis for nonlinear thermally developed flow of Magneto-Walter’s B nanofluid with buoyancy forces publication-title: Alex. Eng. J. – volume: 44 start-page: 369 year: 2009 end-page: 375 ident: bib54 article-title: Boundary layer flow and heat transfer over an unsteady stretching vertical surface publication-title: Int. J. Theor. Appl. Mech. – volume: 28 start-page: 1008 year: 2017 end-page: 1017 ident: bib15 article-title: MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption publication-title: Adv. Powder Technol. – volume: 420 year: 2022 ident: bib44 article-title: Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel publication-title: Appl. Math. Comput. – volume: 29 start-page: 432 year: 2008 end-page: 460 ident: bib9 article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancement publication-title: Heat Tran. Eng. – volume: 130 year: 2022 ident: bib45 article-title: The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface publication-title: Int. Commun. Heat Mass Tran. – volume: 52 start-page: 4956 year: 2009 end-page: 4965 ident: bib2 article-title: Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet publication-title: Int. J. Heat Mass Tran. – volume: 231 start-page: 99 year: 1995 end-page: 106 ident: bib8 article-title: Enhancing thermal conductivity of fluids with nanoparticles publication-title: ASME-Publications-Fed – volume: 783 year: 16 November 2021 ident: bib48 article-title: Implications of the third-grade nanomaterials lubrication problem in terms of radiative heat flux: a Keller box analysis publication-title: Chem. Phys. Lett. – volume: 18 start-page: 461 year: 2013 end-page: 474 ident: bib33 article-title: Effect of viscous dissipation and thermal radiation on heat transfer over a non-linearly stretching sheet through porous medium publication-title: Int. J. Appl. Mech. Eng. – volume: 372 start-page: 5037 year: 2008 end-page: 5045 ident: bib1 article-title: The influence of heat transfer in an MHD second grade fluid flim over an unsteady stretching sheet publication-title: Phys. Lett. – year: 2021 ident: bib49 article-title: Electro-osmotic flow of Prandtl nanofluids with thermal and solutal slip flow constraints: keller box simulations publication-title: Arabian J. Sci. Eng. – volume: 547 year: 2020 ident: bib21 article-title: Dual solutions for mixed convection flow of SiO2-Al2O3/water hybrid nanofluid near the stagnation point over a curved surface publication-title: Physica A – volume: 49 start-page: 25 year: 2015 end-page: 33 ident: bib31 article-title: Heat transfer in MHD flow over A stretching sheet with velocity and thermal slip condition publication-title: Adv. Phys. Theor. Appl. – volume: 48 start-page: 363 year: 2009 end-page: 371 ident: bib13 article-title: New temperature dependent thermal conductivity data for water based nanofluids publication-title: Int. J. Therm. Sci. – volume: 139 start-page: pages1379 year: 2020 end-page: 1393 ident: bib35 article-title: Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier's heat flux model publication-title: J. Therm. Anal. Calorim. – volume: 7 start-page: 350 year: April 2018 end-page: 357 ident: bib30 article-title: Thermal radiative MHD stagnation point slip flow and heat transfer due to a stretching sheet publication-title: J. Nanofluids – volume: 107 start-page: 248 year: 1985 end-page: 250 ident: bib52 article-title: Heat transfer characteristics of a continuous, stretching surface with variable temperature publication-title: J. Heat Tran. – volume: 131 year: 2022 ident: bib46 article-title: Numerical analysis of heat transfer and friction drag relating to the effect of Joule heating, viscous dissipation and heat generation/absorption in aligned MHD slip flow of a nanofluid publication-title: Int. Commun. Heat Mass Tran. – volume: 6 start-page: 883 year: 2017 end-page: 891 ident: bib16 article-title: Heat and mass transfer flow over a vertical cone through nanofluid saturated porous medium under convective boundary conditions with suction/injection publication-title: J Nanofluid – volume: 786 year: January 2022 ident: bib50 article-title: Thermal prospective of Casson nano-materials in radiative binary reactive flow near oblique stagnation point flow with activation energy applications publication-title: Chem. Phys. Lett. – volume: 139 start-page: 3661 year: 2020 end-page: 3674 ident: bib36 article-title: Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model publication-title: J. Therm. Anal. Calorim. – volume: 29 start-page: 72 year: 2006 end-page: 77 ident: bib6 article-title: Enhancement of thermal conductivity with CuO for nanofluid publication-title: Chem. Eng. Technol. – volume: 234 start-page: 201 year: 2017 end-page: 208 ident: bib23 article-title: Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid publication-title: J. Mol. Liq. – volume: 547 year: 2020 ident: 10.1016/j.csite.2022.102474_bib21 article-title: Dual solutions for mixed convection flow of SiO2-Al2O3/water hybrid nanofluid near the stagnation point over a curved surface publication-title: Physica A doi: 10.1016/j.physa.2019.123959 – volume: 6 start-page: 883 year: 2017 ident: 10.1016/j.csite.2022.102474_bib16 article-title: Heat and mass transfer flow over a vertical cone through nanofluid saturated porous medium under convective boundary conditions with suction/injection publication-title: J Nanofluid doi: 10.1166/jon.2017.1349 – volume: 52 start-page: 4956 year: 2009 ident: 10.1016/j.csite.2022.102474_bib2 article-title: Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2009.05.022 – volume: 5 start-page: 736 issue: 7 year: 2016 ident: 10.1016/j.csite.2022.102474_bib32 article-title: Blasius flow and heat transfer of a nanofluid due to flat plate publication-title: J. Nanofluids doi: 10.1166/jon.2016.1260 – volume: 6 start-page: 38 issue: 10 year: 2017 ident: 10.1016/j.csite.2022.102474_bib29 article-title: Stagnation point flow, heat and mass transfer of MHD nanofluid due to porous stretching sheet through porous media with effect of thermal radiation publication-title: J. Nanofluids doi: 10.1166/jon.2017.1292 – volume: 140 start-page: 2377 year: 2020 ident: 10.1016/j.csite.2022.102474_bib37 article-title: Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08977-0 – volume: 6 start-page: 883 year: 2017 ident: 10.1016/j.csite.2022.102474_bib17 article-title: MHD boundary layer heat and mass transfer flow over a verticle cone through nanofluid cone embedded in porous media filled with Al2O3-water and Cu-water nanofluid publication-title: J Nanofluid doi: 10.1166/jon.2017.1380 – volume: 94 issue: 7 year: 2019 ident: 10.1016/j.csite.2022.102474_bib39 article-title: MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions publication-title: Phys. Scripta doi: 10.1088/1402-4896/ab0973 – volume: 28 year: 2021 ident: 10.1016/j.csite.2022.102474_bib51 article-title: Thermal enhancement of Ethylene glycol base material with hybrid nanofluid for oblique stagnation point slip flow, Case Studies in Thermal Engineering publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101468 – volume: 57 start-page: 435 issue: Issue 1 year: 2018 ident: 10.1016/j.csite.2022.102474_bib38 article-title: Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2016.11.013 – volume: 231 start-page: 99 year: 1995 ident: 10.1016/j.csite.2022.102474_bib8 article-title: Enhancing thermal conductivity of fluids with nanoparticles publication-title: ASME-Publications-Fed – volume: 5 start-page: 17 issue: 3 year: 2021 ident: 10.1016/j.csite.2022.102474_bib42 article-title: Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach publication-title: Fractal Fract. doi: 10.3390/fractalfract5030119 – year: 2021 ident: 10.1016/j.csite.2022.102474_bib49 article-title: Electro-osmotic flow of Prandtl nanofluids with thermal and solutal slip flow constraints: keller box simulations publication-title: Arabian J. Sci. Eng. – volume: 29 start-page: 432 year: 2008 ident: 10.1016/j.csite.2022.102474_bib9 article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancement publication-title: Heat Tran. Eng. doi: 10.1080/01457630701850851 – volume: 29 start-page: 227 year: 1994 ident: 10.1016/j.csite.2022.102474_bib53 article-title: Heat transfer characteristics of a continuous stretching surface publication-title: Heat Mass Tran. – volume: 28 start-page: 1008 issue: 3 year: 2017 ident: 10.1016/j.csite.2022.102474_bib15 article-title: MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2017.01.005 – volume: 41 start-page: 4 year: 2019 ident: 10.1016/j.csite.2022.102474_bib24 article-title: Consequences of activation energy and binary chemical reaction for 3D flow of Cross-nanofluid with radiative heat transfer publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-018-1482-0 – volume: 60 start-page: 1851 issue: 1 year: 2021 ident: 10.1016/j.csite.2022.102474_bib25 article-title: Thermophoresis particle deposition analysis for nonlinear thermally developed flow of Magneto-Walter’s B nanofluid with buoyancy forces publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.11.033 – volume: 49 start-page: 25 year: 2015 ident: 10.1016/j.csite.2022.102474_bib31 article-title: Heat transfer in MHD flow over A stretching sheet with velocity and thermal slip condition publication-title: Adv. Phys. Theor. Appl. – volume: 94 year: 2019 ident: 10.1016/j.csite.2022.102474_bib20 article-title: MHD stagnation point flow of viscous nanofluid over a curved surface publication-title: Phys. Scripta doi: 10.1088/1402-4896/ab1eb6 – volume: 372 start-page: 5037 year: 2008 ident: 10.1016/j.csite.2022.102474_bib1 article-title: The influence of heat transfer in an MHD second grade fluid flim over an unsteady stretching sheet publication-title: Phys. Lett. doi: 10.1016/j.physleta.2008.03.066 – volume: 234 start-page: 201 year: 2017 ident: 10.1016/j.csite.2022.102474_bib23 article-title: Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.03.078 – volume: 139 start-page: 3661 year: 2020 ident: 10.1016/j.csite.2022.102474_bib36 article-title: Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08694-8 – volume: 50 start-page: 942 issue: 1 year: 2021 ident: 10.1016/j.csite.2022.102474_bib26 article-title: Radiative unsteady hydromagnetic 3D flow model for Jeffrey nanofluid configured by an accelerated surface with chemical reaction publication-title: Heat Tran. Asian Res. doi: 10.1002/htj.21912 – volume: 783 year: 2021 ident: 10.1016/j.csite.2022.102474_bib48 article-title: Implications of the third-grade nanomaterials lubrication problem in terms of radiative heat flux: a Keller box analysis publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2021.139041 – volume: 786 year: 2022 ident: 10.1016/j.csite.2022.102474_bib50 article-title: Thermal prospective of Casson nano-materials in radiative binary reactive flow near oblique stagnation point flow with activation energy applications publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2021.139172 – volume: 419 year: 2022 ident: 10.1016/j.csite.2022.102474_bib43 article-title: Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface publication-title: Appl. Math. Comput. – volume: 7 start-page: 350 issue: 8 year: 2018 ident: 10.1016/j.csite.2022.102474_bib30 article-title: Thermal radiative MHD stagnation point slip flow and heat transfer due to a stretching sheet publication-title: J. Nanofluids doi: 10.1166/jon.2018.1453 – volume: 131 year: 2022 ident: 10.1016/j.csite.2022.102474_bib47 article-title: Influential study of novel microorganism and nanoparticles during heat and mass transport in Homann flow of visco-elastic materials publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105871 – volume: 18 start-page: 461 issue: 2 year: 2013 ident: 10.1016/j.csite.2022.102474_bib33 article-title: Effect of viscous dissipation and thermal radiation on heat transfer over a non-linearly stretching sheet through porous medium publication-title: Int. J. Appl. Mech. Eng. doi: 10.2478/ijame-2013-0027 – volume: 139 start-page: pages1379 year: 2020 ident: 10.1016/j.csite.2022.102474_bib35 article-title: Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier's heat flux model publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08477-1 – volume: 420 year: 2022 ident: 10.1016/j.csite.2022.102474_bib44 article-title: Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel publication-title: Appl. Math. Comput. – volume: 787 year: 2022 ident: 10.1016/j.csite.2022.102474_bib5 article-title: A fractional model for the kerosene oil and water-based Casson nanofluid with inclined magnetic force publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2021.139277 – volume: 15 start-page: 464 issue: 5 year: 2017 ident: 10.1016/j.csite.2022.102474_bib14 article-title: Double straification effects on unsteady electrical MHD mixed convection flow of nanofluid with viscous dissipation and Joule heating publication-title: J. Appl. Res. Technol. doi: 10.1016/j.jart.2017.05.007 – volume: 107 start-page: 248 year: 1985 ident: 10.1016/j.csite.2022.102474_bib52 article-title: Heat transfer characteristics of a continuous, stretching surface with variable temperature publication-title: J. Heat Tran. doi: 10.1115/1.3247387 – volume: 15 start-page: 300 year: 2010 ident: 10.1016/j.csite.2022.102474_bib3 article-title: Transition of MHD boundary layer flow past a stretching sheet publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2009.03.027 – volume: 33 start-page: 529 issue: 4 year: 2006 ident: 10.1016/j.csite.2022.102474_bib12 article-title: Experimental investigation of oxide nanofluids laminar flow convective heat transfer publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2006.01.005 – volume: 116 year: 2020 ident: 10.1016/j.csite.2022.102474_bib18 article-title: Comparative study on heat transfer in CNTs-water nanofluid over a curved surface publication-title: Int. Commun. Heat Mass Tran. – volume: 91 start-page: 63 year: 2018 ident: 10.1016/j.csite.2022.102474_bib28 article-title: Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring-Powell magneto-nanofluid flow publication-title: Pramana - J. Phys. doi: 10.1007/s12043-018-1634-x – volume: 20 start-page: 160 issue: 1 year: 2021 ident: 10.1016/j.csite.2022.102474_bib40 article-title: A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak publication-title: Appl. Comput. Math. – volume: 52 start-page: 3187 year: 2009 ident: 10.1016/j.csite.2022.102474_bib10 article-title: Review of convectiveheat transfer enhancement with nanofluids publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2009.02.006 – volume: 48 start-page: 363 year: 2009 ident: 10.1016/j.csite.2022.102474_bib13 article-title: New temperature dependent thermal conductivity data for water based nanofluids publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2008.03.009 – volume: 10 start-page: 3161 year: 2020 ident: 10.1016/j.csite.2022.102474_bib27 article-title: A rheological analysis of nanofluid subjected to melting heat transport characteristics publication-title: Appl. Nanosci. doi: 10.1007/s13204-019-01067-5 – volume: 130 year: 2022 ident: 10.1016/j.csite.2022.102474_bib45 article-title: The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105832 – volume: 241 start-page: 4835 year: 2011 ident: 10.1016/j.csite.2022.102474_bib4 article-title: Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2011.08.057 – volume: 44 start-page: 369 year: 2009 ident: 10.1016/j.csite.2022.102474_bib54 article-title: Boundary layer flow and heat transfer over an unsteady stretching vertical surface publication-title: Int. J. Theor. Appl. Mech. – volume: 29 start-page: 72 year: 2006 ident: 10.1016/j.csite.2022.102474_bib6 article-title: Enhancement of thermal conductivity with CuO for nanofluid publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.200500184 – volume: 11 start-page: 1070 issue: 9 year: 2019 ident: 10.1016/j.csite.2022.102474_bib19 article-title: Oblique stagnation point flow of nanofluids over stretching/shrinking sheet with cattaneo-christov heat flux model: existence of dual solution publication-title: Symmetry doi: 10.3390/sym11091070 – volume: 9 year: 2019 ident: 10.1016/j.csite.2022.102474_bib34 article-title: Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink publication-title: Sci. Rep. – volume: 26 year: 2021 ident: 10.1016/j.csite.2022.102474_bib22 article-title: Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100975 – volume: 14 start-page: 629 issue: 2 year: 2009 ident: 10.1016/j.csite.2022.102474_bib11 article-title: Enhancement of heat transfer using nanofluids-an overview publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.10.004 – volume: 103 year: 2008 ident: 10.1016/j.csite.2022.102474_bib7 article-title: Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid publication-title: J. Appl. Phys. doi: 10.1063/1.2902483 – year: 2021 ident: 10.1016/j.csite.2022.102474_bib41 article-title: Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks publication-title: Math. Methods Appl. Sci. – volume: 131 year: 2022 ident: 10.1016/j.csite.2022.102474_bib46 article-title: Numerical analysis of heat transfer and friction drag relating to the effect of Joule heating, viscous dissipation and heat generation/absorption in aligned MHD slip flow of a nanofluid publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105843 |
| SSID | ssj0001738144 |
| Score | 2.5524087 |
| Snippet | The advancement in the thermal engineering presented the idea of nanomaterials with stable thermal consequences and performances. The importance of hybrid... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 102474 |
| SubjectTerms | Hybrid nanofluid Inclined magnetic field Keller box method Non-uniform heat sink/source |
| Title | Radiative thermal analysis for four types of hybrid nanoparticles subject to non-uniform heat source: Keller box numerical approach |
| URI | https://dx.doi.org/10.1016/j.csite.2022.102474 https://doaj.org/article/df1645a216fe41648f4f17b403658876 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2214-157X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001738144 issn: 2214-157X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2214-157X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001738144 issn: 2214-157X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ4kAPVQtFXWgrHzhildiOnfTWVrtCKiCEAO0t8lOlKlm0u0HlwqV_nBk7i8KFXnpIDpFf8jieb8bjbwjZj9YZ6SvPIuhuJp0MrAY9wJSLVayt1pli4-pYn55W02l9Nkj1hTFhmR44T9xnHwHQl4YXKgYAD7KKMhbaSth5S_hBEtk2oJ6BMZW8Kxo0UcrkynkhWVHq6YpyKAV3uXQ0C4Y_R-4CqeUztZTY-wfaaaBxJm_I6x4q0q95iG_JWmi3yKsBgeA2-XuO1AK4Y1EEcjdQ3PQsIxTQKDzdnKKXdUFnkf68x-tZtDUtWMp9QBxddBZdMXQ5o-2sZV2LV7VuKO7RNHv2v9Af6N2fUzv7Q9suH_FARz0b-TtyORlffD9ifVoF5gSvJRM8iCCUCdY6BdYGB6moQnltvBOHntfGW1fHMvi6FNErAyCxiAU3RlW1jJXYIeswoPCeUGGiQeMaZBPAUEN4YWMUQQZRFkGHEeGrWW1czzmOqS9-N6vgsl9NEkWDomiyKEbk4KnSbabceLn4NxTXU1Hky04fYBU1_WQ2_1pFI6JWwm566JEhBTR1_VLvu_-j9z2yiU3mKJkPZH0578JHsuHulteL-ae0suF98jB-BKna_n8 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiative+thermal+analysis+for+four+types+of+hybrid+nanoparticles+subject+to+non-uniform+heat+source%3A+Keller+box+numerical+approach&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Chu%2C+Yu-Ming&rft.au=Khan%2C+M.+Ijaz&rft.au=Abbas%2C+Tasawar&rft.au=Sidi%2C+Maawiya+Ould&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=40&rft_id=info:doi/10.1016%2Fj.csite.2022.102474&rft.externalDocID=S2214157X22007109 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |