A Improved Archimedes Optimization Algorithm for multi/single-objective Optimal Power Flow

•Proposed a novel Improved Archimedes Optimization Algorithm•A statistical performance-evaluation proved the validity and effectiveness of the IAOA method•Reducing fossil-based thermal power generation capacity in the region (in the current power system) with OPF by incorporating renewable energy so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research Jg. 206; S. 107796
1. Verfasser: Akdag, Ozan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.05.2022
Elsevier Science Ltd
Schlagworte:
ISSN:0378-7796, 1873-2046
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Proposed a novel Improved Archimedes Optimization Algorithm•A statistical performance-evaluation proved the validity and effectiveness of the IAOA method•Reducing fossil-based thermal power generation capacity in the region (in the current power system) with OPF by incorporating renewable energy sources to reduce fuel emissions In this paper, an Improved Archimedes Optimization Algorithm (IAOA) is proposed to solve the Optimal Power Flow problem (OPF). The purpose of improving this IAOA algorithm is to increase population diversity in AOA, further improve the balance between the exploitation and exploration of AOA, and avoid premature convergence problems. The IAOA strategy uses a different approach to build a neighborhood for each object in which neighbor data can be transferred between objects. Dimension learning-based strategy is used for this process. The IAOA and AOA have been examined on the IEEE 30-bus, IEEE 57-bus and 16-bus South Marmara regional transmission systems. The effectiveness of the proposed IAOA and AOA are tested with the standard IEEE 30-bus and IEEE 57-bus system and the simulation results are compared with different techniques as available published in the literature in recent years. In addition, in this study, an Offshore Wind Farm (OWF) and 16-bus South Marmara transmission system is modeled, and later OWF is integrated into a 16-bus South Marmara transmission system. Afterward, IAOA and other algorithms have tested for minimization of fuel emissions in this transmission system. The obtained simulation results and the comparison with different techniques show that the IAOA provides robustness. Graphical Abstract [Display omitted] .
AbstractList •Proposed a novel Improved Archimedes Optimization Algorithm•A statistical performance-evaluation proved the validity and effectiveness of the IAOA method•Reducing fossil-based thermal power generation capacity in the region (in the current power system) with OPF by incorporating renewable energy sources to reduce fuel emissions In this paper, an Improved Archimedes Optimization Algorithm (IAOA) is proposed to solve the Optimal Power Flow problem (OPF). The purpose of improving this IAOA algorithm is to increase population diversity in AOA, further improve the balance between the exploitation and exploration of AOA, and avoid premature convergence problems. The IAOA strategy uses a different approach to build a neighborhood for each object in which neighbor data can be transferred between objects. Dimension learning-based strategy is used for this process. The IAOA and AOA have been examined on the IEEE 30-bus, IEEE 57-bus and 16-bus South Marmara regional transmission systems. The effectiveness of the proposed IAOA and AOA are tested with the standard IEEE 30-bus and IEEE 57-bus system and the simulation results are compared with different techniques as available published in the literature in recent years. In addition, in this study, an Offshore Wind Farm (OWF) and 16-bus South Marmara transmission system is modeled, and later OWF is integrated into a 16-bus South Marmara transmission system. Afterward, IAOA and other algorithms have tested for minimization of fuel emissions in this transmission system. The obtained simulation results and the comparison with different techniques show that the IAOA provides robustness. Graphical Abstract [Display omitted] .
In this paper, an Improved Archimedes Optimization Algorithm (IAOA) is proposed to solve the Optimal Power Flow problem (OPF). The purpose of improving this IAOA algorithm is to increase population diversity in AOA, further improve the balance between the exploitation and exploration of AOA, and avoid premature convergence problems. The IAOA strategy uses a different approach to build a neighborhood for each object in which neighbor data can be transferred between objects. Dimension learning-based strategy is used for this process. The IAOA and AOA have been examined on the IEEE 30-bus, IEEE 57-bus and 16-bus South Marmara regional transmission systems. The effectiveness of the proposed IAOA and AOA are tested with the standard IEEE 30-bus and IEEE 57-bus system and the simulation results are compared with different techniques as available published in the literature in recent years. In addition, in this study, an Offshore Wind Farm (OWF) and 16-bus South Marmara transmission system is modeled, and later OWF is integrated into a 16-bus South Marmara transmission system. Afterward, IAOA and other algorithms have tested for minimization of fuel emissions in this transmission system. The obtained simulation results and the comparison with different techniques show that the IAOA provides robustness.
ArticleNumber 107796
Author Akdag, Ozan
Author_xml – sequence: 1
  givenname: Ozan
  surname: Akdag
  fullname: Akdag, Ozan
  email: d3615190253@ogr.inonu.edu.tr
  organization: Turkish Electricity Transmission Corporation, Malatya, Turkey
BookMark eNp9kLFOwzAQhi1UJNrCCzBFYk5rO04cSyxVRaFSpTLAwmIlzqV1lMTFdlvB05MQJoZOJ53uu7v_m6BRa1pA6J7gGcEkmVczODg7o5jSrsG5SK7QmKQ8CilmyQiNccTTsO_foIlzFcY4ETweo49FsG4O1pygCBZW7XUDBbhge_C60d-Z16YNFvXOWO33TVAaGzTH2uu50-2uhtDkFSivTzAQWR28mjPYYFWb8y26LrPawd1fnaL31dPb8iXcbJ_Xy8UmVBFNfViWackELXjOqMCszHkuEshIhnmSixhiKiJOFGUFwySCWLGCF2lM4ijCKuVZNEUPw94uxucRnJeVOdq2OylpIhgTJGasm6LDlLLGOQulPNjuYfslCZa9Q1nJ3qHsHcrBYQel_yCl_a8UbzNdX0YfBxS66CcNVjqloVVQaNspk4XRl_AfOTmPLg
CitedBy_id crossref_primary_10_1016_j_eswa_2023_122460
crossref_primary_10_1007_s11356_023_29498_2
crossref_primary_10_1016_j_cviu_2024_103933
crossref_primary_10_3390_app13053330
crossref_primary_10_1016_j_chaos_2023_114028
crossref_primary_10_1049_gtd2_13076
crossref_primary_10_1016_j_compeleceng_2025_110230
crossref_primary_10_1016_j_energy_2024_131684
crossref_primary_10_1016_j_heliyon_2025_e41915
crossref_primary_10_3390_math11051250
crossref_primary_10_1109_ACCESS_2025_3556168
crossref_primary_10_1155_2022_7694026
crossref_primary_10_1016_j_egyr_2024_12_020
crossref_primary_10_1007_s00521_023_08769_6
crossref_primary_10_1007_s00202_024_02535_0
crossref_primary_10_1007_s11053_025_10546_2
crossref_primary_10_3390_pr12020406
crossref_primary_10_1007_s11831_023_09975_0
crossref_primary_10_1016_j_eswa_2023_122367
crossref_primary_10_1016_j_heliyon_2024_e32862
crossref_primary_10_3390_electronics11050831
crossref_primary_10_1016_j_epsr_2023_109503
crossref_primary_10_1049_stg2_12171
crossref_primary_10_1155_jece_6682046
crossref_primary_10_1007_s11831_022_09876_8
crossref_primary_10_1080_02286203_2025_2523064
crossref_primary_10_1007_s00521_024_10312_0
crossref_primary_10_1088_1402_4896_adbfd6
crossref_primary_10_1016_j_eswa_2023_119863
crossref_primary_10_1108_K_08_2023_1580
crossref_primary_10_1007_s00202_024_02937_0
crossref_primary_10_1016_j_asoc_2024_112155
crossref_primary_10_1016_j_egyr_2023_12_053
crossref_primary_10_1007_s11831_025_10326_4
crossref_primary_10_1016_j_rineng_2025_106520
crossref_primary_10_1007_s00521_024_09497_1
crossref_primary_10_3390_en16155800
crossref_primary_10_1007_s00500_022_07668_7
crossref_primary_10_1080_15325008_2022_2136295
crossref_primary_10_1093_jcde_qwad017
crossref_primary_10_1007_s13369_023_07803_y
crossref_primary_10_1016_j_aej_2025_02_037
crossref_primary_10_1038_s41598_025_98899_9
crossref_primary_10_1080_15325008_2023_2239237
crossref_primary_10_1016_j_egyr_2024_04_016
crossref_primary_10_1016_j_enbuild_2024_114690
Cites_doi 10.1080/15325008.2015.1115919
10.1016/j.ijepes.2013.04.021
10.1016/j.asoc.2017.01.030
10.1049/iet-smt.2018.5194
10.1016/S0096-3003(03)00785-9
10.1016/j.asoc.2016.01.041
10.1016/j.asoc.2020.106252
10.1016/j.engappai.2017.10.019
10.1016/j.eswa.2020.113917
10.1049/iet-gtd.2015.0892
10.1080/23311916.2016.1208942
10.48084/etasr.3511
10.1016/j.enconman.2012.02.024
10.1016/j.asoc.2015.10.057
10.1016/j.conengprac.2017.02.010
10.1016/j.energy.2011.09.027
10.1002/etep.2743
10.1080/15325008.2014.949912
10.1049/iet-gtd.2011.0851
10.5120/7628-0695
10.1016/j.asoc.2015.11.027
10.1016/j.ijepes.2015.05.011
10.1080/15325008.2015.1041625
10.1002/ghg.1963
10.1016/j.ijepes.2016.02.004
10.1109/TEC.2002.801992
10.1016/j.esr.2018.10.007
10.1007/s00202-019-00762-4
10.1016/j.epsr.2016.09.025
10.1016/j.energy.2019.01.021
10.1016/j.ijepes.2018.01.024
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. May 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. May 2022
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.epsr.2022.107796
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID 10_1016_j_epsr_2022_107796
S0378779622000268
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c328t-ff8f492d7b42904fb7b96ea1a076b95e529371c24d4013e5c4d7d8515330c87a3
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794858100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Sun Nov 09 06:33:41 EST 2025
Sat Nov 29 07:17:05 EST 2025
Tue Nov 18 21:32:25 EST 2025
Fri Feb 23 02:39:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Green energy
Fuel emissions
OPF
Improved Archimedes optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-ff8f492d7b42904fb7b96ea1a076b95e529371c24d4013e5c4d7d8515330c87a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2694491544
PQPubID 2047565
ParticipantIDs proquest_journals_2694491544
crossref_primary_10_1016_j_epsr_2022_107796
crossref_citationtrail_10_1016_j_epsr_2022_107796
elsevier_sciencedirect_doi_10_1016_j_epsr_2022_107796
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References El-Hana, Bouchekara, Chaib (bib0035) 2016; 44
Gupta, Swarnkar, Wadhwani (bib0002) 2012; 49
Daryani, Hagh, Teimourzadeh (bib0005) 2016; 38
(bib0016) 2020
Chaib, Bouchekara, Mehasni, Abido (bib0028) 2016; 81
Bouchekara (bib0011) 2014
Singh, Mukherjee, Ghoshal (bib0031) 2016; 40
Bouchekara, Chaib, Abido, El-Sehiemy (bib0034) 2016; 42
Mohamed, Mohamed, El-Gaafary, Hemeida (bib0006) 2017; 142
Akdağ, Yeroglu (bib0039) 2020; 10
Attia, El Sehiemy, Hasanien (bib0020) 2018; 99
(bib0038) 2021
Biswas, Suganthan, Mallipeddi, Amaratunga (bib0024) 2018; 68
Shaheen, El-Sehiemy, Farrag (bib0026) 2016; 10
S. Duman, U. Güvenç, Y. Sönmez, N. Yörükeren. Optimal power flow using gravitational search algorithm. Energy Conversion and Management. (2012) 59 86-95. http://dx.doi.org/10.1016/j.enconman.2012.02.024.
Akdag, Ates, Yeroglu (bib0007) 2020
Bai, Eke, Lee (bib0018) 2017; 61
Adaryani, Karami (bib0003) 2013; 53
Kumar, Premalatha (bib0027) 2015; 73
Warid, W (bib0021) 2020; 91
Cali, Erdogan, Kucuksari, Argin (bib0013) 2018; 22
Pulluri, Naresh, Sharma (bib0019) 2017; 54
Taher, Kamel, Jurado, Ebeed (bib0022) 2019; 29
Bouchekara (bib0012) 2019; 13
Kaur, Kaur, Singh (bib0014) 2021
Niknam, Narimani, Aghaei, Azizipanah-Abarghooee (bib0029) 2012; 6
Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (bib0008) 2020
Roselyn, Devaraj, Dash (bib0004) 2011
Osman, Abo-Sinna, Mousa, A (bib0010) 2004; 155
Trivedi, Jangir, Parmar (bib0033) 2016; 3
Niknam, Rasoul, Jabbari, Malekpour (bib0001) 2011; 36
Raviprabakaran, Subramanian (bib0030) 2018; 9
Taher, Kamel, Jurado, Ebeed (bib0023) 2019; 101
Nadimi-Shahraki, Taghian, Mirjalili (bib0015) 2021; 166
Bouchekara, Abido (bib0036) 2014; 42
Duong, Nguyen (bib0025) 2020; 10
Abido (bib0009) 2002; 17
El-Fergany, Hasanien (bib0032) 2015; 43
Nguyen (bib0037) 2019; 171
Duong (10.1016/j.epsr.2022.107796_bib0025) 2020; 10
Shaheen (10.1016/j.epsr.2022.107796_bib0026) 2016; 10
Bouchekara (10.1016/j.epsr.2022.107796_bib0036) 2014; 42
Warid (10.1016/j.epsr.2022.107796_bib0021) 2020; 91
Cali (10.1016/j.epsr.2022.107796_bib0013) 2018; 22
Singh (10.1016/j.epsr.2022.107796_bib0031) 2016; 40
Niknam (10.1016/j.epsr.2022.107796_bib0001) 2011; 36
Bouchekara (10.1016/j.epsr.2022.107796_bib0034) 2016; 42
El-Hana (10.1016/j.epsr.2022.107796_bib0035) 2016; 44
Hashim (10.1016/j.epsr.2022.107796_bib0008) 2020
Adaryani (10.1016/j.epsr.2022.107796_bib0003) 2013; 53
Kumar (10.1016/j.epsr.2022.107796_bib0027) 2015; 73
Akdağ (10.1016/j.epsr.2022.107796_bib0039) 2020; 10
Nadimi-Shahraki (10.1016/j.epsr.2022.107796_bib0015) 2021; 166
Pulluri (10.1016/j.epsr.2022.107796_bib0019) 2017; 54
Bai (10.1016/j.epsr.2022.107796_bib0018) 2017; 61
Abido (10.1016/j.epsr.2022.107796_bib0009) 2002; 17
Gupta (10.1016/j.epsr.2022.107796_bib0002) 2012; 49
(10.1016/j.epsr.2022.107796_bib0016) 2020
Biswas (10.1016/j.epsr.2022.107796_bib0024) 2018; 68
Bouchekara (10.1016/j.epsr.2022.107796_bib0011) 2014
Kaur (10.1016/j.epsr.2022.107796_bib0014) 2021
Nguyen (10.1016/j.epsr.2022.107796_bib0037) 2019; 171
Mohamed (10.1016/j.epsr.2022.107796_bib0006) 2017; 142
Roselyn (10.1016/j.epsr.2022.107796_bib0004) 2011
Niknam (10.1016/j.epsr.2022.107796_bib0029) 2012; 6
Raviprabakaran (10.1016/j.epsr.2022.107796_bib0030) 2018; 9
(10.1016/j.epsr.2022.107796_bib0038) 2021
Akdag (10.1016/j.epsr.2022.107796_bib0007) 2020
El-Fergany (10.1016/j.epsr.2022.107796_bib0032) 2015; 43
Attia (10.1016/j.epsr.2022.107796_bib0020) 2018; 99
Daryani (10.1016/j.epsr.2022.107796_bib0005) 2016; 38
Trivedi (10.1016/j.epsr.2022.107796_bib0033) 2016; 3
Taher (10.1016/j.epsr.2022.107796_bib0023) 2019; 101
Osman (10.1016/j.epsr.2022.107796_bib0010) 2004; 155
Taher (10.1016/j.epsr.2022.107796_bib0022) 2019; 29
Chaib (10.1016/j.epsr.2022.107796_bib0028) 2016; 81
Bouchekara (10.1016/j.epsr.2022.107796_bib0012) 2019; 13
10.1016/j.epsr.2022.107796_bib0017
References_xml – volume: 10
  start-page: 5700
  year: 2020
  end-page: 5705
  ident: bib0025
  article-title: Application of Sunflower Optimization Algorithm for Solving the Security Constrained Optimal Power Flow Problem. Engineering
  publication-title: Technology & Applied Science Research
– start-page: 21
  year: 2020
  end-page: 27
  ident: bib0007
  article-title: Modification of Harris hawks optimization algorithm with random distribution functions for optimum power flow problem
  publication-title: Neural Computing and Applications
– volume: 40
  start-page: 161
  year: 2016
  end-page: 177
  ident: bib0031
  article-title: Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem
  publication-title: Applied Soft Computing
– volume: 53
  start-page: 219
  year: 2013
  end-page: 230
  ident: bib0003
  article-title: Artificial bee colony algorithm for solving multi-objective optimal power flow problem
  publication-title: International Journal of Electrical Power & Energy Systems
– year: 2020
  ident: bib0016
  publication-title: IEEE-30 Bus
– volume: 61
  start-page: 163
  year: 2017
  end-page: 172
  ident: bib0018
  article-title: An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem
  publication-title: Control Engineering Practice
– start-page: 1
  year: 2020
  end-page: 21
  ident: bib0008
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Applied Intelligence
– volume: 54
  start-page: 229
  year: 2017
  end-page: 245
  ident: bib0019
  article-title: An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow
  publication-title: Applied Soft Computing
– volume: 29
  start-page: e2743
  year: 2019
  ident: bib0022
  article-title: An improved moth-flame optimization algorithm for solving optimal power flow problem
  publication-title: International Transactions on Electrical Energy Systems
– volume: 36
  start-page: 6420
  year: 2011
  end-page: 6432
  ident: bib0001
  article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow
  publication-title: Energy
– volume: 42
  start-page: 119
  year: 2016
  end-page: 131
  ident: bib0034
  article-title: Optimal power fow using an improved colliding bodies optimization algorithm
  publication-title: Appl Soft Comput
– volume: 10
  start-page: 531
  year: 2020
  end-page: 544
  ident: bib0039
  article-title: An evaluation of an offshore energy installation for the Black Sea region of Turkey and the effects on a regional decrease in greenhouse gas emissions
  publication-title: Greenhouse Gases: Science and Technology
– volume: 81
  start-page: 64
  year: 2016
  end-page: 77
  ident: bib0028
  article-title: Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
– reference: S. Duman, U. Güvenç, Y. Sönmez, N. Yörükeren. Optimal power flow using gravitational search algorithm. Energy Conversion and Management. (2012) 59 86-95. http://dx.doi.org/10.1016/j.enconman.2012.02.024.
– volume: 42
  start-page: 1683
  year: 2014
  end-page: 1699
  ident: bib0036
  article-title: Optimal power flow using differential search algorithm
  publication-title: Electric Power Components and Systems
– volume: 99
  start-page: 331
  year: 2018
  end-page: 343
  ident: bib0020
  article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 3
  year: 2016
  ident: bib0033
  article-title: Optimal power flow with enhancement of voltage stability and reduction of power loss using ant-lion optimizer
  publication-title: Cogent engineering
– volume: 166
  year: 2021
  ident: bib0015
  article-title: An improved grey wolf optimizer for solving engineering problems
  publication-title: Expert Systems with Applications
– volume: 171
  start-page: 218
  year: 2019
  end-page: 240
  ident: bib0037
  article-title: A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization
  publication-title: Energy
– volume: 91
  year: 2020
  ident: bib0021
  article-title: Optimal power flow using the AMTPG-Jaya algorithm
  publication-title: Applied Soft Computing
– volume: 22
  start-page: 325
  year: 2018
  end-page: 336
  ident: bib0013
  article-title: Techno-economic analysis of high potential offshore wind farm locations in Turkey
  publication-title: Energy strategy reviews
– volume: 17
  start-page: 06
  year: 2002
  end-page: 413
  ident: bib0009
  article-title: Optimal design of power-system stabilizers using particle swarm optimization
  publication-title: IEEE transactions on energy conversion
– volume: 155
  start-page: 391
  year: 2004
  end-page: 405
  ident: bib0010
  article-title: A solution to the optimal power flow using genetic algorithm
  publication-title: Applied mathematics and computation
– volume: 101
  start-page: 121
  year: 2019
  end-page: 148
  ident: bib0023
  article-title: Modified grasshopper optimization framework for optimal power flow solution
  publication-title: Electrical Engineering
– volume: 73
  start-page: 393
  year: 2015
  end-page: 399
  ident: bib0027
  article-title: Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization
  publication-title: International Journal of Electrical Power & Energy Systems
– year: 2021
  ident: bib0038
  publication-title: The IEEE 57-Bus Test System
– year: 2021
  ident: bib0014
  article-title: DLHO-: An Enhanced Version of Harris Hawks Optimization By Dimension Learning-Based Hunting For Breast Cancer
  publication-title: Other Serious Diseases Detection
– volume: 142
  start-page: 190
  year: 2017
  end-page: 206
  ident: bib0006
  article-title: Optimal power flow using moth swarm algorithm
  publication-title: Electric Power Systems Research
– volume: 49
  start-page: 1
  year: 2012
  end-page: 6
  ident: bib0002
  article-title: Combined economic emission dispatch problem using particle swarm optimization
  publication-title: International Journal of Computer Applications
– start-page: 167
  year: 2011
  end-page: 175
  ident: bib0004
  article-title: Economic emission OPF using hybrid GA-Particle swarm optimization
  publication-title: International Conference on Swarm, Evolutionary, and Memetic Computing
– start-page: 24879
  year: 2014
  end-page: 24888
  ident: bib0011
  article-title: Optimal power flow using black-hole-based optimization approach
  publication-title: Applied Soft Computing
– volume: 38
  start-page: 1012
  year: 2016
  end-page: 1024
  ident: bib0005
  article-title: Adaptive group search optimization algorithm for multi-objective optimal power flow problem
  publication-title: Applied soft computing
– volume: 9
  start-page: 58
  year: 2018
  end-page: 65
  ident: bib0030
  article-title: Enhanced ant colony optimization to solve the optimal power flow with ecological emission
  publication-title: International Journal of System Assurance Engineering and Management
– volume: 44
  start-page: 434
  year: 2016
  end-page: 449
  ident: bib0035
  article-title: Optimal power flow using an improved electromagnetism-like mechanism method
  publication-title: Electric Power Components and Systems
– volume: 6
  start-page: 515
  year: 2012
  end-page: 527
  ident: bib0029
  article-title: Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index
  publication-title: IET generation, transmission & distribution
– volume: 10
  start-page: 1634
  year: 2016
  end-page: 1647
  ident: bib0026
  article-title: Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm
  publication-title: IET Generation, Transmission & Distribution
– volume: 13
  start-page: 491
  year: 2019
  end-page: 499
  ident: bib0012
  article-title: Electrostatic discharge algorithm: a novel nature-inspired optimisation algorithm and its application to worst-case tolerance analysis of an EMC filter
  publication-title: IET Science, Measurement & Technolog
– volume: 68
  start-page: 81
  year: 2018
  end-page: 100
  ident: bib0024
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 43
  start-page: 1548
  year: 2015
  end-page: 1559
  ident: bib0032
  article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms
  publication-title: Electric Power Components and Systems
– volume: 9
  start-page: 58
  issue: 1
  year: 2018
  ident: 10.1016/j.epsr.2022.107796_bib0030
  article-title: Enhanced ant colony optimization to solve the optimal power flow with ecological emission
  publication-title: International Journal of System Assurance Engineering and Management
– volume: 44
  start-page: 434
  issue: 4
  year: 2016
  ident: 10.1016/j.epsr.2022.107796_bib0035
  article-title: Optimal power flow using an improved electromagnetism-like mechanism method
  publication-title: Electric Power Components and Systems
  doi: 10.1080/15325008.2015.1115919
– volume: 53
  start-page: 219
  year: 2013
  ident: 10.1016/j.epsr.2022.107796_bib0003
  article-title: Artificial bee colony algorithm for solving multi-objective optimal power flow problem
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2013.04.021
– volume: 54
  start-page: 229
  year: 2017
  ident: 10.1016/j.epsr.2022.107796_bib0019
  article-title: An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.01.030
– volume: 13
  start-page: 491
  year: 2019
  ident: 10.1016/j.epsr.2022.107796_bib0012
  article-title: Electrostatic discharge algorithm: a novel nature-inspired optimisation algorithm and its application to worst-case tolerance analysis of an EMC filter
  publication-title: IET Science, Measurement & Technolog
  doi: 10.1049/iet-smt.2018.5194
– volume: 155
  start-page: 391
  issue: 2
  year: 2004
  ident: 10.1016/j.epsr.2022.107796_bib0010
  article-title: A solution to the optimal power flow using genetic algorithm
  publication-title: Applied mathematics and computation
  doi: 10.1016/S0096-3003(03)00785-9
– volume: 42
  start-page: 119
  year: 2016
  ident: 10.1016/j.epsr.2022.107796_bib0034
  article-title: Optimal power fow using an improved colliding bodies optimization algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.01.041
– year: 2021
  ident: 10.1016/j.epsr.2022.107796_bib0038
  publication-title: The IEEE 57-Bus Test System
– volume: 91
  year: 2020
  ident: 10.1016/j.epsr.2022.107796_bib0021
  article-title: Optimal power flow using the AMTPG-Jaya algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106252
– volume: 68
  start-page: 81
  year: 2018
  ident: 10.1016/j.epsr.2022.107796_bib0024
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.10.019
– volume: 166
  year: 2021
  ident: 10.1016/j.epsr.2022.107796_bib0015
  article-title: An improved grey wolf optimizer for solving engineering problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113917
– volume: 10
  start-page: 1634
  issue: 7
  year: 2016
  ident: 10.1016/j.epsr.2022.107796_bib0026
  article-title: Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm
  publication-title: IET Generation, Transmission & Distribution
  doi: 10.1049/iet-gtd.2015.0892
– volume: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.epsr.2022.107796_bib0033
  article-title: Optimal power flow with enhancement of voltage stability and reduction of power loss using ant-lion optimizer
  publication-title: Cogent engineering
  doi: 10.1080/23311916.2016.1208942
– start-page: 24879
  year: 2014
  ident: 10.1016/j.epsr.2022.107796_bib0011
  article-title: Optimal power flow using black-hole-based optimization approach
  publication-title: Applied Soft Computing
– volume: 10
  start-page: 5700
  issue: 3
  year: 2020
  ident: 10.1016/j.epsr.2022.107796_bib0025
  article-title: Application of Sunflower Optimization Algorithm for Solving the Security Constrained Optimal Power Flow Problem. Engineering
  publication-title: Technology & Applied Science Research
  doi: 10.48084/etasr.3511
– ident: 10.1016/j.epsr.2022.107796_bib0017
  doi: 10.1016/j.enconman.2012.02.024
– volume: 38
  start-page: 1012
  year: 2016
  ident: 10.1016/j.epsr.2022.107796_bib0005
  article-title: Adaptive group search optimization algorithm for multi-objective optimal power flow problem
  publication-title: Applied soft computing
  doi: 10.1016/j.asoc.2015.10.057
– year: 2021
  ident: 10.1016/j.epsr.2022.107796_bib0014
  article-title: DLHO-: An Enhanced Version of Harris Hawks Optimization By Dimension Learning-Based Hunting For Breast Cancer
  publication-title: Other Serious Diseases Detection
– year: 2020
  ident: 10.1016/j.epsr.2022.107796_bib0016
  publication-title: IEEE-30 Bus
– start-page: 167
  year: 2011
  ident: 10.1016/j.epsr.2022.107796_bib0004
  article-title: Economic emission OPF using hybrid GA-Particle swarm optimization
– volume: 61
  start-page: 163
  year: 2017
  ident: 10.1016/j.epsr.2022.107796_bib0018
  article-title: An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2017.02.010
– volume: 36
  start-page: 6420
  issue: 11
  year: 2011
  ident: 10.1016/j.epsr.2022.107796_bib0001
  article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow
  publication-title: Energy
  doi: 10.1016/j.energy.2011.09.027
– volume: 29
  start-page: e2743
  issue: 3
  year: 2019
  ident: 10.1016/j.epsr.2022.107796_bib0022
  article-title: An improved moth-flame optimization algorithm for solving optimal power flow problem
  publication-title: International Transactions on Electrical Energy Systems
  doi: 10.1002/etep.2743
– volume: 42
  start-page: 1683
  issue: 15
  year: 2014
  ident: 10.1016/j.epsr.2022.107796_bib0036
  article-title: Optimal power flow using differential search algorithm
  publication-title: Electric Power Components and Systems
  doi: 10.1080/15325008.2014.949912
– start-page: 21
  year: 2020
  ident: 10.1016/j.epsr.2022.107796_bib0007
  article-title: Modification of Harris hawks optimization algorithm with random distribution functions for optimum power flow problem
  publication-title: Neural Computing and Applications
– volume: 6
  start-page: 515
  year: 2012
  ident: 10.1016/j.epsr.2022.107796_bib0029
  article-title: Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index
  publication-title: IET generation, transmission & distribution
  doi: 10.1049/iet-gtd.2011.0851
– volume: 49
  start-page: 1
  issue: 6
  year: 2012
  ident: 10.1016/j.epsr.2022.107796_bib0002
  article-title: Combined economic emission dispatch problem using particle swarm optimization
  publication-title: International Journal of Computer Applications
  doi: 10.5120/7628-0695
– volume: 40
  start-page: 161
  year: 2016
  ident: 10.1016/j.epsr.2022.107796_bib0031
  article-title: Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.11.027
– start-page: 1
  year: 2020
  ident: 10.1016/j.epsr.2022.107796_bib0008
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Applied Intelligence
– volume: 73
  start-page: 393
  year: 2015
  ident: 10.1016/j.epsr.2022.107796_bib0027
  article-title: Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2015.05.011
– volume: 43
  start-page: 1548
  issue: 13
  year: 2015
  ident: 10.1016/j.epsr.2022.107796_bib0032
  article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms
  publication-title: Electric Power Components and Systems
  doi: 10.1080/15325008.2015.1041625
– volume: 10
  start-page: 531
  issue: 3
  year: 2020
  ident: 10.1016/j.epsr.2022.107796_bib0039
  article-title: An evaluation of an offshore energy installation for the Black Sea region of Turkey and the effects on a regional decrease in greenhouse gas emissions
  publication-title: Greenhouse Gases: Science and Technology
  doi: 10.1002/ghg.1963
– volume: 81
  start-page: 64
  year: 2016
  ident: 10.1016/j.epsr.2022.107796_bib0028
  article-title: Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2016.02.004
– volume: 17
  start-page: 06
  issue: 3
  year: 2002
  ident: 10.1016/j.epsr.2022.107796_bib0009
  article-title: Optimal design of power-system stabilizers using particle swarm optimization
  publication-title: IEEE transactions on energy conversion
  doi: 10.1109/TEC.2002.801992
– volume: 22
  start-page: 325
  year: 2018
  ident: 10.1016/j.epsr.2022.107796_bib0013
  article-title: Techno-economic analysis of high potential offshore wind farm locations in Turkey
  publication-title: Energy strategy reviews
  doi: 10.1016/j.esr.2018.10.007
– volume: 101
  start-page: 121
  issue: 1
  year: 2019
  ident: 10.1016/j.epsr.2022.107796_bib0023
  article-title: Modified grasshopper optimization framework for optimal power flow solution
  publication-title: Electrical Engineering
  doi: 10.1007/s00202-019-00762-4
– volume: 142
  start-page: 190
  year: 2017
  ident: 10.1016/j.epsr.2022.107796_bib0006
  article-title: Optimal power flow using moth swarm algorithm
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2016.09.025
– volume: 171
  start-page: 218
  year: 2019
  ident: 10.1016/j.epsr.2022.107796_bib0037
  article-title: A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.021
– volume: 99
  start-page: 331
  year: 2018
  ident: 10.1016/j.epsr.2022.107796_bib0020
  article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2018.01.024
SSID ssj0006975
Score 2.547809
Snippet •Proposed a novel Improved Archimedes Optimization Algorithm•A statistical performance-evaluation proved the validity and effectiveness of the IAOA...
In this paper, an Improved Archimedes Optimization Algorithm (IAOA) is proposed to solve the Optimal Power Flow problem (OPF). The purpose of improving this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107796
SubjectTerms Algorithms
Electricity distribution
Fuel emissions
Green energy
Improved Archimedes optimization algorithm
Offshore energy sources
OPF
Optimization
Optimization algorithms
Power flow
Simulation
System effectiveness
Wind power
Title A Improved Archimedes Optimization Algorithm for multi/single-objective Optimal Power Flow
URI https://dx.doi.org/10.1016/j.epsr.2022.107796
https://www.proquest.com/docview/2694491544
Volume 206
WOSCitedRecordID wos000794858100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZg4wEeED_FxkB-4C2KSB07th8jtAl42CYxpIqXyEkcaNelVVPYxF_Pne2kXScmQOIlqpzaifzZd-fL3XeEvNGSmVLB_m5Amcfc1CbWSVLHXGhhDKyhWlau2IQ8PlbjsT4NRRA7V05Atq26utKL_wo1tAHYmDr7F3APg0ID_AbQ4Qqww_WPgM8j7ygAS9LRyoK6s110AqLhIuRcRvns63w5WX27cEGGLqYQXxK02MzG83LqhaDvAxCeYiW16Gg2v7zmx3cFdCZVtHC3PSU0foTY8I_hSjqvjRMnJz_DQgw-BjieDhF93vF1I_nFJ1zBAVRKHZisvfxUMgU0glcxCFjmOAVuCmvvN5iC3u2QmZUxaFqPd40E-xM-DO8xTC1imbpLdpkUGuTYbv7hcPxx0L6ZduTKw8uFRCkf07f9pN8ZI1tq2dkaZ4_Iw3BIoLkH9zG5Y9sn5MEGdeRT8iWnPcx0DTPdhJkOMFOAmTqY326DTAPI1IFMEeRn5PPR4dm793GokxFXKVOruGlUwzWrZQnGRcKbUpY6s2ZkEpmVWljBkPSwYrzGw7QVFa9lDZY2BhZXSpr0Odlp5619QSi3phRWmlGaNVwmVhmY8lSmRmSWqUTtkVE_YUUVSOSxlsms6KMFpwVOcoGTXPhJ3iPR0GfhKVRu_bfocSiCEeiNuwKWza39DnrQirAbuwLTtLlGwqn9fxz2Jbm_3hAHZGe1_G5fkXvVj9WkW74Oi-8XMnSLBw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Improved+Archimedes+Optimization+Algorithm+for+multi%2Fsingle-objective+Optimal+Power+Flow&rft.jtitle=Electric+power+systems+research&rft.au=Akdag%2C+Ozan&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=206&rft_id=info:doi/10.1016%2Fj.epsr.2022.107796&rft.externalDocID=S0378779622000268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon