A Improved Archimedes Optimization Algorithm for multi/single-objective Optimal Power Flow
•Proposed a novel Improved Archimedes Optimization Algorithm•A statistical performance-evaluation proved the validity and effectiveness of the IAOA method•Reducing fossil-based thermal power generation capacity in the region (in the current power system) with OPF by incorporating renewable energy so...
Gespeichert in:
| Veröffentlicht in: | Electric power systems research Jg. 206; S. 107796 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.05.2022
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0378-7796, 1873-2046 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Proposed a novel Improved Archimedes Optimization Algorithm•A statistical performance-evaluation proved the validity and effectiveness of the IAOA method•Reducing fossil-based thermal power generation capacity in the region (in the current power system) with OPF by incorporating renewable energy sources to reduce fuel emissions
In this paper, an Improved Archimedes Optimization Algorithm (IAOA) is proposed to solve the Optimal Power Flow problem (OPF). The purpose of improving this IAOA algorithm is to increase population diversity in AOA, further improve the balance between the exploitation and exploration of AOA, and avoid premature convergence problems. The IAOA strategy uses a different approach to build a neighborhood for each object in which neighbor data can be transferred between objects. Dimension learning-based strategy is used for this process. The IAOA and AOA have been examined on the IEEE 30-bus, IEEE 57-bus and 16-bus South Marmara regional transmission systems. The effectiveness of the proposed IAOA and AOA are tested with the standard IEEE 30-bus and IEEE 57-bus system and the simulation results are compared with different techniques as available published in the literature in recent years. In addition, in this study, an Offshore Wind Farm (OWF) and 16-bus South Marmara transmission system is modeled, and later OWF is integrated into a 16-bus South Marmara transmission system. Afterward, IAOA and other algorithms have tested for minimization of fuel emissions in this transmission system. The obtained simulation results and the comparison with different techniques show that the IAOA provides robustness.
Graphical Abstract
[Display omitted] . |
|---|---|
| AbstractList | •Proposed a novel Improved Archimedes Optimization Algorithm•A statistical performance-evaluation proved the validity and effectiveness of the IAOA method•Reducing fossil-based thermal power generation capacity in the region (in the current power system) with OPF by incorporating renewable energy sources to reduce fuel emissions
In this paper, an Improved Archimedes Optimization Algorithm (IAOA) is proposed to solve the Optimal Power Flow problem (OPF). The purpose of improving this IAOA algorithm is to increase population diversity in AOA, further improve the balance between the exploitation and exploration of AOA, and avoid premature convergence problems. The IAOA strategy uses a different approach to build a neighborhood for each object in which neighbor data can be transferred between objects. Dimension learning-based strategy is used for this process. The IAOA and AOA have been examined on the IEEE 30-bus, IEEE 57-bus and 16-bus South Marmara regional transmission systems. The effectiveness of the proposed IAOA and AOA are tested with the standard IEEE 30-bus and IEEE 57-bus system and the simulation results are compared with different techniques as available published in the literature in recent years. In addition, in this study, an Offshore Wind Farm (OWF) and 16-bus South Marmara transmission system is modeled, and later OWF is integrated into a 16-bus South Marmara transmission system. Afterward, IAOA and other algorithms have tested for minimization of fuel emissions in this transmission system. The obtained simulation results and the comparison with different techniques show that the IAOA provides robustness.
Graphical Abstract
[Display omitted] . In this paper, an Improved Archimedes Optimization Algorithm (IAOA) is proposed to solve the Optimal Power Flow problem (OPF). The purpose of improving this IAOA algorithm is to increase population diversity in AOA, further improve the balance between the exploitation and exploration of AOA, and avoid premature convergence problems. The IAOA strategy uses a different approach to build a neighborhood for each object in which neighbor data can be transferred between objects. Dimension learning-based strategy is used for this process. The IAOA and AOA have been examined on the IEEE 30-bus, IEEE 57-bus and 16-bus South Marmara regional transmission systems. The effectiveness of the proposed IAOA and AOA are tested with the standard IEEE 30-bus and IEEE 57-bus system and the simulation results are compared with different techniques as available published in the literature in recent years. In addition, in this study, an Offshore Wind Farm (OWF) and 16-bus South Marmara transmission system is modeled, and later OWF is integrated into a 16-bus South Marmara transmission system. Afterward, IAOA and other algorithms have tested for minimization of fuel emissions in this transmission system. The obtained simulation results and the comparison with different techniques show that the IAOA provides robustness. |
| ArticleNumber | 107796 |
| Author | Akdag, Ozan |
| Author_xml | – sequence: 1 givenname: Ozan surname: Akdag fullname: Akdag, Ozan email: d3615190253@ogr.inonu.edu.tr organization: Turkish Electricity Transmission Corporation, Malatya, Turkey |
| BookMark | eNp9kLFOwzAQhi1UJNrCCzBFYk5rO04cSyxVRaFSpTLAwmIlzqV1lMTFdlvB05MQJoZOJ53uu7v_m6BRa1pA6J7gGcEkmVczODg7o5jSrsG5SK7QmKQ8CilmyQiNccTTsO_foIlzFcY4ETweo49FsG4O1pygCBZW7XUDBbhge_C60d-Z16YNFvXOWO33TVAaGzTH2uu50-2uhtDkFSivTzAQWR28mjPYYFWb8y26LrPawd1fnaL31dPb8iXcbJ_Xy8UmVBFNfViWackELXjOqMCszHkuEshIhnmSixhiKiJOFGUFwySCWLGCF2lM4ijCKuVZNEUPw94uxucRnJeVOdq2OylpIhgTJGasm6LDlLLGOQulPNjuYfslCZa9Q1nJ3qHsHcrBYQel_yCl_a8UbzNdX0YfBxS66CcNVjqloVVQaNspk4XRl_AfOTmPLg |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2023_122460 crossref_primary_10_1007_s11356_023_29498_2 crossref_primary_10_1016_j_cviu_2024_103933 crossref_primary_10_3390_app13053330 crossref_primary_10_1016_j_chaos_2023_114028 crossref_primary_10_1049_gtd2_13076 crossref_primary_10_1016_j_compeleceng_2025_110230 crossref_primary_10_1016_j_energy_2024_131684 crossref_primary_10_1016_j_heliyon_2025_e41915 crossref_primary_10_3390_math11051250 crossref_primary_10_1109_ACCESS_2025_3556168 crossref_primary_10_1155_2022_7694026 crossref_primary_10_1016_j_egyr_2024_12_020 crossref_primary_10_1007_s00521_023_08769_6 crossref_primary_10_1007_s00202_024_02535_0 crossref_primary_10_1007_s11053_025_10546_2 crossref_primary_10_3390_pr12020406 crossref_primary_10_1007_s11831_023_09975_0 crossref_primary_10_1016_j_eswa_2023_122367 crossref_primary_10_1016_j_heliyon_2024_e32862 crossref_primary_10_3390_electronics11050831 crossref_primary_10_1016_j_epsr_2023_109503 crossref_primary_10_1049_stg2_12171 crossref_primary_10_1155_jece_6682046 crossref_primary_10_1007_s11831_022_09876_8 crossref_primary_10_1080_02286203_2025_2523064 crossref_primary_10_1007_s00521_024_10312_0 crossref_primary_10_1088_1402_4896_adbfd6 crossref_primary_10_1016_j_eswa_2023_119863 crossref_primary_10_1108_K_08_2023_1580 crossref_primary_10_1007_s00202_024_02937_0 crossref_primary_10_1016_j_asoc_2024_112155 crossref_primary_10_1016_j_egyr_2023_12_053 crossref_primary_10_1007_s11831_025_10326_4 crossref_primary_10_1016_j_rineng_2025_106520 crossref_primary_10_1007_s00521_024_09497_1 crossref_primary_10_3390_en16155800 crossref_primary_10_1007_s00500_022_07668_7 crossref_primary_10_1080_15325008_2022_2136295 crossref_primary_10_1093_jcde_qwad017 crossref_primary_10_1007_s13369_023_07803_y crossref_primary_10_1016_j_aej_2025_02_037 crossref_primary_10_1038_s41598_025_98899_9 crossref_primary_10_1080_15325008_2023_2239237 crossref_primary_10_1016_j_egyr_2024_04_016 crossref_primary_10_1016_j_enbuild_2024_114690 |
| Cites_doi | 10.1080/15325008.2015.1115919 10.1016/j.ijepes.2013.04.021 10.1016/j.asoc.2017.01.030 10.1049/iet-smt.2018.5194 10.1016/S0096-3003(03)00785-9 10.1016/j.asoc.2016.01.041 10.1016/j.asoc.2020.106252 10.1016/j.engappai.2017.10.019 10.1016/j.eswa.2020.113917 10.1049/iet-gtd.2015.0892 10.1080/23311916.2016.1208942 10.48084/etasr.3511 10.1016/j.enconman.2012.02.024 10.1016/j.asoc.2015.10.057 10.1016/j.conengprac.2017.02.010 10.1016/j.energy.2011.09.027 10.1002/etep.2743 10.1080/15325008.2014.949912 10.1049/iet-gtd.2011.0851 10.5120/7628-0695 10.1016/j.asoc.2015.11.027 10.1016/j.ijepes.2015.05.011 10.1080/15325008.2015.1041625 10.1002/ghg.1963 10.1016/j.ijepes.2016.02.004 10.1109/TEC.2002.801992 10.1016/j.esr.2018.10.007 10.1007/s00202-019-00762-4 10.1016/j.epsr.2016.09.025 10.1016/j.energy.2019.01.021 10.1016/j.ijepes.2018.01.024 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier Science Ltd. May 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. May 2022 |
| DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1016/j.epsr.2022.107796 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2046 |
| ExternalDocumentID | 10_1016_j_epsr_2022_107796 S0378779622000268 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c328t-ff8f492d7b42904fb7b96ea1a076b95e529371c24d4013e5c4d7d8515330c87a3 |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794858100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7796 |
| IngestDate | Sun Nov 09 06:33:41 EST 2025 Sat Nov 29 07:17:05 EST 2025 Tue Nov 18 21:32:25 EST 2025 Fri Feb 23 02:39:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Green energy Fuel emissions OPF Improved Archimedes optimization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-ff8f492d7b42904fb7b96ea1a076b95e529371c24d4013e5c4d7d8515330c87a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2694491544 |
| PQPubID | 2047565 |
| ParticipantIDs | proquest_journals_2694491544 crossref_primary_10_1016_j_epsr_2022_107796 crossref_citationtrail_10_1016_j_epsr_2022_107796 elsevier_sciencedirect_doi_10_1016_j_epsr_2022_107796 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | El-Hana, Bouchekara, Chaib (bib0035) 2016; 44 Gupta, Swarnkar, Wadhwani (bib0002) 2012; 49 Daryani, Hagh, Teimourzadeh (bib0005) 2016; 38 (bib0016) 2020 Chaib, Bouchekara, Mehasni, Abido (bib0028) 2016; 81 Bouchekara (bib0011) 2014 Singh, Mukherjee, Ghoshal (bib0031) 2016; 40 Bouchekara, Chaib, Abido, El-Sehiemy (bib0034) 2016; 42 Mohamed, Mohamed, El-Gaafary, Hemeida (bib0006) 2017; 142 Akdağ, Yeroglu (bib0039) 2020; 10 Attia, El Sehiemy, Hasanien (bib0020) 2018; 99 (bib0038) 2021 Biswas, Suganthan, Mallipeddi, Amaratunga (bib0024) 2018; 68 Shaheen, El-Sehiemy, Farrag (bib0026) 2016; 10 S. Duman, U. Güvenç, Y. Sönmez, N. Yörükeren. Optimal power flow using gravitational search algorithm. Energy Conversion and Management. (2012) 59 86-95. http://dx.doi.org/10.1016/j.enconman.2012.02.024. Akdag, Ates, Yeroglu (bib0007) 2020 Bai, Eke, Lee (bib0018) 2017; 61 Adaryani, Karami (bib0003) 2013; 53 Kumar, Premalatha (bib0027) 2015; 73 Warid, W (bib0021) 2020; 91 Cali, Erdogan, Kucuksari, Argin (bib0013) 2018; 22 Pulluri, Naresh, Sharma (bib0019) 2017; 54 Taher, Kamel, Jurado, Ebeed (bib0022) 2019; 29 Bouchekara (bib0012) 2019; 13 Kaur, Kaur, Singh (bib0014) 2021 Niknam, Narimani, Aghaei, Azizipanah-Abarghooee (bib0029) 2012; 6 Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (bib0008) 2020 Roselyn, Devaraj, Dash (bib0004) 2011 Osman, Abo-Sinna, Mousa, A (bib0010) 2004; 155 Trivedi, Jangir, Parmar (bib0033) 2016; 3 Niknam, Rasoul, Jabbari, Malekpour (bib0001) 2011; 36 Raviprabakaran, Subramanian (bib0030) 2018; 9 Taher, Kamel, Jurado, Ebeed (bib0023) 2019; 101 Nadimi-Shahraki, Taghian, Mirjalili (bib0015) 2021; 166 Bouchekara, Abido (bib0036) 2014; 42 Duong, Nguyen (bib0025) 2020; 10 Abido (bib0009) 2002; 17 El-Fergany, Hasanien (bib0032) 2015; 43 Nguyen (bib0037) 2019; 171 Duong (10.1016/j.epsr.2022.107796_bib0025) 2020; 10 Shaheen (10.1016/j.epsr.2022.107796_bib0026) 2016; 10 Bouchekara (10.1016/j.epsr.2022.107796_bib0036) 2014; 42 Warid (10.1016/j.epsr.2022.107796_bib0021) 2020; 91 Cali (10.1016/j.epsr.2022.107796_bib0013) 2018; 22 Singh (10.1016/j.epsr.2022.107796_bib0031) 2016; 40 Niknam (10.1016/j.epsr.2022.107796_bib0001) 2011; 36 Bouchekara (10.1016/j.epsr.2022.107796_bib0034) 2016; 42 El-Hana (10.1016/j.epsr.2022.107796_bib0035) 2016; 44 Hashim (10.1016/j.epsr.2022.107796_bib0008) 2020 Adaryani (10.1016/j.epsr.2022.107796_bib0003) 2013; 53 Kumar (10.1016/j.epsr.2022.107796_bib0027) 2015; 73 Akdağ (10.1016/j.epsr.2022.107796_bib0039) 2020; 10 Nadimi-Shahraki (10.1016/j.epsr.2022.107796_bib0015) 2021; 166 Pulluri (10.1016/j.epsr.2022.107796_bib0019) 2017; 54 Bai (10.1016/j.epsr.2022.107796_bib0018) 2017; 61 Abido (10.1016/j.epsr.2022.107796_bib0009) 2002; 17 Gupta (10.1016/j.epsr.2022.107796_bib0002) 2012; 49 (10.1016/j.epsr.2022.107796_bib0016) 2020 Biswas (10.1016/j.epsr.2022.107796_bib0024) 2018; 68 Bouchekara (10.1016/j.epsr.2022.107796_bib0011) 2014 Kaur (10.1016/j.epsr.2022.107796_bib0014) 2021 Nguyen (10.1016/j.epsr.2022.107796_bib0037) 2019; 171 Mohamed (10.1016/j.epsr.2022.107796_bib0006) 2017; 142 Roselyn (10.1016/j.epsr.2022.107796_bib0004) 2011 Niknam (10.1016/j.epsr.2022.107796_bib0029) 2012; 6 Raviprabakaran (10.1016/j.epsr.2022.107796_bib0030) 2018; 9 (10.1016/j.epsr.2022.107796_bib0038) 2021 Akdag (10.1016/j.epsr.2022.107796_bib0007) 2020 El-Fergany (10.1016/j.epsr.2022.107796_bib0032) 2015; 43 Attia (10.1016/j.epsr.2022.107796_bib0020) 2018; 99 Daryani (10.1016/j.epsr.2022.107796_bib0005) 2016; 38 Trivedi (10.1016/j.epsr.2022.107796_bib0033) 2016; 3 Taher (10.1016/j.epsr.2022.107796_bib0023) 2019; 101 Osman (10.1016/j.epsr.2022.107796_bib0010) 2004; 155 Taher (10.1016/j.epsr.2022.107796_bib0022) 2019; 29 Chaib (10.1016/j.epsr.2022.107796_bib0028) 2016; 81 Bouchekara (10.1016/j.epsr.2022.107796_bib0012) 2019; 13 10.1016/j.epsr.2022.107796_bib0017 |
| References_xml | – volume: 10 start-page: 5700 year: 2020 end-page: 5705 ident: bib0025 article-title: Application of Sunflower Optimization Algorithm for Solving the Security Constrained Optimal Power Flow Problem. Engineering publication-title: Technology & Applied Science Research – start-page: 21 year: 2020 end-page: 27 ident: bib0007 article-title: Modification of Harris hawks optimization algorithm with random distribution functions for optimum power flow problem publication-title: Neural Computing and Applications – volume: 40 start-page: 161 year: 2016 end-page: 177 ident: bib0031 article-title: Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem publication-title: Applied Soft Computing – volume: 53 start-page: 219 year: 2013 end-page: 230 ident: bib0003 article-title: Artificial bee colony algorithm for solving multi-objective optimal power flow problem publication-title: International Journal of Electrical Power & Energy Systems – year: 2020 ident: bib0016 publication-title: IEEE-30 Bus – volume: 61 start-page: 163 year: 2017 end-page: 172 ident: bib0018 article-title: An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem publication-title: Control Engineering Practice – start-page: 1 year: 2020 end-page: 21 ident: bib0008 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Applied Intelligence – volume: 54 start-page: 229 year: 2017 end-page: 245 ident: bib0019 article-title: An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow publication-title: Applied Soft Computing – volume: 29 start-page: e2743 year: 2019 ident: bib0022 article-title: An improved moth-flame optimization algorithm for solving optimal power flow problem publication-title: International Transactions on Electrical Energy Systems – volume: 36 start-page: 6420 year: 2011 end-page: 6432 ident: bib0001 article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow publication-title: Energy – volume: 42 start-page: 119 year: 2016 end-page: 131 ident: bib0034 article-title: Optimal power fow using an improved colliding bodies optimization algorithm publication-title: Appl Soft Comput – volume: 10 start-page: 531 year: 2020 end-page: 544 ident: bib0039 article-title: An evaluation of an offshore energy installation for the Black Sea region of Turkey and the effects on a regional decrease in greenhouse gas emissions publication-title: Greenhouse Gases: Science and Technology – volume: 81 start-page: 64 year: 2016 end-page: 77 ident: bib0028 article-title: Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm publication-title: International Journal of Electrical Power & Energy Systems – reference: S. Duman, U. Güvenç, Y. Sönmez, N. Yörükeren. Optimal power flow using gravitational search algorithm. Energy Conversion and Management. (2012) 59 86-95. http://dx.doi.org/10.1016/j.enconman.2012.02.024. – volume: 42 start-page: 1683 year: 2014 end-page: 1699 ident: bib0036 article-title: Optimal power flow using differential search algorithm publication-title: Electric Power Components and Systems – volume: 99 start-page: 331 year: 2018 end-page: 343 ident: bib0020 article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm publication-title: International Journal of Electrical Power & Energy Systems – volume: 3 year: 2016 ident: bib0033 article-title: Optimal power flow with enhancement of voltage stability and reduction of power loss using ant-lion optimizer publication-title: Cogent engineering – volume: 166 year: 2021 ident: bib0015 article-title: An improved grey wolf optimizer for solving engineering problems publication-title: Expert Systems with Applications – volume: 171 start-page: 218 year: 2019 end-page: 240 ident: bib0037 article-title: A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization publication-title: Energy – volume: 91 year: 2020 ident: bib0021 article-title: Optimal power flow using the AMTPG-Jaya algorithm publication-title: Applied Soft Computing – volume: 22 start-page: 325 year: 2018 end-page: 336 ident: bib0013 article-title: Techno-economic analysis of high potential offshore wind farm locations in Turkey publication-title: Energy strategy reviews – volume: 17 start-page: 06 year: 2002 end-page: 413 ident: bib0009 article-title: Optimal design of power-system stabilizers using particle swarm optimization publication-title: IEEE transactions on energy conversion – volume: 155 start-page: 391 year: 2004 end-page: 405 ident: bib0010 article-title: A solution to the optimal power flow using genetic algorithm publication-title: Applied mathematics and computation – volume: 101 start-page: 121 year: 2019 end-page: 148 ident: bib0023 article-title: Modified grasshopper optimization framework for optimal power flow solution publication-title: Electrical Engineering – volume: 73 start-page: 393 year: 2015 end-page: 399 ident: bib0027 article-title: Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization publication-title: International Journal of Electrical Power & Energy Systems – year: 2021 ident: bib0038 publication-title: The IEEE 57-Bus Test System – year: 2021 ident: bib0014 article-title: DLHO-: An Enhanced Version of Harris Hawks Optimization By Dimension Learning-Based Hunting For Breast Cancer publication-title: Other Serious Diseases Detection – volume: 142 start-page: 190 year: 2017 end-page: 206 ident: bib0006 article-title: Optimal power flow using moth swarm algorithm publication-title: Electric Power Systems Research – volume: 49 start-page: 1 year: 2012 end-page: 6 ident: bib0002 article-title: Combined economic emission dispatch problem using particle swarm optimization publication-title: International Journal of Computer Applications – start-page: 167 year: 2011 end-page: 175 ident: bib0004 article-title: Economic emission OPF using hybrid GA-Particle swarm optimization publication-title: International Conference on Swarm, Evolutionary, and Memetic Computing – start-page: 24879 year: 2014 end-page: 24888 ident: bib0011 article-title: Optimal power flow using black-hole-based optimization approach publication-title: Applied Soft Computing – volume: 38 start-page: 1012 year: 2016 end-page: 1024 ident: bib0005 article-title: Adaptive group search optimization algorithm for multi-objective optimal power flow problem publication-title: Applied soft computing – volume: 9 start-page: 58 year: 2018 end-page: 65 ident: bib0030 article-title: Enhanced ant colony optimization to solve the optimal power flow with ecological emission publication-title: International Journal of System Assurance Engineering and Management – volume: 44 start-page: 434 year: 2016 end-page: 449 ident: bib0035 article-title: Optimal power flow using an improved electromagnetism-like mechanism method publication-title: Electric Power Components and Systems – volume: 6 start-page: 515 year: 2012 end-page: 527 ident: bib0029 article-title: Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index publication-title: IET generation, transmission & distribution – volume: 10 start-page: 1634 year: 2016 end-page: 1647 ident: bib0026 article-title: Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm publication-title: IET Generation, Transmission & Distribution – volume: 13 start-page: 491 year: 2019 end-page: 499 ident: bib0012 article-title: Electrostatic discharge algorithm: a novel nature-inspired optimisation algorithm and its application to worst-case tolerance analysis of an EMC filter publication-title: IET Science, Measurement & Technolog – volume: 68 start-page: 81 year: 2018 end-page: 100 ident: bib0024 article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques publication-title: Engineering Applications of Artificial Intelligence – volume: 43 start-page: 1548 year: 2015 end-page: 1559 ident: bib0032 article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms publication-title: Electric Power Components and Systems – volume: 9 start-page: 58 issue: 1 year: 2018 ident: 10.1016/j.epsr.2022.107796_bib0030 article-title: Enhanced ant colony optimization to solve the optimal power flow with ecological emission publication-title: International Journal of System Assurance Engineering and Management – volume: 44 start-page: 434 issue: 4 year: 2016 ident: 10.1016/j.epsr.2022.107796_bib0035 article-title: Optimal power flow using an improved electromagnetism-like mechanism method publication-title: Electric Power Components and Systems doi: 10.1080/15325008.2015.1115919 – volume: 53 start-page: 219 year: 2013 ident: 10.1016/j.epsr.2022.107796_bib0003 article-title: Artificial bee colony algorithm for solving multi-objective optimal power flow problem publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2013.04.021 – volume: 54 start-page: 229 year: 2017 ident: 10.1016/j.epsr.2022.107796_bib0019 article-title: An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.01.030 – volume: 13 start-page: 491 year: 2019 ident: 10.1016/j.epsr.2022.107796_bib0012 article-title: Electrostatic discharge algorithm: a novel nature-inspired optimisation algorithm and its application to worst-case tolerance analysis of an EMC filter publication-title: IET Science, Measurement & Technolog doi: 10.1049/iet-smt.2018.5194 – volume: 155 start-page: 391 issue: 2 year: 2004 ident: 10.1016/j.epsr.2022.107796_bib0010 article-title: A solution to the optimal power flow using genetic algorithm publication-title: Applied mathematics and computation doi: 10.1016/S0096-3003(03)00785-9 – volume: 42 start-page: 119 year: 2016 ident: 10.1016/j.epsr.2022.107796_bib0034 article-title: Optimal power fow using an improved colliding bodies optimization algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.01.041 – year: 2021 ident: 10.1016/j.epsr.2022.107796_bib0038 publication-title: The IEEE 57-Bus Test System – volume: 91 year: 2020 ident: 10.1016/j.epsr.2022.107796_bib0021 article-title: Optimal power flow using the AMTPG-Jaya algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106252 – volume: 68 start-page: 81 year: 2018 ident: 10.1016/j.epsr.2022.107796_bib0024 article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2017.10.019 – volume: 166 year: 2021 ident: 10.1016/j.epsr.2022.107796_bib0015 article-title: An improved grey wolf optimizer for solving engineering problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113917 – volume: 10 start-page: 1634 issue: 7 year: 2016 ident: 10.1016/j.epsr.2022.107796_bib0026 article-title: Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm publication-title: IET Generation, Transmission & Distribution doi: 10.1049/iet-gtd.2015.0892 – volume: 3 issue: 1 year: 2016 ident: 10.1016/j.epsr.2022.107796_bib0033 article-title: Optimal power flow with enhancement of voltage stability and reduction of power loss using ant-lion optimizer publication-title: Cogent engineering doi: 10.1080/23311916.2016.1208942 – start-page: 24879 year: 2014 ident: 10.1016/j.epsr.2022.107796_bib0011 article-title: Optimal power flow using black-hole-based optimization approach publication-title: Applied Soft Computing – volume: 10 start-page: 5700 issue: 3 year: 2020 ident: 10.1016/j.epsr.2022.107796_bib0025 article-title: Application of Sunflower Optimization Algorithm for Solving the Security Constrained Optimal Power Flow Problem. Engineering publication-title: Technology & Applied Science Research doi: 10.48084/etasr.3511 – ident: 10.1016/j.epsr.2022.107796_bib0017 doi: 10.1016/j.enconman.2012.02.024 – volume: 38 start-page: 1012 year: 2016 ident: 10.1016/j.epsr.2022.107796_bib0005 article-title: Adaptive group search optimization algorithm for multi-objective optimal power flow problem publication-title: Applied soft computing doi: 10.1016/j.asoc.2015.10.057 – year: 2021 ident: 10.1016/j.epsr.2022.107796_bib0014 article-title: DLHO-: An Enhanced Version of Harris Hawks Optimization By Dimension Learning-Based Hunting For Breast Cancer publication-title: Other Serious Diseases Detection – year: 2020 ident: 10.1016/j.epsr.2022.107796_bib0016 publication-title: IEEE-30 Bus – start-page: 167 year: 2011 ident: 10.1016/j.epsr.2022.107796_bib0004 article-title: Economic emission OPF using hybrid GA-Particle swarm optimization – volume: 61 start-page: 163 year: 2017 ident: 10.1016/j.epsr.2022.107796_bib0018 article-title: An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2017.02.010 – volume: 36 start-page: 6420 issue: 11 year: 2011 ident: 10.1016/j.epsr.2022.107796_bib0001 article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow publication-title: Energy doi: 10.1016/j.energy.2011.09.027 – volume: 29 start-page: e2743 issue: 3 year: 2019 ident: 10.1016/j.epsr.2022.107796_bib0022 article-title: An improved moth-flame optimization algorithm for solving optimal power flow problem publication-title: International Transactions on Electrical Energy Systems doi: 10.1002/etep.2743 – volume: 42 start-page: 1683 issue: 15 year: 2014 ident: 10.1016/j.epsr.2022.107796_bib0036 article-title: Optimal power flow using differential search algorithm publication-title: Electric Power Components and Systems doi: 10.1080/15325008.2014.949912 – start-page: 21 year: 2020 ident: 10.1016/j.epsr.2022.107796_bib0007 article-title: Modification of Harris hawks optimization algorithm with random distribution functions for optimum power flow problem publication-title: Neural Computing and Applications – volume: 6 start-page: 515 year: 2012 ident: 10.1016/j.epsr.2022.107796_bib0029 article-title: Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index publication-title: IET generation, transmission & distribution doi: 10.1049/iet-gtd.2011.0851 – volume: 49 start-page: 1 issue: 6 year: 2012 ident: 10.1016/j.epsr.2022.107796_bib0002 article-title: Combined economic emission dispatch problem using particle swarm optimization publication-title: International Journal of Computer Applications doi: 10.5120/7628-0695 – volume: 40 start-page: 161 year: 2016 ident: 10.1016/j.epsr.2022.107796_bib0031 article-title: Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.11.027 – start-page: 1 year: 2020 ident: 10.1016/j.epsr.2022.107796_bib0008 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Applied Intelligence – volume: 73 start-page: 393 year: 2015 ident: 10.1016/j.epsr.2022.107796_bib0027 article-title: Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2015.05.011 – volume: 43 start-page: 1548 issue: 13 year: 2015 ident: 10.1016/j.epsr.2022.107796_bib0032 article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms publication-title: Electric Power Components and Systems doi: 10.1080/15325008.2015.1041625 – volume: 10 start-page: 531 issue: 3 year: 2020 ident: 10.1016/j.epsr.2022.107796_bib0039 article-title: An evaluation of an offshore energy installation for the Black Sea region of Turkey and the effects on a regional decrease in greenhouse gas emissions publication-title: Greenhouse Gases: Science and Technology doi: 10.1002/ghg.1963 – volume: 81 start-page: 64 year: 2016 ident: 10.1016/j.epsr.2022.107796_bib0028 article-title: Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2016.02.004 – volume: 17 start-page: 06 issue: 3 year: 2002 ident: 10.1016/j.epsr.2022.107796_bib0009 article-title: Optimal design of power-system stabilizers using particle swarm optimization publication-title: IEEE transactions on energy conversion doi: 10.1109/TEC.2002.801992 – volume: 22 start-page: 325 year: 2018 ident: 10.1016/j.epsr.2022.107796_bib0013 article-title: Techno-economic analysis of high potential offshore wind farm locations in Turkey publication-title: Energy strategy reviews doi: 10.1016/j.esr.2018.10.007 – volume: 101 start-page: 121 issue: 1 year: 2019 ident: 10.1016/j.epsr.2022.107796_bib0023 article-title: Modified grasshopper optimization framework for optimal power flow solution publication-title: Electrical Engineering doi: 10.1007/s00202-019-00762-4 – volume: 142 start-page: 190 year: 2017 ident: 10.1016/j.epsr.2022.107796_bib0006 article-title: Optimal power flow using moth swarm algorithm publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2016.09.025 – volume: 171 start-page: 218 year: 2019 ident: 10.1016/j.epsr.2022.107796_bib0037 article-title: A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization publication-title: Energy doi: 10.1016/j.energy.2019.01.021 – volume: 99 start-page: 331 year: 2018 ident: 10.1016/j.epsr.2022.107796_bib0020 article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2018.01.024 |
| SSID | ssj0006975 |
| Score | 2.547809 |
| Snippet | •Proposed a novel Improved Archimedes Optimization Algorithm•A statistical performance-evaluation proved the validity and effectiveness of the IAOA... In this paper, an Improved Archimedes Optimization Algorithm (IAOA) is proposed to solve the Optimal Power Flow problem (OPF). The purpose of improving this... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107796 |
| SubjectTerms | Algorithms Electricity distribution Fuel emissions Green energy Improved Archimedes optimization algorithm Offshore energy sources OPF Optimization Optimization algorithms Power flow Simulation System effectiveness Wind power |
| Title | A Improved Archimedes Optimization Algorithm for multi/single-objective Optimal Power Flow |
| URI | https://dx.doi.org/10.1016/j.epsr.2022.107796 https://www.proquest.com/docview/2694491544 |
| Volume | 206 |
| WOSCitedRecordID | wos000794858100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZg4wEeED_FxkB-4C2KSB07th8jtAl42CYxpIqXyEkcaNelVVPYxF_Pne2kXScmQOIlqpzaifzZd-fL3XeEvNGSmVLB_m5Amcfc1CbWSVLHXGhhDKyhWlau2IQ8PlbjsT4NRRA7V05Atq26utKL_wo1tAHYmDr7F3APg0ID_AbQ4Qqww_WPgM8j7ygAS9LRyoK6s110AqLhIuRcRvns63w5WX27cEGGLqYQXxK02MzG83LqhaDvAxCeYiW16Gg2v7zmx3cFdCZVtHC3PSU0foTY8I_hSjqvjRMnJz_DQgw-BjieDhF93vF1I_nFJ1zBAVRKHZisvfxUMgU0glcxCFjmOAVuCmvvN5iC3u2QmZUxaFqPd40E-xM-DO8xTC1imbpLdpkUGuTYbv7hcPxx0L6ZduTKw8uFRCkf07f9pN8ZI1tq2dkaZ4_Iw3BIoLkH9zG5Y9sn5MEGdeRT8iWnPcx0DTPdhJkOMFOAmTqY326DTAPI1IFMEeRn5PPR4dm793GokxFXKVOruGlUwzWrZQnGRcKbUpY6s2ZkEpmVWljBkPSwYrzGw7QVFa9lDZY2BhZXSpr0Odlp5619QSi3phRWmlGaNVwmVhmY8lSmRmSWqUTtkVE_YUUVSOSxlsms6KMFpwVOcoGTXPhJ3iPR0GfhKVRu_bfocSiCEeiNuwKWza39DnrQirAbuwLTtLlGwqn9fxz2Jbm_3hAHZGe1_G5fkXvVj9WkW74Oi-8XMnSLBw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Improved+Archimedes+Optimization+Algorithm+for+multi%2Fsingle-objective+Optimal+Power+Flow&rft.jtitle=Electric+power+systems+research&rft.au=Akdag%2C+Ozan&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=206&rft_id=info:doi/10.1016%2Fj.epsr.2022.107796&rft.externalDocID=S0378779622000268 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |