Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites

In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni0.5Co0.5Fe2−xRxO4 and Ni0.25Co0.5Zn0.25Fe2−xRxO4 (R=Y and La...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of magnetism and magnetic materials Ročník 426; s. 629 - 635
Hlavní autor: Stergiou, Charalampos
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.03.2017
Elsevier BV
Témata:
ISSN:0304-8853, 1873-4766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni0.5Co0.5Fe2−xRxO4 and Ni0.25Co0.5Zn0.25Fe2−xRxO4 (R=Y and La, x=0, 0.02), fabricated with the solid state reaction method, were characterized with regard to the complex permeability μ*(f) and permittivity ε*(f) up to 20GHz. The rare earth substitutions basically affect the microwave μ*(f) spectra and the dynamic magnetization mechanisms of domain wall motion and magnetization rotation. Key parameters for this effect are the reduced magnetocrystalline anisotropy and the created crystal inhomogeneities. Moreover, permittivity is increased with the Y and La content, due to the enhancement of the dielectric orientation polarization. Regarding the electromagnetic wave attenuation, the prepared ferrites exhibit narrowband return losses (RL) by virtue of the cancellation of multiple reflections, when their thickness equals an odd multiple of quarter-wavelength. Interestingly, the zero-reflection conditions are satisfied in the vicinity of the ferromagnetic resonance. As the rare earth doping shifts this mechanism to lower frequencies, loss peaks with RL>46dB occur at 4.1GHz and 5GHz for Y and La-doped Ni–Co–Zn spinels, whereas peaks with RL>40dB appear at 18GHz and 19GHz for Y and La-doped Ni–Co spinels, respectively. The presented experimental findings underline the potential of cubic ferrites with high Co concentration in the suppression of electromagnetic reflections well above the 1GHz region. •Due to cation distribution, magnetic anisotropy drops in Y and La doped samples.•Microwave permeability spectra shift to lower frequencies with rare earth doping.•Permittivity is increased due to crystal modifications, creating dipoles.•Return losses above 40dB from 4 to 19GHz are attained when thickness equals λ/4.•The multiple reflections cancellation is favoured by high imaginary μ′′.
AbstractList In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni0.5Co0.5Fe2−xRxO4 and Ni0.25Co0.5Zn0.25Fe2−xRxO4 (R=Y and La, x=0, 0.02), fabricated with the solid state reaction method, were characterized with regard to the complex permeability μ*(f) and permittivity ε*(f) up to 20GHz. The rare earth substitutions basically affect the microwave μ*(f) spectra and the dynamic magnetization mechanisms of domain wall motion and magnetization rotation. Key parameters for this effect are the reduced magnetocrystalline anisotropy and the created crystal inhomogeneities. Moreover, permittivity is increased with the Y and La content, due to the enhancement of the dielectric orientation polarization. Regarding the electromagnetic wave attenuation, the prepared ferrites exhibit narrowband return losses (RL) by virtue of the cancellation of multiple reflections, when their thickness equals an odd multiple of quarter-wavelength. Interestingly, the zero-reflection conditions are satisfied in the vicinity of the ferromagnetic resonance. As the rare earth doping shifts this mechanism to lower frequencies, loss peaks with RL>46dB occur at 4.1GHz and 5GHz for Y and La-doped Ni–Co–Zn spinels, whereas peaks with RL>40dB appear at 18GHz and 19GHz for Y and La-doped Ni–Co spinels, respectively. The presented experimental findings underline the potential of cubic ferrites with high Co concentration in the suppression of electromagnetic reflections well above the 1GHz region. •Due to cation distribution, magnetic anisotropy drops in Y and La doped samples.•Microwave permeability spectra shift to lower frequencies with rare earth doping.•Permittivity is increased due to crystal modifications, creating dipoles.•Return losses above 40dB from 4 to 19GHz are attained when thickness equals λ/4.•The multiple reflections cancellation is favoured by high imaginary μ′′.
In this article we analyze the electromagnetic properties of rare earth substituted Ni-Co and Ni-Co-Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni0.5Co0.5Fe2-xRxO4 and Ni0.25Co0.5Zn0.25Fe2-xRxO4 (R=Y and La, x=0, 0.02), fabricated with the solid state reaction method, were characterized with regard to the complex permeability μ*(f) and permittivity ε*(f) up to 20 GHz. The rare earth substitutions basically affect the microwave μ*(f) spectra and the dynamic magnetization mechanisms of domain wall motion and magnetization rotation. Key parameters for this effect are the reduced magnetocrystalline anisotropy and the created crystal inhomogeneities. Moreover, permittivity is increased with the Y and La content, due to the enhancement of the dielectric orientation polarization. Regarding the electromagnetic wave attenuation, the prepared ferrites exhibit narrowband return losses (RL) by virtue of the cancellation of multiple reflections, when their thickness equals an odd multiple of quarter-wavelength. Interestingly, the zero-reflection conditions are satisfied in the vicinity of the ferromagnetic resonance. As the rare earth doping shifts this mechanism to lower frequencies, loss peaks with RL>46 dB occur at 4.1 GHz and 5 GHz for Y and La-doped Ni-Co-Zn spinels, whereas peaks with RL>40 dB appear at 18 GHz and 19 GHz for Y and La-doped Ni-Co spinels, respectively. The presented experimental findings underline the potential of cubic ferrites with high Co concentration in the suppression of electromagnetic reflections well above the 1 GHz region.
Author Stergiou, Charalampos
Author_xml – sequence: 1
  givenname: Charalampos
  surname: Stergiou
  fullname: Stergiou, Charalampos
  email: stergiou@cperi.certh.gr
  organization: Laboratory of Inorganic Materials, Centre for Research and Technology, Hellas, GR-57001 Thessaloniki, Greece
BookMark eNp9kbGO1DAQhi10SOwdvACVJVoSPHY2cSQatOIA6YAGGhrL64zB0cYOY-8hOt6BN-RJ8LJXUVzjGVn_5_H_zyW7iCkiY09BtCCgfzG387Israx9C9AKAQ_YBvSgmm7o-wu2EUp0jdZb9Yhd5jyLquh0v2HH9_ZrxBLccz4FPKArFBy3ceJLcJR-2Fvkdp8TrSWkyFdKK1IJmHnynCwhR0vlG5_q_cQ_hD-_fu_SP_6ur8eXyPMaIh64R6JQMD9mD709ZHxyV6_Y5-vXn3Zvm5uPb97tXt00TkldGu_HvVB62nZuO2g3Ku1BDRIdKC-V1T04O1oYJLi9Vlo67WBSSkqpnPVjr67Ys_O79d_fj5iLmdORYh1pYOyEFFsYVFXps6oazpnQGxeKPfktZMPBgDCnkM1sTiGbU8gGwNQIKyr_Q1cKi6Wf90MvzxBW67cByWQXMDqcAtUFmCmF-_C_QKCbfQ
CitedBy_id crossref_primary_10_1007_s10854_023_11551_y
crossref_primary_10_1016_j_jmmm_2018_07_075
crossref_primary_10_1016_j_jmmm_2020_167075
crossref_primary_10_1007_s12274_022_4695_6
crossref_primary_10_1016_j_ceramint_2018_06_167
crossref_primary_10_1007_s10854_023_11328_3
crossref_primary_10_1007_s41779_023_00982_9
crossref_primary_10_1016_j_jes_2019_01_019
crossref_primary_10_1080_10584587_2025_2482408
crossref_primary_10_1016_j_jmmm_2018_07_038
crossref_primary_10_1016_j_physb_2023_415135
crossref_primary_10_1016_j_jre_2020_08_011
crossref_primary_10_1016_j_ceramint_2025_07_102
crossref_primary_10_1016_j_ceramint_2024_05_376
crossref_primary_10_1002_cben_202200063
crossref_primary_10_1016_j_ceramint_2018_07_123
crossref_primary_10_1016_j_jallcom_2019_152044
crossref_primary_10_1016_j_cis_2024_103381
crossref_primary_10_1016_j_ceramint_2023_03_222
crossref_primary_10_1016_j_matchemphys_2020_124193
crossref_primary_10_1016_j_jmmm_2018_03_069
crossref_primary_10_1016_j_ceramint_2019_07_280
crossref_primary_10_1016_j_jre_2025_01_004
crossref_primary_10_1016_j_jmmm_2020_167163
crossref_primary_10_1016_j_physb_2019_411783
crossref_primary_10_1016_j_ceramint_2024_04_362
crossref_primary_10_1039_D3RA04557A
crossref_primary_10_1111_jace_18253
crossref_primary_10_3390_nano9060820
crossref_primary_10_1002_masy_201900207
crossref_primary_10_1016_j_nanoso_2025_101540
crossref_primary_10_1016_j_ceramint_2018_03_070
crossref_primary_10_1016_j_jallcom_2024_176747
crossref_primary_10_1007_s10971_020_05426_5
crossref_primary_10_1016_j_jallcom_2023_171075
crossref_primary_10_1007_s13204_020_01413_y
crossref_primary_10_1016_j_ceramint_2018_10_260
crossref_primary_10_1016_j_matpr_2023_04_591
crossref_primary_10_1007_s00339_019_2804_5
crossref_primary_10_1016_j_ceramint_2018_11_015
crossref_primary_10_1007_s10854_017_6486_5
crossref_primary_10_1016_j_jre_2022_04_028
crossref_primary_10_1016_j_materresbull_2022_111863
crossref_primary_10_1557_s43578_021_00242_1
crossref_primary_10_3390_nano9020202
crossref_primary_10_1007_s10854_024_12395_w
crossref_primary_10_1016_j_solidstatesciences_2025_107824
crossref_primary_10_1007_s00339_022_05747_y
crossref_primary_10_1016_j_jallcom_2022_167777
crossref_primary_10_1016_j_jallcom_2022_168503
crossref_primary_10_1016_j_ultsonch_2019_104638
crossref_primary_10_1016_j_inoche_2023_111583
crossref_primary_10_1016_j_jallcom_2018_08_015
crossref_primary_10_1016_j_ceramint_2019_01_056
crossref_primary_10_1016_j_ceramint_2023_09_250
crossref_primary_10_1016_j_nanoen_2018_01_038
crossref_primary_10_1016_j_jallcom_2018_11_160
crossref_primary_10_1007_s10854_022_09793_3
crossref_primary_10_1016_j_ceramint_2023_10_073
crossref_primary_10_1007_s10854_017_7649_0
crossref_primary_10_1007_s10854_020_03982_8
crossref_primary_10_1016_j_ceramint_2025_01_078
crossref_primary_10_1016_j_ceramint_2018_02_129
crossref_primary_10_1016_j_jallcom_2021_160337
crossref_primary_10_1080_00150193_2022_2102833
crossref_primary_10_1007_s10854_021_05592_4
crossref_primary_10_1016_j_jallcom_2023_170074
crossref_primary_10_1016_j_jmmm_2021_167925
crossref_primary_10_1063_5_0123263
crossref_primary_10_1016_j_matchemphys_2022_127086
crossref_primary_10_1016_j_jallcom_2022_164637
crossref_primary_10_3390_ijms232214167
crossref_primary_10_1016_j_cap_2022_05_012
crossref_primary_10_1007_s11664_017_5855_4
crossref_primary_10_1016_j_jmmm_2023_171449
crossref_primary_10_3390_nano13030527
crossref_primary_10_1007_s10832_021_00246_7
crossref_primary_10_1016_j_jeurceramsoc_2021_11_026
crossref_primary_10_1007_s10971_020_05235_w
crossref_primary_10_1007_s10948_017_4141_2
crossref_primary_10_1007_s00339_024_07476_w
crossref_primary_10_1007_s11664_024_11195_6
crossref_primary_10_1016_j_inoche_2023_111496
crossref_primary_10_1007_s10854_018_9909_z
crossref_primary_10_1007_s10854_021_06913_3
crossref_primary_10_1016_j_ceramint_2022_07_338
crossref_primary_10_1016_j_jre_2025_04_006
crossref_primary_10_1007_s11664_018_6349_8
Cites_doi 10.1109/TMAG.2011.2148109
10.1007/s10948-013-2340-z
10.1016/j.jmmm.2013.10.056
10.1109/TMAG.2011.2180732
10.1109/TMAG.2014.2357851
10.1016/j.jmmm.2010.10.037
10.1002/0470867965
10.1016/j.ceramint.2015.11.101
10.1143/JJAP.12.678
10.1016/j.pmatsci.2012.04.001
10.1063/1.3507266
10.1109/TMAG.2013.2284053
10.4236/ojmetal.2012.22006
10.1016/j.jmmm.2011.04.021
10.1016/j.jmmm.2013.12.024
10.1155/2016/1934783
10.1016/j.ceramint.2013.06.010
10.1109/TMAG.2011.2171331
10.1016/j.ceramint.2016.01.180
10.2497/jjspm.61.S227
10.1109/20.278871
10.1063/1.4913700
10.1063/1.1709512
10.1016/j.jmmm.2015.10.129
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright Elsevier BV Mar 15, 2017
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 15, 2017
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jmmm.2016.11.001
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-4766
EndPage 635
ExternalDocumentID 10_1016_j_jmmm_2016_11_001
S0304885316315864
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29K
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
D-I
EFKBS
FGOYB
G-2
HMV
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
XXG
~HD
7SR
7U5
8BQ
8FD
AFXIZ
AGCQF
AGRNS
JG9
L7M
SSH
ID FETCH-LOGICAL-c328t-ff9b038d54c578c938f1372ec13f23a861ca9a1721cb8382c8c1d332223caf963
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397198500096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-8853
IngestDate Fri Jul 25 02:50:59 EDT 2025
Tue Nov 18 21:53:48 EST 2025
Sat Nov 29 03:11:05 EST 2025
Fri Feb 23 02:27:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Magnetic materials
Ceramics
Dielectric properties
Magnetic properties
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-ff9b038d54c578c938f1372ec13f23a861ca9a1721cb8382c8c1d332223caf963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1940205173
PQPubID 2045450
PageCount 7
ParticipantIDs proquest_journals_1940205173
crossref_citationtrail_10_1016_j_jmmm_2016_11_001
crossref_primary_10_1016_j_jmmm_2016_11_001
elsevier_sciencedirect_doi_10_1016_j_jmmm_2016_11_001
PublicationCentury 2000
PublicationDate 2017-03-15
PublicationDateYYYYMMDD 2017-03-15
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of magnetism and magnetic materials
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Stergiou (bib9) 2016; 2016
Smit, Wijn (bib3) 1959
Stergiou, Litsardakis (bib6) 2011; 323
Soka, Usakova, Usak, Dosoudil, Lokaj (bib21) 2014; 50
Cullity, Graham (bib26) 2009
Sebastian (bib32) 2008
Ren, Xu (bib33) 2014; 354
Ibrahim, Hashim, Nazlan, Ismail, Ab Rahman, Abdullah, Idris, Shafie, Zulkimi (bib14) 2014; 355
C. Stergiou, G. Litsardakis, Structural and magnetic properties of yttrium and lanthanum-doped Ni–Co and Ni–Co–Zn spinel ferrites, in: AIP Conference Proceedings, vol. 1627, 2014, pp. 117–122.
Stergiou, Litsardakis (bib35) 2012; 48
Groenou, Schulkes (bib27) 1967; 38
Brabers (bib1) 2007
Stergiou, Zaspalis (bib10) 2014; 40
Harris (bib4) 2012; 48
Chikazumi (bib29) 1997
Mikami (bib16) 1973; 12
Chen, Gu (bib34) 2012; 2
D. Jiles, Introduction to Magnetism and Magnetic Materials, second ed., Chapman & Hall/CRC, Boca Raton, 1997.
Valenzuela (bib7) 1994
Wu, Yan, Liu, Feng, Chen, Harris (bib12) 2016; 401
Jacobo, Bercoff (bib22) 2016; 42
A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd ed., John Wiley & Sons Ltd., UK, 2003.
Mattei, Huitema, Queffelec, Pintos, Minard, Sharahia, Jamnier, Ferrero, Staraj, Souriou, Thakur (bib11) 2011; 47
Soka, Usakova, Dosoudil, Usak, Dobrocka (bib20) 2015; 51
Clausell, Barba, Nuno, Jarque (bib13) 2016; 42
Pullar (bib5) 2012; 57
Lucas, Lebourgeois, Mazaleyrat, Laboure (bib18) 2011; 323
J. Baker-Jarvis, M.D. Janezic, B.F. Riddle, R.T. Johnk, P. Kabos, C.L Holloway, R.G. Geyer, C.A. Grosvenor, Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials and Negative-Index Materials, National Institute of Standards and Technology, US Department of Commerce, Technical Note 1536, February 2005.
A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, NY, 1990.
Lucas, Lebourgeois, Mazaleyrat, Laboure (bib19) 2010; 97
Liu, Lv, Zhou, Chen, Bian, Liu (bib28) 2012; 13
Brun, Lebourgeois, Laboure (bib17) 2014; 61
Mattei, Le Guen, Chevalier (bib15) 2015; 117
Yehia, Ismail, Hashhash (bib23) 2014; 27
Yin, Liao (bib31) 1991; 27
Chikazumi (10.1016/j.jmmm.2016.11.001_bib29) 1997
10.1016/j.jmmm.2016.11.001_bib8
Valenzuela (10.1016/j.jmmm.2016.11.001_bib7) 1994
10.1016/j.jmmm.2016.11.001_bib30
Sebastian (10.1016/j.jmmm.2016.11.001_bib32) 2008
Brabers (10.1016/j.jmmm.2016.11.001_bib1) 2007
Ren (10.1016/j.jmmm.2016.11.001_bib33) 2014; 354
Wu (10.1016/j.jmmm.2016.11.001_bib12) 2016; 401
Mattei (10.1016/j.jmmm.2016.11.001_bib15) 2015; 117
10.1016/j.jmmm.2016.11.001_bib2
Yin (10.1016/j.jmmm.2016.11.001_bib31) 1991; 27
Stergiou (10.1016/j.jmmm.2016.11.001_bib6) 2011; 323
Lucas (10.1016/j.jmmm.2016.11.001_bib18) 2011; 323
Smit (10.1016/j.jmmm.2016.11.001_bib3) 1959
Harris (10.1016/j.jmmm.2016.11.001_bib4) 2012; 48
Stergiou (10.1016/j.jmmm.2016.11.001_bib9) 2016; 2016
Cullity (10.1016/j.jmmm.2016.11.001_bib26) 2009
Lucas (10.1016/j.jmmm.2016.11.001_bib19) 2010; 97
Jacobo (10.1016/j.jmmm.2016.11.001_bib22) 2016; 42
10.1016/j.jmmm.2016.11.001_bib25
Mattei (10.1016/j.jmmm.2016.11.001_bib11) 2011; 47
10.1016/j.jmmm.2016.11.001_bib24
Mikami (10.1016/j.jmmm.2016.11.001_bib16) 1973; 12
Liu (10.1016/j.jmmm.2016.11.001_bib28) 2012; 13
Chen (10.1016/j.jmmm.2016.11.001_bib34) 2012; 2
Yehia (10.1016/j.jmmm.2016.11.001_bib23) 2014; 27
Groenou (10.1016/j.jmmm.2016.11.001_bib27) 1967; 38
Soka (10.1016/j.jmmm.2016.11.001_bib21) 2014; 50
Pullar (10.1016/j.jmmm.2016.11.001_bib5) 2012; 57
Stergiou (10.1016/j.jmmm.2016.11.001_bib10) 2014; 40
Soka (10.1016/j.jmmm.2016.11.001_bib20) 2015; 51
Clausell (10.1016/j.jmmm.2016.11.001_bib13) 2016; 42
Brun (10.1016/j.jmmm.2016.11.001_bib17) 2014; 61
Stergiou (10.1016/j.jmmm.2016.11.001_bib35) 2012; 48
Ibrahim (10.1016/j.jmmm.2016.11.001_bib14) 2014; 355
References_xml – volume: 354
  start-page: 44
  year: 2014
  end-page: 48
  ident: bib33
  article-title: Electromagnetic and microwave absorbing properties of NiCoZn-ferrites doped with La
  publication-title: J. Magn. Magn. Mater.
– volume: 51
  start-page: 2000504
  year: 2015
  ident: bib20
  article-title: Magnetic and structural properties of nickel zinc ferrites doped with yttrium
  publication-title: IEEE Trans. Magn.
– volume: 42
  start-page: 4256
  year: 2016
  end-page: 4261
  ident: bib13
  article-title: Effect of average grain size and sintered relative density on the imaginary part – μ′′ of the complex magnetic permeability of (Cu
  publication-title: Ceram. Int.
– year: 2007
  ident: bib1
  article-title: Ferrimagnetic insulators
  publication-title: Handbook of Magnetism and Advanced Magnetic Materials
– volume: 97
  start-page: 182502
  year: 2010
  ident: bib19
  article-title: Temperature dependence of spin resonance in cobalt substituted NiZnCu ferrites
  publication-title: Appl. Phys. Lett.
– reference: D. Jiles, Introduction to Magnetism and Magnetic Materials, second ed., Chapman & Hall/CRC, Boca Raton, 1997.
– volume: 2016
  start-page: 1934783
  year: 2016
  ident: bib9
  article-title: Microstructure and electromagnetic properties of Ni–Zn–Co ferrites up to 20
  publication-title: Adv. Mater. Sci. Eng.
– volume: 12
  start-page: 678
  year: 1973
  end-page: 693
  ident: bib16
  article-title: Role of induced anisotropy in magnetic spectra of cobalt-substituted nickel-zinc ferrites
  publication-title: Jpn. J. Appl. Phys.
– year: 1959
  ident: bib3
  publication-title: Ferrites
– volume: 48
  start-page: 1075
  year: 2012
  end-page: 1104
  ident: bib4
  article-title: Modern microwave ferrites
  publication-title: IEEE Trans. Magn.
– volume: 47
  start-page: 3720
  year: 2011
  end-page: 3723
  ident: bib11
  article-title: Suitability of Ni–Zn ferrites ceramics with controlled porosity as granular substrates for mobile handset miniaturized antennas
  publication-title: IEEE Trans. Magn.
– volume: 401
  start-page: 1093
  year: 2016
  end-page: 1096
  ident: bib12
  article-title: Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications
  publication-title: J. Magn. Magn. Mater.
– volume: 50
  start-page: 2800304
  year: 2014
  ident: bib21
  article-title: Magnetic properties analysis of rare-earth substituted nickel zinc ferrites
  publication-title: IEEE Trans. Magn.
– volume: 57
  start-page: 1191
  year: 2012
  end-page: 1334
  ident: bib5
  article-title: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics
  publication-title: Prog. Mater. Sci.
– volume: 323
  start-page: 2362
  year: 2011
  end-page: 2368
  ident: bib6
  article-title: Preparation and magnetic characterization of Co
  publication-title: J. Magn. Magn. Mater.
– year: 1997
  ident: bib29
  article-title: Physics of Ferromagnetism
– volume: 61
  start-page: S227
  year: 2014
  end-page: S230
  ident: bib17
  article-title: Low permeability ferrite with low losses at high frequency
  publication-title: J. Jpn. Soc. Powder Powder Metall.
– volume: 355
  start-page: 265
  year: 2014
  end-page: 277
  ident: bib14
  article-title: Grouping trends of magnetic permeability components in their parallel evolution with microstructure in Ni
  publication-title: J. Magn. Magn. Mater.
– volume: 27
  start-page: 5459
  year: 1991
  end-page: 5461
  ident: bib31
  article-title: Permeability spectra of Co substituted Ni ferrites
  publication-title: IEEE Trans. Magn.
– reference: C. Stergiou, G. Litsardakis, Structural and magnetic properties of yttrium and lanthanum-doped Ni–Co and Ni–Co–Zn spinel ferrites, in: AIP Conference Proceedings, vol. 1627, 2014, pp. 117–122.
– volume: 117
  start-page: 084904
  year: 2015
  ident: bib15
  article-title: Dense and half-Dense NiZnCo ferrite ceramics: their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies
  publication-title: J. Appl. Phys.
– reference: A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, NY, 1990.
– volume: 323
  start-page: 735
  year: 2011
  end-page: 739
  ident: bib18
  article-title: Temperature dependence of core loss in cobalt substituted Ni-Zn-Cu ferrites
  publication-title: J. Magn. Magn. Mater.
– volume: 13
  start-page: 110
  year: 2012
  end-page: 116
  ident: bib28
  article-title: Influence of nickel-zinc ratio on microstructure, magnetic and dielectric properties of Ni
  publication-title: J. Ceram. Process. Res.
– volume: 40
  start-page: 357
  year: 2014
  end-page: 366
  ident: bib10
  article-title: Analysis of the complex permeability of NiCuZn ferrites up to 1
  publication-title: Ceram. Int.
– year: 2008
  ident: bib32
  article-title: Dielectric Materials for Wireless Communication
– reference: J. Baker-Jarvis, M.D. Janezic, B.F. Riddle, R.T. Johnk, P. Kabos, C.L Holloway, R.G. Geyer, C.A. Grosvenor, Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials and Negative-Index Materials, National Institute of Standards and Technology, US Department of Commerce, Technical Note 1536, February 2005.
– year: 2009
  ident: bib26
  publication-title: Introduction to Magnetic Materials
– year: 1994
  ident: bib7
  publication-title: Magnetic Ceramics
– reference: A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd ed., John Wiley & Sons Ltd., UK, 2003.
– volume: 2
  start-page: 37
  year: 2012
  end-page: 41
  ident: bib34
  article-title: Microstructure and microwave absorption properties of Y-substituted Ni–Zn ferrites
  publication-title: Open J. Met.
– volume: 48
  start-page: 1516
  year: 2012
  end-page: 1519
  ident: bib35
  article-title: Design of microwave absorbing coatings with new Ni and La doped SrCo
  publication-title: IEEE Trans. Magn.
– volume: 27
  start-page: 771
  year: 2014
  end-page: 774
  ident: bib23
  article-title: Structural and magnetic studies of rare-earth substituted nickel ferrites
  publication-title: J. Supercond. Nov. Magn.
– volume: 38
  start-page: 1133
  year: 1967
  end-page: 1134
  ident: bib27
  article-title: Magnetic anisotropy of some nickel zinc ferrite crystals
  publication-title: J. Appl. Phys.
– volume: 42
  start-page: 7664
  year: 2016
  end-page: 7668
  ident: bib22
  article-title: Structural and electromagnetic properties of yttrium-substituted Ni–Zn ferrites
  publication-title: Ceram. Int.
– volume: 47
  start-page: 3720
  year: 2011
  ident: 10.1016/j.jmmm.2016.11.001_bib11
  article-title: Suitability of Ni–Zn ferrites ceramics with controlled porosity as granular substrates for mobile handset miniaturized antennas
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2148109
– year: 1997
  ident: 10.1016/j.jmmm.2016.11.001_bib29
– volume: 27
  start-page: 771
  year: 2014
  ident: 10.1016/j.jmmm.2016.11.001_bib23
  article-title: Structural and magnetic studies of rare-earth substituted nickel ferrites
  publication-title: J. Supercond. Nov. Magn.
  doi: 10.1007/s10948-013-2340-z
– year: 2008
  ident: 10.1016/j.jmmm.2016.11.001_bib32
– volume: 354
  start-page: 44
  year: 2014
  ident: 10.1016/j.jmmm.2016.11.001_bib33
  article-title: Electromagnetic and microwave absorbing properties of NiCoZn-ferrites doped with La3+
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2013.10.056
– volume: 48
  start-page: 1075
  year: 2012
  ident: 10.1016/j.jmmm.2016.11.001_bib4
  article-title: Modern microwave ferrites
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2180732
– volume: 51
  start-page: 2000504
  year: 2015
  ident: 10.1016/j.jmmm.2016.11.001_bib20
  article-title: Magnetic and structural properties of nickel zinc ferrites doped with yttrium
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2014.2357851
– volume: 13
  start-page: 110
  year: 2012
  ident: 10.1016/j.jmmm.2016.11.001_bib28
  article-title: Influence of nickel-zinc ratio on microstructure, magnetic and dielectric properties of Ni1−xZnxFe2O4 ferrites
  publication-title: J. Ceram. Process. Res.
– volume: 323
  start-page: 735
  year: 2011
  ident: 10.1016/j.jmmm.2016.11.001_bib18
  article-title: Temperature dependence of core loss in cobalt substituted Ni-Zn-Cu ferrites
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2010.10.037
– ident: 10.1016/j.jmmm.2016.11.001_bib8
  doi: 10.1002/0470867965
– volume: 42
  start-page: 4256
  year: 2016
  ident: 10.1016/j.jmmm.2016.11.001_bib13
  article-title: Effect of average grain size and sintered relative density on the imaginary part – μ′′ of the complex magnetic permeability of (Cu0.12Ni0.23Zn0.65)Fe2O4 system
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.11.101
– volume: 12
  start-page: 678
  year: 1973
  ident: 10.1016/j.jmmm.2016.11.001_bib16
  article-title: Role of induced anisotropy in magnetic spectra of cobalt-substituted nickel-zinc ferrites
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.12.678
– ident: 10.1016/j.jmmm.2016.11.001_bib25
– volume: 57
  start-page: 1191
  year: 2012
  ident: 10.1016/j.jmmm.2016.11.001_bib5
  article-title: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2012.04.001
– year: 1994
  ident: 10.1016/j.jmmm.2016.11.001_bib7
– volume: 97
  start-page: 182502
  year: 2010
  ident: 10.1016/j.jmmm.2016.11.001_bib19
  article-title: Temperature dependence of spin resonance in cobalt substituted NiZnCu ferrites
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3507266
– volume: 50
  start-page: 2800304
  year: 2014
  ident: 10.1016/j.jmmm.2016.11.001_bib21
  article-title: Magnetic properties analysis of rare-earth substituted nickel zinc ferrites
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2013.2284053
– volume: 2
  start-page: 37
  year: 2012
  ident: 10.1016/j.jmmm.2016.11.001_bib34
  article-title: Microstructure and microwave absorption properties of Y-substituted Ni–Zn ferrites
  publication-title: Open J. Met.
  doi: 10.4236/ojmetal.2012.22006
– volume: 323
  start-page: 2362
  year: 2011
  ident: 10.1016/j.jmmm.2016.11.001_bib6
  article-title: Preparation and magnetic characterization of Co2-W strontium hexaferrites doped with Ni and La
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2011.04.021
– ident: 10.1016/j.jmmm.2016.11.001_bib2
– volume: 355
  start-page: 265
  year: 2014
  ident: 10.1016/j.jmmm.2016.11.001_bib14
  article-title: Grouping trends of magnetic permeability components in their parallel evolution with microstructure in Ni0.3Zn0.7Fe2O4
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2013.12.024
– year: 2009
  ident: 10.1016/j.jmmm.2016.11.001_bib26
– volume: 2016
  start-page: 1934783
  year: 2016
  ident: 10.1016/j.jmmm.2016.11.001_bib9
  article-title: Microstructure and electromagnetic properties of Ni–Zn–Co ferrites up to 20GHz
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2016/1934783
– volume: 40
  start-page: 357
  year: 2014
  ident: 10.1016/j.jmmm.2016.11.001_bib10
  article-title: Analysis of the complex permeability of NiCuZn ferrites up to 1GHz with regard to Cu content and sintering temperature
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.06.010
– year: 1959
  ident: 10.1016/j.jmmm.2016.11.001_bib3
– volume: 48
  start-page: 1516
  year: 2012
  ident: 10.1016/j.jmmm.2016.11.001_bib35
  article-title: Design of microwave absorbing coatings with new Ni and La doped SrCo2–W hexaferrites
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2171331
– volume: 42
  start-page: 7664
  year: 2016
  ident: 10.1016/j.jmmm.2016.11.001_bib22
  article-title: Structural and electromagnetic properties of yttrium-substituted Ni–Zn ferrites
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.01.180
– volume: 61
  start-page: S227
  year: 2014
  ident: 10.1016/j.jmmm.2016.11.001_bib17
  article-title: Low permeability ferrite with low losses at high frequency
  publication-title: J. Jpn. Soc. Powder Powder Metall.
  doi: 10.2497/jjspm.61.S227
– ident: 10.1016/j.jmmm.2016.11.001_bib30
– year: 2007
  ident: 10.1016/j.jmmm.2016.11.001_bib1
  article-title: Ferrimagnetic insulators
– volume: 27
  start-page: 5459
  year: 1991
  ident: 10.1016/j.jmmm.2016.11.001_bib31
  article-title: Permeability spectra of Co substituted Ni ferrites
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.278871
– volume: 117
  start-page: 084904
  year: 2015
  ident: 10.1016/j.jmmm.2016.11.001_bib15
  article-title: Dense and half-Dense NiZnCo ferrite ceramics: their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4913700
– volume: 38
  start-page: 1133
  year: 1967
  ident: 10.1016/j.jmmm.2016.11.001_bib27
  article-title: Magnetic anisotropy of some nickel zinc ferrite crystals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1709512
– volume: 401
  start-page: 1093
  year: 2016
  ident: 10.1016/j.jmmm.2016.11.001_bib12
  article-title: Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.10.129
– ident: 10.1016/j.jmmm.2016.11.001_bib24
SSID ssj0001486
ssib019626450
Score 2.5084152
Snippet In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their...
In this article we analyze the electromagnetic properties of rare earth substituted Ni-Co and Ni-Co-Zn cubic ferrites in the microwave band, along with their...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 629
SubjectTerms Anisotropy
Ceramics
Chemical compounds
Dielectric properties
Domain walls
Electromagnetic properties
Electromagnetics
Ferrites
Ferromagnetic resonance
Ferromagnetism
Magnetic materials
Magnetic permeability
Magnetic properties
Magnetic resonance
Magnetization
Microwave absorption
Narrowband
Permeability
Permittivity
Rare earth elements
Solid state
Spinel
Wave attenuation
Zinc
Title Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites
URI https://dx.doi.org/10.1016/j.jmmm.2016.11.001
https://www.proquest.com/docview/1940205173
Volume 426
WOSCitedRecordID wos000397198500096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001486
  issn: 0304-8853
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLfKBhIXxF8xGMgHbiVTHTuJfZyqIUBQcRio2iVKnHq0apMoTceOO-0L8A35JLwXO-naaRM7IEWWY8WW4_fz88vLz8-EvBNgEvgiUl6oROSJlPueSkXqJaEOhIkM85vwxT--RKORHI_Vt17vst0LczaP8lyen6vyv4oaykDYuHX2DuLuGoUCyIPQIQWxQ_pPgv-anOa4MxEHL5vaY25cUNYFsu9-4XlDSbosKqstSnTHVxhXFQ3HCplgMCT1z34G5RlApeVD8GHRtLJR0mVP8v6yBJN13jcY7LF23MTrdu_C9s-dzeHuNGRqOzqdzwfuT6fFqiUFJIDdsthwU8DSh5y34Io24wPhSWkjA7eqV_hXlWfofB92HQ5tGJNrKt56G2YHs8UCIwmw8ACjsDqPyEY87a11rmMftsS2WYxtxNgGfAghu-8e2fWjQIF23D38dDT-3K3p8NFo_3q7l3DbryxTcLsnN5k4W4t9Y8EcPyaPnAjooYXME9Kb5E_Jg4YCrJfPyKoFznu6hg0FGdEONnQNG7qGDS0MRdjQBja0gQ0dTf9c_B4WTX2Xh-QkpxYktAXJc_L9w9Hx8KPnDuXwNPdl7Rmj0gGXWSA0KHutuDSMR_5EM258nsiQ6UQl6FjQqeTS11KzjOP_PK4TA-r-BdnJi3zyklBQA2GSgQkphIFLqoGcBEobluF4D_w9wtpxjLWLWI8Hp8zjmyW4R_pdndLGa7n16aAVT-wsTmtJxoC2W-vtt7KM3dRfxkyhLyZgEX91p068Jg_XE2af7NTVavKG3NdnMBWrtw6JfwGZDKyO
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic%2C+dielectric+and+microwave+absorption+properties+of+rare+earth+doped+Ni%E2%80%93Co+and+Ni%E2%80%93Co%E2%80%93Zn+spinel+ferrites&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Stergiou%2C+Charalampos&rft.date=2017-03-15&rft.issn=0304-8853&rft.volume=426&rft.spage=629&rft.epage=635&rft_id=info:doi/10.1016%2Fj.jmmm.2016.11.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmmm_2016_11_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon