Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites
In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni0.5Co0.5Fe2−xRxO4 and Ni0.25Co0.5Zn0.25Fe2−xRxO4 (R=Y and La...
Saved in:
| Published in: | Journal of magnetism and magnetic materials Vol. 426; pp. 629 - 635 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
15.03.2017
Elsevier BV |
| Subjects: | |
| ISSN: | 0304-8853, 1873-4766 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni0.5Co0.5Fe2−xRxO4 and Ni0.25Co0.5Zn0.25Fe2−xRxO4 (R=Y and La, x=0, 0.02), fabricated with the solid state reaction method, were characterized with regard to the complex permeability μ*(f) and permittivity ε*(f) up to 20GHz. The rare earth substitutions basically affect the microwave μ*(f) spectra and the dynamic magnetization mechanisms of domain wall motion and magnetization rotation. Key parameters for this effect are the reduced magnetocrystalline anisotropy and the created crystal inhomogeneities. Moreover, permittivity is increased with the Y and La content, due to the enhancement of the dielectric orientation polarization. Regarding the electromagnetic wave attenuation, the prepared ferrites exhibit narrowband return losses (RL) by virtue of the cancellation of multiple reflections, when their thickness equals an odd multiple of quarter-wavelength. Interestingly, the zero-reflection conditions are satisfied in the vicinity of the ferromagnetic resonance. As the rare earth doping shifts this mechanism to lower frequencies, loss peaks with RL>46dB occur at 4.1GHz and 5GHz for Y and La-doped Ni–Co–Zn spinels, whereas peaks with RL>40dB appear at 18GHz and 19GHz for Y and La-doped Ni–Co spinels, respectively. The presented experimental findings underline the potential of cubic ferrites with high Co concentration in the suppression of electromagnetic reflections well above the 1GHz region.
•Due to cation distribution, magnetic anisotropy drops in Y and La doped samples.•Microwave permeability spectra shift to lower frequencies with rare earth doping.•Permittivity is increased due to crystal modifications, creating dipoles.•Return losses above 40dB from 4 to 19GHz are attained when thickness equals λ/4.•The multiple reflections cancellation is favoured by high imaginary μ′′. |
|---|---|
| AbstractList | In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni0.5Co0.5Fe2−xRxO4 and Ni0.25Co0.5Zn0.25Fe2−xRxO4 (R=Y and La, x=0, 0.02), fabricated with the solid state reaction method, were characterized with regard to the complex permeability μ*(f) and permittivity ε*(f) up to 20GHz. The rare earth substitutions basically affect the microwave μ*(f) spectra and the dynamic magnetization mechanisms of domain wall motion and magnetization rotation. Key parameters for this effect are the reduced magnetocrystalline anisotropy and the created crystal inhomogeneities. Moreover, permittivity is increased with the Y and La content, due to the enhancement of the dielectric orientation polarization. Regarding the electromagnetic wave attenuation, the prepared ferrites exhibit narrowband return losses (RL) by virtue of the cancellation of multiple reflections, when their thickness equals an odd multiple of quarter-wavelength. Interestingly, the zero-reflection conditions are satisfied in the vicinity of the ferromagnetic resonance. As the rare earth doping shifts this mechanism to lower frequencies, loss peaks with RL>46dB occur at 4.1GHz and 5GHz for Y and La-doped Ni–Co–Zn spinels, whereas peaks with RL>40dB appear at 18GHz and 19GHz for Y and La-doped Ni–Co spinels, respectively. The presented experimental findings underline the potential of cubic ferrites with high Co concentration in the suppression of electromagnetic reflections well above the 1GHz region.
•Due to cation distribution, magnetic anisotropy drops in Y and La doped samples.•Microwave permeability spectra shift to lower frequencies with rare earth doping.•Permittivity is increased due to crystal modifications, creating dipoles.•Return losses above 40dB from 4 to 19GHz are attained when thickness equals λ/4.•The multiple reflections cancellation is favoured by high imaginary μ′′. In this article we analyze the electromagnetic properties of rare earth substituted Ni-Co and Ni-Co-Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni0.5Co0.5Fe2-xRxO4 and Ni0.25Co0.5Zn0.25Fe2-xRxO4 (R=Y and La, x=0, 0.02), fabricated with the solid state reaction method, were characterized with regard to the complex permeability μ*(f) and permittivity ε*(f) up to 20 GHz. The rare earth substitutions basically affect the microwave μ*(f) spectra and the dynamic magnetization mechanisms of domain wall motion and magnetization rotation. Key parameters for this effect are the reduced magnetocrystalline anisotropy and the created crystal inhomogeneities. Moreover, permittivity is increased with the Y and La content, due to the enhancement of the dielectric orientation polarization. Regarding the electromagnetic wave attenuation, the prepared ferrites exhibit narrowband return losses (RL) by virtue of the cancellation of multiple reflections, when their thickness equals an odd multiple of quarter-wavelength. Interestingly, the zero-reflection conditions are satisfied in the vicinity of the ferromagnetic resonance. As the rare earth doping shifts this mechanism to lower frequencies, loss peaks with RL>46 dB occur at 4.1 GHz and 5 GHz for Y and La-doped Ni-Co-Zn spinels, whereas peaks with RL>40 dB appear at 18 GHz and 19 GHz for Y and La-doped Ni-Co spinels, respectively. The presented experimental findings underline the potential of cubic ferrites with high Co concentration in the suppression of electromagnetic reflections well above the 1 GHz region. |
| Author | Stergiou, Charalampos |
| Author_xml | – sequence: 1 givenname: Charalampos surname: Stergiou fullname: Stergiou, Charalampos email: stergiou@cperi.certh.gr organization: Laboratory of Inorganic Materials, Centre for Research and Technology, Hellas, GR-57001 Thessaloniki, Greece |
| BookMark | eNp9kbGO1DAQhi10SOwdvACVJVoSPHY2cSQatOIA6YAGGhrL64zB0cYOY-8hOt6BN-RJ8LJXUVzjGVn_5_H_zyW7iCkiY09BtCCgfzG387Israx9C9AKAQ_YBvSgmm7o-wu2EUp0jdZb9Yhd5jyLquh0v2HH9_ZrxBLccz4FPKArFBy3ceJLcJR-2Fvkdp8TrSWkyFdKK1IJmHnynCwhR0vlG5_q_cQ_hD-_fu_SP_6ur8eXyPMaIh64R6JQMD9mD709ZHxyV6_Y5-vXn3Zvm5uPb97tXt00TkldGu_HvVB62nZuO2g3Ku1BDRIdKC-V1T04O1oYJLi9Vlo67WBSSkqpnPVjr67Ys_O79d_fj5iLmdORYh1pYOyEFFsYVFXps6oazpnQGxeKPfktZMPBgDCnkM1sTiGbU8gGwNQIKyr_Q1cKi6Wf90MvzxBW67cByWQXMDqcAtUFmCmF-_C_QKCbfQ |
| CitedBy_id | crossref_primary_10_1007_s10854_023_11551_y crossref_primary_10_1016_j_jmmm_2018_07_075 crossref_primary_10_1016_j_jmmm_2020_167075 crossref_primary_10_1007_s12274_022_4695_6 crossref_primary_10_1016_j_ceramint_2018_06_167 crossref_primary_10_1007_s10854_023_11328_3 crossref_primary_10_1007_s41779_023_00982_9 crossref_primary_10_1016_j_jes_2019_01_019 crossref_primary_10_1080_10584587_2025_2482408 crossref_primary_10_1016_j_jmmm_2018_07_038 crossref_primary_10_1016_j_physb_2023_415135 crossref_primary_10_1016_j_jre_2020_08_011 crossref_primary_10_1016_j_ceramint_2025_07_102 crossref_primary_10_1016_j_ceramint_2024_05_376 crossref_primary_10_1002_cben_202200063 crossref_primary_10_1016_j_ceramint_2018_07_123 crossref_primary_10_1016_j_jallcom_2019_152044 crossref_primary_10_1016_j_cis_2024_103381 crossref_primary_10_1016_j_ceramint_2023_03_222 crossref_primary_10_1016_j_matchemphys_2020_124193 crossref_primary_10_1016_j_jmmm_2018_03_069 crossref_primary_10_1016_j_ceramint_2019_07_280 crossref_primary_10_1016_j_jre_2025_01_004 crossref_primary_10_1016_j_jmmm_2020_167163 crossref_primary_10_1016_j_physb_2019_411783 crossref_primary_10_1016_j_ceramint_2024_04_362 crossref_primary_10_1039_D3RA04557A crossref_primary_10_1111_jace_18253 crossref_primary_10_3390_nano9060820 crossref_primary_10_1002_masy_201900207 crossref_primary_10_1016_j_nanoso_2025_101540 crossref_primary_10_1016_j_ceramint_2018_03_070 crossref_primary_10_1016_j_jallcom_2024_176747 crossref_primary_10_1007_s10971_020_05426_5 crossref_primary_10_1016_j_jallcom_2023_171075 crossref_primary_10_1007_s13204_020_01413_y crossref_primary_10_1016_j_ceramint_2018_10_260 crossref_primary_10_1016_j_matpr_2023_04_591 crossref_primary_10_1007_s00339_019_2804_5 crossref_primary_10_1016_j_ceramint_2018_11_015 crossref_primary_10_1007_s10854_017_6486_5 crossref_primary_10_1016_j_jre_2022_04_028 crossref_primary_10_1016_j_materresbull_2022_111863 crossref_primary_10_1557_s43578_021_00242_1 crossref_primary_10_3390_nano9020202 crossref_primary_10_1007_s10854_024_12395_w crossref_primary_10_1016_j_solidstatesciences_2025_107824 crossref_primary_10_1007_s00339_022_05747_y crossref_primary_10_1016_j_jallcom_2022_167777 crossref_primary_10_1016_j_jallcom_2022_168503 crossref_primary_10_1016_j_ultsonch_2019_104638 crossref_primary_10_1016_j_inoche_2023_111583 crossref_primary_10_1016_j_jallcom_2018_08_015 crossref_primary_10_1016_j_ceramint_2019_01_056 crossref_primary_10_1016_j_ceramint_2023_09_250 crossref_primary_10_1016_j_nanoen_2018_01_038 crossref_primary_10_1016_j_jallcom_2018_11_160 crossref_primary_10_1007_s10854_022_09793_3 crossref_primary_10_1016_j_ceramint_2023_10_073 crossref_primary_10_1007_s10854_017_7649_0 crossref_primary_10_1007_s10854_020_03982_8 crossref_primary_10_1016_j_ceramint_2025_01_078 crossref_primary_10_1016_j_ceramint_2018_02_129 crossref_primary_10_1016_j_jallcom_2021_160337 crossref_primary_10_1080_00150193_2022_2102833 crossref_primary_10_1007_s10854_021_05592_4 crossref_primary_10_1016_j_jallcom_2023_170074 crossref_primary_10_1016_j_jmmm_2021_167925 crossref_primary_10_1063_5_0123263 crossref_primary_10_1016_j_matchemphys_2022_127086 crossref_primary_10_1016_j_jallcom_2022_164637 crossref_primary_10_3390_ijms232214167 crossref_primary_10_1016_j_cap_2022_05_012 crossref_primary_10_1007_s11664_017_5855_4 crossref_primary_10_1016_j_jmmm_2023_171449 crossref_primary_10_3390_nano13030527 crossref_primary_10_1007_s10832_021_00246_7 crossref_primary_10_1016_j_jeurceramsoc_2021_11_026 crossref_primary_10_1007_s10971_020_05235_w crossref_primary_10_1007_s10948_017_4141_2 crossref_primary_10_1007_s00339_024_07476_w crossref_primary_10_1007_s11664_024_11195_6 crossref_primary_10_1016_j_inoche_2023_111496 crossref_primary_10_1007_s10854_018_9909_z crossref_primary_10_1007_s10854_021_06913_3 crossref_primary_10_1016_j_ceramint_2022_07_338 crossref_primary_10_1016_j_jre_2025_04_006 crossref_primary_10_1007_s11664_018_6349_8 |
| Cites_doi | 10.1109/TMAG.2011.2148109 10.1007/s10948-013-2340-z 10.1016/j.jmmm.2013.10.056 10.1109/TMAG.2011.2180732 10.1109/TMAG.2014.2357851 10.1016/j.jmmm.2010.10.037 10.1002/0470867965 10.1016/j.ceramint.2015.11.101 10.1143/JJAP.12.678 10.1016/j.pmatsci.2012.04.001 10.1063/1.3507266 10.1109/TMAG.2013.2284053 10.4236/ojmetal.2012.22006 10.1016/j.jmmm.2011.04.021 10.1016/j.jmmm.2013.12.024 10.1155/2016/1934783 10.1016/j.ceramint.2013.06.010 10.1109/TMAG.2011.2171331 10.1016/j.ceramint.2016.01.180 10.2497/jjspm.61.S227 10.1109/20.278871 10.1063/1.4913700 10.1063/1.1709512 10.1016/j.jmmm.2015.10.129 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. Copyright Elsevier BV Mar 15, 2017 |
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright Elsevier BV Mar 15, 2017 |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1016/j.jmmm.2016.11.001 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1873-4766 |
| EndPage | 635 |
| ExternalDocumentID | 10_1016_j_jmmm_2016_11_001 S0304885316315864 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M24 M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K XPP ZMT ~02 ~G- 29K 5VS 9DU AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION D-I EFKBS FGOYB G-2 HMV HZ~ NDZJH R2- SEW SMS SPG WUQ XXG ~HD 7SR 7U5 8BQ 8FD AFXIZ AGCQF AGRNS JG9 L7M SSH |
| ID | FETCH-LOGICAL-c328t-ff9b038d54c578c938f1372ec13f23a861ca9a1721cb8382c8c1d332223caf963 |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397198500096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-8853 |
| IngestDate | Fri Jul 25 02:50:59 EDT 2025 Tue Nov 18 21:53:48 EST 2025 Sat Nov 29 03:11:05 EST 2025 Fri Feb 23 02:27:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Magnetic materials Ceramics Dielectric properties Magnetic properties |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-ff9b038d54c578c938f1372ec13f23a861ca9a1721cb8382c8c1d332223caf963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1940205173 |
| PQPubID | 2045450 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_1940205173 crossref_citationtrail_10_1016_j_jmmm_2016_11_001 crossref_primary_10_1016_j_jmmm_2016_11_001 elsevier_sciencedirect_doi_10_1016_j_jmmm_2016_11_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-15 |
| PublicationDateYYYYMMDD | 2017-03-15 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Journal of magnetism and magnetic materials |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Stergiou (bib9) 2016; 2016 Smit, Wijn (bib3) 1959 Stergiou, Litsardakis (bib6) 2011; 323 Soka, Usakova, Usak, Dosoudil, Lokaj (bib21) 2014; 50 Cullity, Graham (bib26) 2009 Sebastian (bib32) 2008 Ren, Xu (bib33) 2014; 354 Ibrahim, Hashim, Nazlan, Ismail, Ab Rahman, Abdullah, Idris, Shafie, Zulkimi (bib14) 2014; 355 C. Stergiou, G. Litsardakis, Structural and magnetic properties of yttrium and lanthanum-doped Ni–Co and Ni–Co–Zn spinel ferrites, in: AIP Conference Proceedings, vol. 1627, 2014, pp. 117–122. Stergiou, Litsardakis (bib35) 2012; 48 Groenou, Schulkes (bib27) 1967; 38 Brabers (bib1) 2007 Stergiou, Zaspalis (bib10) 2014; 40 Harris (bib4) 2012; 48 Chikazumi (bib29) 1997 Mikami (bib16) 1973; 12 Chen, Gu (bib34) 2012; 2 D. Jiles, Introduction to Magnetism and Magnetic Materials, second ed., Chapman & Hall/CRC, Boca Raton, 1997. Valenzuela (bib7) 1994 Wu, Yan, Liu, Feng, Chen, Harris (bib12) 2016; 401 Jacobo, Bercoff (bib22) 2016; 42 A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd ed., John Wiley & Sons Ltd., UK, 2003. Mattei, Huitema, Queffelec, Pintos, Minard, Sharahia, Jamnier, Ferrero, Staraj, Souriou, Thakur (bib11) 2011; 47 Soka, Usakova, Dosoudil, Usak, Dobrocka (bib20) 2015; 51 Clausell, Barba, Nuno, Jarque (bib13) 2016; 42 Pullar (bib5) 2012; 57 Lucas, Lebourgeois, Mazaleyrat, Laboure (bib18) 2011; 323 J. Baker-Jarvis, M.D. Janezic, B.F. Riddle, R.T. Johnk, P. Kabos, C.L Holloway, R.G. Geyer, C.A. Grosvenor, Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials and Negative-Index Materials, National Institute of Standards and Technology, US Department of Commerce, Technical Note 1536, February 2005. A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, NY, 1990. Lucas, Lebourgeois, Mazaleyrat, Laboure (bib19) 2010; 97 Liu, Lv, Zhou, Chen, Bian, Liu (bib28) 2012; 13 Brun, Lebourgeois, Laboure (bib17) 2014; 61 Mattei, Le Guen, Chevalier (bib15) 2015; 117 Yehia, Ismail, Hashhash (bib23) 2014; 27 Yin, Liao (bib31) 1991; 27 Chikazumi (10.1016/j.jmmm.2016.11.001_bib29) 1997 10.1016/j.jmmm.2016.11.001_bib8 Valenzuela (10.1016/j.jmmm.2016.11.001_bib7) 1994 10.1016/j.jmmm.2016.11.001_bib30 Sebastian (10.1016/j.jmmm.2016.11.001_bib32) 2008 Brabers (10.1016/j.jmmm.2016.11.001_bib1) 2007 Ren (10.1016/j.jmmm.2016.11.001_bib33) 2014; 354 Wu (10.1016/j.jmmm.2016.11.001_bib12) 2016; 401 Mattei (10.1016/j.jmmm.2016.11.001_bib15) 2015; 117 10.1016/j.jmmm.2016.11.001_bib2 Yin (10.1016/j.jmmm.2016.11.001_bib31) 1991; 27 Stergiou (10.1016/j.jmmm.2016.11.001_bib6) 2011; 323 Lucas (10.1016/j.jmmm.2016.11.001_bib18) 2011; 323 Smit (10.1016/j.jmmm.2016.11.001_bib3) 1959 Harris (10.1016/j.jmmm.2016.11.001_bib4) 2012; 48 Stergiou (10.1016/j.jmmm.2016.11.001_bib9) 2016; 2016 Cullity (10.1016/j.jmmm.2016.11.001_bib26) 2009 Lucas (10.1016/j.jmmm.2016.11.001_bib19) 2010; 97 Jacobo (10.1016/j.jmmm.2016.11.001_bib22) 2016; 42 10.1016/j.jmmm.2016.11.001_bib25 Mattei (10.1016/j.jmmm.2016.11.001_bib11) 2011; 47 10.1016/j.jmmm.2016.11.001_bib24 Mikami (10.1016/j.jmmm.2016.11.001_bib16) 1973; 12 Liu (10.1016/j.jmmm.2016.11.001_bib28) 2012; 13 Chen (10.1016/j.jmmm.2016.11.001_bib34) 2012; 2 Yehia (10.1016/j.jmmm.2016.11.001_bib23) 2014; 27 Groenou (10.1016/j.jmmm.2016.11.001_bib27) 1967; 38 Soka (10.1016/j.jmmm.2016.11.001_bib21) 2014; 50 Pullar (10.1016/j.jmmm.2016.11.001_bib5) 2012; 57 Stergiou (10.1016/j.jmmm.2016.11.001_bib10) 2014; 40 Soka (10.1016/j.jmmm.2016.11.001_bib20) 2015; 51 Clausell (10.1016/j.jmmm.2016.11.001_bib13) 2016; 42 Brun (10.1016/j.jmmm.2016.11.001_bib17) 2014; 61 Stergiou (10.1016/j.jmmm.2016.11.001_bib35) 2012; 48 Ibrahim (10.1016/j.jmmm.2016.11.001_bib14) 2014; 355 |
| References_xml | – volume: 354 start-page: 44 year: 2014 end-page: 48 ident: bib33 article-title: Electromagnetic and microwave absorbing properties of NiCoZn-ferrites doped with La publication-title: J. Magn. Magn. Mater. – volume: 51 start-page: 2000504 year: 2015 ident: bib20 article-title: Magnetic and structural properties of nickel zinc ferrites doped with yttrium publication-title: IEEE Trans. Magn. – volume: 42 start-page: 4256 year: 2016 end-page: 4261 ident: bib13 article-title: Effect of average grain size and sintered relative density on the imaginary part – μ′′ of the complex magnetic permeability of (Cu publication-title: Ceram. Int. – year: 2007 ident: bib1 article-title: Ferrimagnetic insulators publication-title: Handbook of Magnetism and Advanced Magnetic Materials – volume: 97 start-page: 182502 year: 2010 ident: bib19 article-title: Temperature dependence of spin resonance in cobalt substituted NiZnCu ferrites publication-title: Appl. Phys. Lett. – reference: D. Jiles, Introduction to Magnetism and Magnetic Materials, second ed., Chapman & Hall/CRC, Boca Raton, 1997. – volume: 2016 start-page: 1934783 year: 2016 ident: bib9 article-title: Microstructure and electromagnetic properties of Ni–Zn–Co ferrites up to 20 publication-title: Adv. Mater. Sci. Eng. – volume: 12 start-page: 678 year: 1973 end-page: 693 ident: bib16 article-title: Role of induced anisotropy in magnetic spectra of cobalt-substituted nickel-zinc ferrites publication-title: Jpn. J. Appl. Phys. – year: 1959 ident: bib3 publication-title: Ferrites – volume: 48 start-page: 1075 year: 2012 end-page: 1104 ident: bib4 article-title: Modern microwave ferrites publication-title: IEEE Trans. Magn. – volume: 47 start-page: 3720 year: 2011 end-page: 3723 ident: bib11 article-title: Suitability of Ni–Zn ferrites ceramics with controlled porosity as granular substrates for mobile handset miniaturized antennas publication-title: IEEE Trans. Magn. – volume: 401 start-page: 1093 year: 2016 end-page: 1096 ident: bib12 article-title: Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications publication-title: J. Magn. Magn. Mater. – volume: 50 start-page: 2800304 year: 2014 ident: bib21 article-title: Magnetic properties analysis of rare-earth substituted nickel zinc ferrites publication-title: IEEE Trans. Magn. – volume: 57 start-page: 1191 year: 2012 end-page: 1334 ident: bib5 article-title: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics publication-title: Prog. Mater. Sci. – volume: 323 start-page: 2362 year: 2011 end-page: 2368 ident: bib6 article-title: Preparation and magnetic characterization of Co publication-title: J. Magn. Magn. Mater. – year: 1997 ident: bib29 article-title: Physics of Ferromagnetism – volume: 61 start-page: S227 year: 2014 end-page: S230 ident: bib17 article-title: Low permeability ferrite with low losses at high frequency publication-title: J. Jpn. Soc. Powder Powder Metall. – volume: 355 start-page: 265 year: 2014 end-page: 277 ident: bib14 article-title: Grouping trends of magnetic permeability components in their parallel evolution with microstructure in Ni publication-title: J. Magn. Magn. Mater. – volume: 27 start-page: 5459 year: 1991 end-page: 5461 ident: bib31 article-title: Permeability spectra of Co substituted Ni ferrites publication-title: IEEE Trans. Magn. – reference: C. Stergiou, G. Litsardakis, Structural and magnetic properties of yttrium and lanthanum-doped Ni–Co and Ni–Co–Zn spinel ferrites, in: AIP Conference Proceedings, vol. 1627, 2014, pp. 117–122. – volume: 117 start-page: 084904 year: 2015 ident: bib15 article-title: Dense and half-Dense NiZnCo ferrite ceramics: their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies publication-title: J. Appl. Phys. – reference: A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, NY, 1990. – volume: 323 start-page: 735 year: 2011 end-page: 739 ident: bib18 article-title: Temperature dependence of core loss in cobalt substituted Ni-Zn-Cu ferrites publication-title: J. Magn. Magn. Mater. – volume: 13 start-page: 110 year: 2012 end-page: 116 ident: bib28 article-title: Influence of nickel-zinc ratio on microstructure, magnetic and dielectric properties of Ni publication-title: J. Ceram. Process. Res. – volume: 40 start-page: 357 year: 2014 end-page: 366 ident: bib10 article-title: Analysis of the complex permeability of NiCuZn ferrites up to 1 publication-title: Ceram. Int. – year: 2008 ident: bib32 article-title: Dielectric Materials for Wireless Communication – reference: J. Baker-Jarvis, M.D. Janezic, B.F. Riddle, R.T. Johnk, P. Kabos, C.L Holloway, R.G. Geyer, C.A. Grosvenor, Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials and Negative-Index Materials, National Institute of Standards and Technology, US Department of Commerce, Technical Note 1536, February 2005. – year: 2009 ident: bib26 publication-title: Introduction to Magnetic Materials – year: 1994 ident: bib7 publication-title: Magnetic Ceramics – reference: A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd ed., John Wiley & Sons Ltd., UK, 2003. – volume: 2 start-page: 37 year: 2012 end-page: 41 ident: bib34 article-title: Microstructure and microwave absorption properties of Y-substituted Ni–Zn ferrites publication-title: Open J. Met. – volume: 48 start-page: 1516 year: 2012 end-page: 1519 ident: bib35 article-title: Design of microwave absorbing coatings with new Ni and La doped SrCo publication-title: IEEE Trans. Magn. – volume: 27 start-page: 771 year: 2014 end-page: 774 ident: bib23 article-title: Structural and magnetic studies of rare-earth substituted nickel ferrites publication-title: J. Supercond. Nov. Magn. – volume: 38 start-page: 1133 year: 1967 end-page: 1134 ident: bib27 article-title: Magnetic anisotropy of some nickel zinc ferrite crystals publication-title: J. Appl. Phys. – volume: 42 start-page: 7664 year: 2016 end-page: 7668 ident: bib22 article-title: Structural and electromagnetic properties of yttrium-substituted Ni–Zn ferrites publication-title: Ceram. Int. – volume: 47 start-page: 3720 year: 2011 ident: 10.1016/j.jmmm.2016.11.001_bib11 article-title: Suitability of Ni–Zn ferrites ceramics with controlled porosity as granular substrates for mobile handset miniaturized antennas publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2148109 – year: 1997 ident: 10.1016/j.jmmm.2016.11.001_bib29 – volume: 27 start-page: 771 year: 2014 ident: 10.1016/j.jmmm.2016.11.001_bib23 article-title: Structural and magnetic studies of rare-earth substituted nickel ferrites publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-013-2340-z – year: 2008 ident: 10.1016/j.jmmm.2016.11.001_bib32 – volume: 354 start-page: 44 year: 2014 ident: 10.1016/j.jmmm.2016.11.001_bib33 article-title: Electromagnetic and microwave absorbing properties of NiCoZn-ferrites doped with La3+ publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2013.10.056 – volume: 48 start-page: 1075 year: 2012 ident: 10.1016/j.jmmm.2016.11.001_bib4 article-title: Modern microwave ferrites publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2180732 – volume: 51 start-page: 2000504 year: 2015 ident: 10.1016/j.jmmm.2016.11.001_bib20 article-title: Magnetic and structural properties of nickel zinc ferrites doped with yttrium publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2014.2357851 – volume: 13 start-page: 110 year: 2012 ident: 10.1016/j.jmmm.2016.11.001_bib28 article-title: Influence of nickel-zinc ratio on microstructure, magnetic and dielectric properties of Ni1−xZnxFe2O4 ferrites publication-title: J. Ceram. Process. Res. – volume: 323 start-page: 735 year: 2011 ident: 10.1016/j.jmmm.2016.11.001_bib18 article-title: Temperature dependence of core loss in cobalt substituted Ni-Zn-Cu ferrites publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2010.10.037 – ident: 10.1016/j.jmmm.2016.11.001_bib8 doi: 10.1002/0470867965 – volume: 42 start-page: 4256 year: 2016 ident: 10.1016/j.jmmm.2016.11.001_bib13 article-title: Effect of average grain size and sintered relative density on the imaginary part – μ′′ of the complex magnetic permeability of (Cu0.12Ni0.23Zn0.65)Fe2O4 system publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.11.101 – volume: 12 start-page: 678 year: 1973 ident: 10.1016/j.jmmm.2016.11.001_bib16 article-title: Role of induced anisotropy in magnetic spectra of cobalt-substituted nickel-zinc ferrites publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.12.678 – ident: 10.1016/j.jmmm.2016.11.001_bib25 – volume: 57 start-page: 1191 year: 2012 ident: 10.1016/j.jmmm.2016.11.001_bib5 article-title: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2012.04.001 – year: 1994 ident: 10.1016/j.jmmm.2016.11.001_bib7 – volume: 97 start-page: 182502 year: 2010 ident: 10.1016/j.jmmm.2016.11.001_bib19 article-title: Temperature dependence of spin resonance in cobalt substituted NiZnCu ferrites publication-title: Appl. Phys. Lett. doi: 10.1063/1.3507266 – volume: 50 start-page: 2800304 year: 2014 ident: 10.1016/j.jmmm.2016.11.001_bib21 article-title: Magnetic properties analysis of rare-earth substituted nickel zinc ferrites publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2013.2284053 – volume: 2 start-page: 37 year: 2012 ident: 10.1016/j.jmmm.2016.11.001_bib34 article-title: Microstructure and microwave absorption properties of Y-substituted Ni–Zn ferrites publication-title: Open J. Met. doi: 10.4236/ojmetal.2012.22006 – volume: 323 start-page: 2362 year: 2011 ident: 10.1016/j.jmmm.2016.11.001_bib6 article-title: Preparation and magnetic characterization of Co2-W strontium hexaferrites doped with Ni and La publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2011.04.021 – ident: 10.1016/j.jmmm.2016.11.001_bib2 – volume: 355 start-page: 265 year: 2014 ident: 10.1016/j.jmmm.2016.11.001_bib14 article-title: Grouping trends of magnetic permeability components in their parallel evolution with microstructure in Ni0.3Zn0.7Fe2O4 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2013.12.024 – year: 2009 ident: 10.1016/j.jmmm.2016.11.001_bib26 – volume: 2016 start-page: 1934783 year: 2016 ident: 10.1016/j.jmmm.2016.11.001_bib9 article-title: Microstructure and electromagnetic properties of Ni–Zn–Co ferrites up to 20GHz publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2016/1934783 – volume: 40 start-page: 357 year: 2014 ident: 10.1016/j.jmmm.2016.11.001_bib10 article-title: Analysis of the complex permeability of NiCuZn ferrites up to 1GHz with regard to Cu content and sintering temperature publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.06.010 – year: 1959 ident: 10.1016/j.jmmm.2016.11.001_bib3 – volume: 48 start-page: 1516 year: 2012 ident: 10.1016/j.jmmm.2016.11.001_bib35 article-title: Design of microwave absorbing coatings with new Ni and La doped SrCo2–W hexaferrites publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2171331 – volume: 42 start-page: 7664 year: 2016 ident: 10.1016/j.jmmm.2016.11.001_bib22 article-title: Structural and electromagnetic properties of yttrium-substituted Ni–Zn ferrites publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.01.180 – volume: 61 start-page: S227 year: 2014 ident: 10.1016/j.jmmm.2016.11.001_bib17 article-title: Low permeability ferrite with low losses at high frequency publication-title: J. Jpn. Soc. Powder Powder Metall. doi: 10.2497/jjspm.61.S227 – ident: 10.1016/j.jmmm.2016.11.001_bib30 – year: 2007 ident: 10.1016/j.jmmm.2016.11.001_bib1 article-title: Ferrimagnetic insulators – volume: 27 start-page: 5459 year: 1991 ident: 10.1016/j.jmmm.2016.11.001_bib31 article-title: Permeability spectra of Co substituted Ni ferrites publication-title: IEEE Trans. Magn. doi: 10.1109/20.278871 – volume: 117 start-page: 084904 year: 2015 ident: 10.1016/j.jmmm.2016.11.001_bib15 article-title: Dense and half-Dense NiZnCo ferrite ceramics: their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies publication-title: J. Appl. Phys. doi: 10.1063/1.4913700 – volume: 38 start-page: 1133 year: 1967 ident: 10.1016/j.jmmm.2016.11.001_bib27 article-title: Magnetic anisotropy of some nickel zinc ferrite crystals publication-title: J. Appl. Phys. doi: 10.1063/1.1709512 – volume: 401 start-page: 1093 year: 2016 ident: 10.1016/j.jmmm.2016.11.001_bib12 article-title: Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.10.129 – ident: 10.1016/j.jmmm.2016.11.001_bib24 |
| SSID | ssj0001486 ssib019626450 |
| Score | 2.508344 |
| Snippet | In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their... In this article we analyze the electromagnetic properties of rare earth substituted Ni-Co and Ni-Co-Zn cubic ferrites in the microwave band, along with their... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 629 |
| SubjectTerms | Anisotropy Ceramics Chemical compounds Dielectric properties Domain walls Electromagnetic properties Electromagnetics Ferrites Ferromagnetic resonance Ferromagnetism Magnetic materials Magnetic permeability Magnetic properties Magnetic resonance Magnetization Microwave absorption Narrowband Permeability Permittivity Rare earth elements Solid state Spinel Wave attenuation Zinc |
| Title | Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites |
| URI | https://dx.doi.org/10.1016/j.jmmm.2016.11.001 https://www.proquest.com/docview/1940205173 |
| Volume | 426 |
| WOSCitedRecordID | wos000397198500096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001486 issn: 0304-8853 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELbKLkhcEL9iYUE-IC4lVRPnxzmuqq4ALYVDF1V7iRwnWVq1SUjTZY-8ACfekCdhJraT7a6o4MDFcpw4SmY-j8fj8Qwhr-JYxG5mC4uFUlquD7wIhw7UmMQAYYFtp7xJNhFMJnw2Cz_1ej_MWZiLZZDn_PIyLP8rq6ENmI1HZ_-B3e1LoQHqwHQoge1Q_hXjP4jzHE8mIvGSuUpzo4OyrtD77hvmGxLxuqiUtCjRHF9hXFVUHCv0BAOS1F_6CbQnABXjD8FGRfOWrZa2epb31yWorMt-hsEea-2beFPvXanv07k59JWESq2o09p84Pp8XmyMU4AA7JbFlpkCpj70efM621l7fubzFQnHhq7FuYoWPEiVBOYBs9xApWIxItp1rgpZX9lIbgh_ZYdYDBarFcYYsP0BxmfVtpKtSNuTj9Hx6clJNB3Ppq_LrxYmIcPNep2R5RbZdwIvBCG5f_RuPHtvBBRIK9AfcRtYT_WwllSb4fo_9Kks5UB4_TP-pPlc0wEaxWZ6n9zTnKFHCkkPSC_NH5I7jWewXD8iG4OnN7RDEwXW0RZNtEMT7dBEi4wimmiDJtqgiU7mv77_HBVNf12H4iynCjvUYOcxOT0eT0dvLZ2rw5LM4bWVZWE8ZDzxXAlzgAwZz2wWOCmM-Mxhgvu2FKFAe4OMOeOO5NJOGG7zMSkymAWekL28yNOnhAao8ieeiGM3cH3PEbBKybw0gYVCkjkyOSC2oWMkdSB7zKeyjIzH4iJC2kdIe1jhotvmAem3fUoVxmXn055hT6QVUaVgRgC1nf0ODS8jLRHWkR2iicazA_Zs9-3n5G43cA7JXl1t0hfktryAIVm91FD8DYC3sRY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic%2C+dielectric+and+microwave+absorption+properties+of+rare+earth+doped+Ni%E2%80%93Co+and+Ni%E2%80%93Co%E2%80%93Zn+spinel+ferrites&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Stergiou%2C+Charalampos&rft.date=2017-03-15&rft.pub=Elsevier+BV&rft.issn=0304-8853&rft.eissn=1873-4766&rft.volume=426&rft.spage=629&rft_id=info:doi/10.1016%2Fj.jmmm.2016.11.001&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon |